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Abstract

Identifying genes related to human diseases, such as cancer and cardiovascular disease, etc., is an important task in
biomedical research because of its applications in disease diagnosis and treatment. Interactome networks, especially
protein-protein interaction networks, had been used to disease genes identification based on the hypothesis that strong
candidate genes tend to closely relate to each other in some kinds of measure on the network. We proposed a new measure
to analyze the relationship between network nodes which was called graphlet interaction. The graphlet interaction
contained 28 different isomers. The results showed that the numbers of the graphlet interaction isomers between disease
genes in interactome networks were significantly larger than random picked genes, while graphlet signatures were not.
Then, we designed a new type of score, based on the network properties, to identify disease genes using graphlet
interaction. The genes with higher scores were more likely to be disease genes, and all candidate genes were ranked
according to their scores. Then the approach was evaluated by leave-one-out cross-validation. The precision of the current
approach achieved 90% at about 10% recall, which was apparently higher than the previous three predominant algorithms,
random walk, Endeavour and neighborhood based method. Finally, the approach was applied to predict new disease genes
related to 4 common diseases, most of which were identified by other independent experimental researches. In conclusion,
we demonstrate that the graphlet interaction is an effective tool to analyze the network properties of disease genes, and
the scores calculated by graphlet interaction is more precise in identifying disease genes.
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Introduction

Identifying human disease genes is an important task in

biomedical researches. Besides the experimental and clinical

approaches which identify individual disease genes directly, there

are a growing number of methods to predict more disease genes by

computational approaches [1]. Most of these studies are based on

the disease gene databases, such as Online Mendelian Inheritance

in Man (OMIM) [2], which is used to disease gene identification,

human disease network construction, and et al [3].

Interactome networks [4], especially protein-protein interaction

(PPI) network have been used in many areas, e.g. protein complex

detection [5,6], protein function prediction [7], signaling pathway

extraction [8], disease diagnosis [9], disease comorbidity analysis

[10], and essential gene identification [11]. In recent years, several

approaches are designed to predict human disease genes according

to their relationship with known disease genes by using the

interactome networks [12]. The hypothesis of these methods is

that if a candidate gene has close relationship with known disease

genes in the network under some measure, it is considered as a

disease gene as well.

The simplest method to identify disease genes is based on the

neighborhood. The gene, which directly links with at least 1

known disease gene in a network will be identified as a disease

gene. To improve the precision, Oti, et al. limited the genes by

checking whether their chromosomal regions located within one or

more disease loci [13]. Furthermore, if limited the genes to which

linked with at least 2 and 3, respectively, known disease genes, the

precision increased, but the recall decreased [14]. Researchers

developed new criteria in order to identify more disease genes

while keeping high precision. Lage, et al. designed Bayesian

predictor to identify disease genes from protein complexes, and

provided novel candidate genes implicated in disorders such as

retinitis pigmentosa, epithelial ovarian cancer, and et al [15].

However, the calculation is time-consuming, and the precision is

not high enough (less than 0.65). Xu, et al. combined neighbor-

hood and network topological characteristics by k-nearest neigh-

bors (KNN) algorithm to classify the disease genes from other

genes [16], which improved the precision to about 0.75. CIPHER,

a regression based algorithm, also increased the precision [17].

Kohler, et al. [18] adopted random walk algorithm to identify

disease genes from 5 species of PPI networks. It is more convenient
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to calculate, and is better than other network-based methods with

the precision more than 0.9 [14]. However, when the number of

identified genes increases, the precision of random walk decreases

rapidly. Other methods integrated multiple heterogeneous data

sources to improve the performance, such as Endeavour [19],

MGC [20], and functional linkage network (FLN) based approach

[21]. However, it is still necessary to find better disease gene

identification method to identify more disease genes conveniently,

and get high precision at the same time.

To identify disease genes precisely and conveniently, we

proposed a new approach based on graphlet. Graphlet is an

effective tool to analyze network properties. It had been applied to

compare networks by calculating the graphlet degree distribution

of each network [22]. The vector of graphlet degree is called

graphlet signature. The elements of the graphlet signature indicate

the amount of different graphlet automorphism orbits. Graphlet

signature had been used to uncover network functions [23] and

analyze protein properties in networks [24,25]. Genes with similar

graphlet signature in the network may have similar functions [23–

25]. In our present research, we found that graphlet could be

considered as a new linkage type between two nodes in a network.

Two nodes in the same graphlet are considered to interact with

each other even though there is no direct linkage between them.

Thus, the linkage can be redefined, and we called the new linkage

type as graphlet interaction.

In this paper, we developed a new approach to identify human

disease genes using graphlet interaction. Firstly, graphlet interac-

tions between random picked gene pairs in the disease loci and the

known disease gene pairs of same disease families in OMIM were

calculated, respectively. It revealed that the graphlet interaction

between disease genes was significant different from that between

random picked genes. Then, candidate genes were ranked

according to the scores which were calculated by their graphlet

interaction with known disease genes. The precision was evaluated

using leave-one-out cross-validation compared with other ap-

proaches. Finally, new disease genes of 4 common diseases, i.e.

breast cancer, colorectal cancer, prostate cancer and diabetes,

were predicted and analyzed.

Methods

2.1 Graphlet and graphlet interaction
The graphlet is a type of small connected subgraph which is non-

isomorphic [22]. A whole large network is consisted of the graphlets.

Different network has different number of graphlets. Computing all

the graphlets of a network is a NP-complete problem. In this paper,

only graphlets with not more than 4 nodes were considered. The

graphlets are shown in Figure 1a. There are 9 types of graphlets

labeled with G0 to G8 with 2, 3 or 4 nodes, 1 graphlet (G0) with 2

nodes, 2 graphlets (G1, G2) with 3 nodes and 6 graphlets (G3–G8) with

4 nodes. Nodes in the graphlets occupy different positions, which are

called automorphism orbits [22]. Nodes in the same automorphism

orbits have the same local topological properties in the graphlet.

These 9 types of graphlets have 15 automorphism orbits (Figure 1a).

More detailed information about graphlet is described in the

previous publications [22–25].

Graphlet interaction describes the relationship between 2 nodes.

There is a graphlet interaction between the two nodes in the same

graphlet. It was defined by Equation (1). There is a graphlet

interaction between node i and node j of graph H when satisfy

AG(H, and i[G, j[G ð1Þ

where G is a graphlet in H, and V(G) is the nodes set of G.

In Figure 1b, the black and gray nodes represent the nodes i and

j which have a graphlet interaction. Thus, there are different types

of relationships between the two nodes (black and gray) according

to their different automorphism orbits. The different types of

relationships between the 2 nodes are called graphlet interaction

isomers. For example, the graphlet interaction isomer I2, I3 and I4

Figure 1. Graphlet and graphlet interaction isomers. The figure showed the introduction of graphlet and graphlet interaction. a. Graphlet
types which were labelled by G0 to G8, and automorphism orbits which were labelled by number 0 to 14. Black, white and gray nodes represented
different orbits in the same graphlet. b. Graphlet interaction isomers I1 to I28 between two nodes which were marked with black and gray.
doi:10.1371/journal.pone.0086142.g001
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are all similar as the graphlet G1. However, the nodes i and j (black

and gray) are in different automorphism orbits of graphlet G1,

which should be seen as different graphlet interaction isomers. The

graphlet interaction is a vector, of which every element represents

the number of the corresponding graphlet interaction isomers.

Since computation of all types of graphlet interaction isomers in a

network is an NP-complete problem, only not more than 4 nodes

graphlets were considered. There are 28 graphlet interaction

isomers labeled as I1 to I28 (Figure 1b). The graphlet interaction

vector has 28 elements corresponding to the 28 types of graphlet

interaction isomers.

2.2 Computation of graphlet interaction
The graph H is represented by the adjacency matrix A = (aij). If

there is an edge between nodes i and j of H, aij = 1; otherwise, aij

= 0. When counting the graphlet interaction between nodes i and

j, the number of isomer Ik was calculated by the equation

Nij(Ik)~
X

l[V (G)

X
m[V (G)

bijbilbjlbimbjmblm ð2Þ

b is a variable to make equation (2) clear and calculated by the

following

bst~
ast s and t has a link in Ik

1{ast s and t has no link in Ik

�
ð3Þ

In the above equations, Nij(Ik) represents the number of the isomer

Ik between nodes i and j, l and m represent the other 2 nodes

besides nodes i and j, and aij represents the elements of adjacency

matrix A. i, j, l and m are all unequal. When the nodes i, j, l and m

in the network constitute a graphlet interaction isomer, all the 6

items, i.e. bij, bil, bjl, bim, bjm, blm, are equal to 1. The product will be

1, and added to the number of the corresponding isomer. After all

the nodes being traversed, the total number of the isomer from

node i to j can be calculated. The larger number of the isomers Ik

suggests the closer relationship between the two nodes i and j.

The computing based on Equation (2) is too time-consuming.

Hence, in practice the isomers were counted by the vectors of the

adjacency matrix like ai and aj. For example, the number of isomer

I2 was computed by Nij(I2) = ai * aj, where Nij(I2) means the

number of I2 between node i and j and * means inner product of

two vectors.

The graphlet interaction has directions, which represents that if

calculating the graphlet interaction of two nodes, i and j, the

graphlet interaction from node i to node j does not equal to that

from j to i. There are some symmetrical graphlet isomers, such as

I3 and I4. Nij(I3) = Nij(I4), which means that the third element of

graphlet interaction vector from i to j is equal to the fourth element

of that from j to i.

2.3 Ranking candidate genes by graphlet interaction
scores

In order to identify disease genes by using graphlet interaction,

the candidate genes were ranked by the scores based on graphlet

interaction. A gene with a higher score may have closer relation

with known disease genes, and thus have higher probability to be a

disease gene as well. The graphlet interaction scores were

calculated by the following equation

Sj~
X

k

vk

X
i[D

norm(Nij(Ik)) ð4Þ

where Sj means the score of the gene j, vk is the weight of the kth

isomer, D is the known disease gene set belong to some disease

family, norm(Nij(Ik)) is the normalized graphlet interaction, which

was calculated by

norm(Nij(Ik))~
Nij(Ik)

Ni(Ik)
ð5Þ

where Nij(Ik) is the number of the graphlet interaction isomer Ik

from known disease gene i to candidate gene j, which is calculated

by Equation (2). Ni(Ik) represents the total number of graphlet

isomer Ik from known disease gene i to other genes. The Ni(Ik) was

calculated as

Ni(Ik)~
X
j[C

Nij(Ik) ð6Þ

where C represents the candidate gene set of some disease, and it

contains all the genes with locations fall into the disease loci.

The weights vk of the graphlets in Equation (4) can be set by

experience or machine learning from the datasets. In this part,

linear regression was adopted to calculate the weights. When

Figure 2. Protocol of disease gene identification using graphlet
interaction. a. The small network was taken, and only 5 types of
graphlet interaction isomers (I1 to I5) were considered as an example.
The black node 1 and node 3 were known disease genes. The protocol
showed how to rank other genes according to known disease genes. b.
The first step, calculation of the graphlet interaction between known
disease gene (1, 3) and all the other genes. GI was the abbreviation of
graphlet interaction, measured by a vector which had 5 elements
corresponding to the numbers of the 5 types of graphlet interaction
isomers (Figure. 1b I1 to I5). The graphlet interactions from one disease
gene were added. Sum1 and Sum3 were the summations of the
graphlet interaction vectors from node 1 and node 3. c. The second
step, normalization of the graphlet interaction. Every graphlet
interaction was divided by the corresponding summation. GI12, GI13,
GI14 and GI15 were divided by Sum1, and GI31, GI32, GI34 and GI35 were
divided by Sum3. d. The third step, the graphlet interactions from the
disease gene to every candidate gene were summated. Then, the
elements of the summation were multiplied by the weights, and then
added. The score of the node was obtained. For example, to get score
of node 2, the normalized GI12 and GI32 were added and the summation
vector [0.83 0 0 1.67 1] was obtained. The score was 0.83+0+0+1.67+
1 = 3.5 (the weight of every element was 1 here).
doi:10.1371/journal.pone.0086142.g002
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validating the performance of the algorithm, the disease dataset

were divided into two parts: test dataset and training dataset.

Training dataset was used to obtain the weights by regression and

the test dataset was used to validate the algorithm.

Equation (4) was rewritten as

Sj~
X

k

vkxjk ð7Þ

xjk was calculated by

xjk~
X
i[D

norm(Nij(Ik)) ð8Þ

When using training dataset, sj and xjk in the equation were known,

and vk was unknown.

Then, the weight vk was calculated by the equation as following

V~(XXT ){1XS ð9Þ

Figure 3. Compare disease genes with random genes using graphlet signature and graphlet interaction. Graphlet signature and
graphlet interaction were applied and compared to distinguish the disease genes and random picked genes. a. The average signatures of disease
genes (blue line) and random genes (red line); b. The distribution of graphlet signature similarities between disease genes (blue bars) and between
random genes (red bars). The horizontal axis which was discretized to 10 grids represented the similarity from 0 to 1 and the longitude axis was the
number of the gene pairs with corresponding similarities; c. The average number of graphlet interaction isomers between disease gene pairs (blue
line) and random gene pairs (red line); d. The distribution of average graphlet interaction isomer I20 of disease gene (blue bars) and random genes
(red bars). The horizontal axis was the logarithmic number of the isomer, and the longitude axis was the normalized number of genes which had
corresponding number of isomers.
doi:10.1371/journal.pone.0086142.g003

Figure 4. Performance of the graphlet interaction comparing
with random walk, Endeavour and neighborhood based
method. P-R curves of graphlet interaction approach (red line),
random walk (blue line), Endeavour (green line) and neighbourhood
based method (yellow line) in identifying disease genes. The graphlet
interaction approach obtained the highest precision in most areas.
doi:10.1371/journal.pone.0086142.g004
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Figure 5. Performance of graphlet interaction and random walk using different networks. P-R curves of graphlet interaction approach
and random walk using different data sources. a, HPRD network; b, BioGRID network; c, KEGG network; d, the integrated network.
doi:10.1371/journal.pone.0086142.g005

Figure 6. Performance in disease genes identification of 4 common diseases. P-R curves of graphlet interaction approach, random walk and
Endeavour in disease gene identification of four common diseases. a, Breast cancer; b, Colorectal cancer; c, Diabetes; d, Prostate cancer.
doi:10.1371/journal.pone.0086142.g006
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sj denotes whether the gene is a disease gene or not. When the jth

gene is a disease gene, sj = 1; when the jth gene is not a disease

gene, sj = 0.

2.4 Leave-one-out cross-validation
Leave-one-out cross-validation was applied to evaluate the

performance of the graphlet interaction [14]. For every disease

family, the genes were ranked according to the scores. When

setting a threshold S0, the genes with scores less than S0 were

discarded. Meanwhile, locations of the genes were checked if they

were contained within the interval known to be associated with the

corresponding disease. The genes which both located in the

disease loci and scored above the threshold S0 were identified as

positive genes.

For every disease, the algorithm was carried out for several

times according to the number of the known disease genes. In each

time, one of the disease genes was left out as unknown. If the gene

left out by the algorithm was identified as a positive gene described

above, it was a true positive (TP). The false positives (FP) were the

positive genes described above which were not the known disease

gene. The false negatives (FN) were the genes which were disease

genes left out by the algorithm and were not identified as the

positive genes described above. The true negatives (TN) were the

genes which were not the known disease genes and were not

identified as the positive genes. After obtaining the scores of all

genes, the threshold was altered from the highest score to the

lowest score. TP, FP, TN and FN were calculated corresponding to

every threshold value.

The precision-recall (P-R) curves were plotted to show the

performance of different algorithm in different conditions. The

precision was calculated by TP/(TP+FP) and the recall was

calculated by TP/(TP+FN). The whole performance also was

represented by the maximum F-scores which were calculated by F

= 2pr/(p+r). Receiver operating characteristic (ROC) curves were

also used to show the performance. The horizontal coordinate of

ROC curves was false-positive-rate (FPR) which was calculated by

FPR = FP/(FP + TN) and the longitudinal coordinate was true-

positive-rate (TPR) which was calculated by TPR = TP/(TP +
FN).

2.5 Data Sources
The human disorders and corresponding disease genes came

from OMIM database [2] which focuses on the relationship

between phenotype and genotype and updates daily. The data

contains 5662 disease genes. There are 3871 unique disease genes

because some genes are duplicated and participated in different

diseases. The semantic similarities of the diseases were calculated

to determine the disease families. The diseases with similarity

values more than 0.3 were considered to be one disease family. All

the diseases were grouped into 1871 disease families. Some disease

families only had one disease gene, which could not be tested by

Table 1. Disease gene identification of 4 common diseases.

Rank Breast cancer Colorectal cancer Diabetes Prostate cancer

Genes Scores Genes Scores Genes Scores Genes Scores

1 TP53 19.53 TP53 16.06 INS 10.65 AR 9.951

2 ESR1 8.620 MLH1 15.51 INSR 6.524 CDH3*# 6.052

3 PIK3R5*# 8.503 APC 13.87 HRAS*# 5.376 CASP7*# 5.557

4 AKT1 7.455 CTNNB1 13.76 HNF1A 5.277 YWHAG* 5.298

5 PIK3CA 6.457 EP300 12.07 HNF1B 5.198 PTEN 4.057

6 CDH3*# 6.045 RHOA*# 8.696 KCNJ11 4.187 CDH1 2.267

7 PRKDC*# 5.044 AKT1 8.151 ABCC8 4.187 SMC3*# 2.140

8 KRAS 3.118 NRAS 7.499 VAV1*# 4.075 ASCC2* 2.104

9 PRKCI*# 2.213 PIK3R5*# 7.275 PDE3B*# 4.039 PTPN12*# 0.858

10 TSG101 1.501 PMS2 6.977 TYK2*# 2.906 GTF2I*# 0.826

11 CHD3*# 1.467 MSH2 6.646 CDC37*# 2.608 ACTB*# 0.826

12 KHDRBS1* 1.452 MSH6 6.344 SMARCA4*# 1.865 LPL*# 0.738

13 SMURF2*# 1.408 DVL2*# 5.886 GCK 1.472 RAC1*# 0.639

14 MTA1*# 1.331 PIK3CA 5.726 CTSD* 1.101 SF3B3* 0.627

15 DVL2*# 1.236 RAC1*# 5.486 GRB7*# 1.000 XPO1* 0.618

16 EPS15*# 1.229 SOS1* 5.419 PIP4K2B* 0.911 DGKZ* 0.604

17 MOS* 1.110 PRKCE* 4.433 DNM2* 0.870 LIPF* 0.586

18 POLR2A*# 1.076 PFAS* 4.041 AKT2 0.703 RNASEL 0.569

19 CDH1 0.953 BUB1 3.017 BCL3*# 0.699 CCAR2 0.527

20 TAB2*# 0.904 PMS1 2.812 RAB3D* 0.652 BRCA2 0.527

*means the genes were not included in the disease gene list of OMIM.
#means the genes which not in OMIM were verified by literatures.
doi:10.1371/journal.pone.0086142.t001
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leave-one-out cross validation. There were 876 disease families

which having more than 2 disease genes.

To compare with random walk [18], Endeavour [19], and

neighborhood based method [13], a data subset of disease genes

was used. The previous published researches [18,19] used the

datasets which contained 783 and 627 disease genes, respectively.

Hence a data subset contained 42 disease families which were

random picked. It contained 741 distinct genes, which was similar

to the above two approaches. The data subset included diseases

with disease genes from 3 (Pulmonary hypertension) to 121

(deafness), and the average disease genes of one disease was 21.2

(Table S1).

When using the disease data subset to validate the performances

of algorithms, the subset was used as test data. The data of the

other diseases were used as training data to calculate the weights

by liner regression. When using the whole dataset to validate the

performances, the whole dataset was divided into 10 parts. Each

part was used as test data, and the others were used as training

data to calculate the weights. The disease genes reduplicated in the

test and training data were deleted from the training data to the

results believable.

OMIM also provides the location information of disease genes.

There are 1591 different locations of the diseases. In NCBI human

gene database, the genes located in these 1591 locations were used

as candidate genes.

The interactome networks were integrated by PPIs and

pathways. The PPIs came from Human Protein Reference

Database (HPRD) [26], and Biological General Repository for

Interaction Datasets (BioGRID) [27]. The pathways came from

Kyoto Encyclopedia of Genes and Genomes (KEGG) database

[28] and included two parts, i.e. metabolism pathways and non-

metabolism pathways. The dataset from HPRD contains 9515

unique proteins and 36985 interactions. The dataset from

BioGRID contains 7349 proteins and 21833 interactions. The

pathways from KEGG were integrated into a pathway network by

VisAnt [29] which contained 3694 proteins and 36298 interac-

tions. Only the main components of networks were preserved to

keep the network as a connected graph. All the networks were

considered as undirected and unweighted. Then the above

networks were integrated into a large network. The final

integrated interactome network included 11696 nodes and

78327 interactions.

Results and Discussion

3.1 Protocol of the graphlet interaction approach
Between every nodes pair, the number of different isomers was

counted and the graphlet interaction was indicated by the vector

of which the elements represented the number of the correspond-

ing graphlet interaction isomer. When identifying disease genes,

the score of every gene was calculated according to their graphlet

interaction. Figure 2 uses 3-node graphlet as an example

(Figure 2a) to show the protocol. In step one (Figure 2b), the

graphlet interaction isomers from disease genes to all the other

genes were counted by Equation (2) and Equation (3). The

summation of the graphlet interaction vectors from every disease

gene was computed by equation (6). In step two (Figure 2c), the

graphlet interaction from every disease gene to every candidate

gene was normalized by Equation (5). In step three (Figure 2d), all

the normalized graphlet interactions of every candidate gene were

added, and the score of every candidate gene was calculated by

weighted summation as shown in Equation (4).

3.2 Graphlet interaction between disease genes
In this part, network properties of all genes were analyzed by

using graphlet signature and graphlet interaction, and the

difference between disease and random genes were compared.

Random genes were picked from all genes in the network as the

background.

Firstly, the average graphlet signature of disease genes and

random picked genes were calculated, respectively. The kth

element of the average graphlet signature vector was calculated

by the equation

N(Gk)~
1

N

XN

i~0

Ni(Gk) k~0,1, . . . ,14 (11)

where Gk represents the kth element of the graphlet signature

vector, Ni(Gk) is the number of Gk of the gene i, N is the total

number of the genes.

Figure 3a shows the average graphlet signatures of disease genes

and random genes in logarithmic scale. The correlation between

the average graphlet signatures of disease genes and random genes

was 0.9190, which suggested that the two averaged graphlet

signatures were similar. T-test was used to analyze the difference

between the two average signature and the p-value was 0.278,

larger than the threshold 0.05. These results suggested the disease

genes could not be identified from the random genes by the

graphlet signature.

Secondly, the graphlet signature similarities were calculated

between every gene pairs to distinguish the disease genes and

random genes. The signature similarity was represented by the

absolute value of the Pearson correlation coefficient of the graphlet

signatures. The Pearson correlation coefficient was calculated as

following

rij~

P14

k~0

(Ni(Gk){Ni(G))(Nj(Gk){Nj(G))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP14

k~0

(Ni(Gk){Ni(G))2 P14

k~0

(Nj(Gk){Nj(G))2

s ð12Þ

Where Ni(Gk) is the kth element of the graphlet signature vector of

the gene i, Ni(G) is the average of all the elements of the graphlet

signature vector of gene i.

The distributions of the graphlet signature similarities are shown

in Figure 3b. The number of disease gene pairs with low similarity

(# 0.5) was larger than random gene pairs, while the number of

disease gene pairs with high similarity (. 0.5) was smaller than

random gene pairs. It demonstrated that the similarity of graphlet

signature did not distinguish disease genes from the background.

Milenkovic, et al. applied graphlet similarity to identified cancer

genes. However, the performance was not outstanding, and the

max F-score of the method was less than 0.25 when using KNN

clustering method [24], which also suggested that the graphlet

signature might be not suitable to identify disease genes.

Thirdly, the average graphlet interactions of the disease gene

pairs and the random gene pairs were investigated. The average

number of the kth graphlet interaction isomer was calculated by

equation

N(Ik)~
1

N(N{1)=2

XN

i,j

Nij(Ik) ð13Þ

Where Ik is the kth graphlet interaction isomer and Nij(Ik) is the

number of the Ik from gene i to gene j. N is total number of the

genes to be calculated.
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Figure 3c shows the curves which revealed the average graphlet

interactions of disease gene pairs and random gene pairs. The

average numbers of graphlet interaction isomers of disease gene

pairs were much larger than random gene pairs. T-test was also

used to evaluate the difference between the two average graphlet

interactions and the p-value was 5.96610211. It suggested that the

graphlet interaction was a feature to distinguish the disease genes

from the background.

Finally, the graphlet interactions distributions of 28 types of

isomers were investigated. The normalized numbers of graphlet

interaction isomers of every disease gene and every random gene

were calculated by the equation

Nj(Ik)~
1

M

XM
i~1

Nij(Ik) ð14Þ

where Nij(Ik) is the number of the kth graphlet interaction isomer,

Nij(Ik) is the average number of graphlet interaction isomer from

disease genes to the gene j, and M is the total number of disease

genes.

Figure 3d shows the distribution of isomer I20 as an example.

The average numbers of I20 from disease genes to all genes were

from 0.027 to 532.3. The logarithm of average numbers was

calculated to make the histogram clear and the values were from

23.6 to 6.277. The result showed that the numbers of random

genes were more than disease genes when the logarithm were

equal to or less than 0, while the most numbers of disease genes

were more than random genes when the logarithm were more

than 0. It meant that the disease gene pairs had larger numbers of

graphlet interaction isomers than the disease-random gene pairs.

The distributions of all the normalized number of graphlet

interaction isomers are shown as Figure S1.

The above results revealed that the graphlet interaction between

disease genes was different from random picked genes, but the

graphlet signature was not. It suggested that graphlet interaction

may be a better tool to identify disease genes. Therefore, the

approach based on the graphlet interaction was designed and

performed to identify the disease genes in the following part.

3.3 Performance of graphlet interaction in disease gene
identification

The previous results suggested that a gene which had more

graphlet interaction isomers with known disease genes had higher

probability to be a disease gene as well. Hence, the new designed

score was calculated based on graphlet interaction. To investigate

whether the score can separate the disease genes from the

background, the score distributions of disease genes and random

genes were plotted (Figure S2). All the weights of the graphlet

interaction isomers were set 1, here. Figure S2 shows that the

scores of most disease genes were higher than random genes. The

tendency was similar to the distribution of the graphlet isomers.

The correlations between the graphlet interaction scores and the

number of graphlet interaction isomers are shown as Figure S3.

To evaluate the precision of graphlet interaction on disease

genes identification, the leave-one-out cross-validation was adopt-

ed and the P-R curves of graphlet interaction algorithm compared

with previous approaches, i.e. random walk [18], Endeavour [19]

and neighborhood based method [13,14], were evaluated.

Figure 4a shows the P-R curves of the four approaches, i.e.

graphlet interaction, random walk, Endeavour and neighborhood

when using the data subset. The graphlet interaction obtained

higher precision in almost all range. The precision of the graphlet

interaction obtained the maximum 100% at the small recall and

more than 90% at the recall 10%, which were much higher than

the other three approaches. As the recall increased, the precision

of graphlet interaction was still higher than the other three

approaches. It suggested that graphlet interaction performed

better in predicting new disease related genes. The precision of

Endeavour also obtained 100% at the small recall, but decreased

rapidly and only obtained about 70% when the recall was 10%.

The highest precision of random walk was 82.35%, at the recall

2.65%, and the precision decreased to 64.56% at the recall 10%.

The neighborhood based method was chosen as a baseline

approach. It considered a candidate gene as a disease gene if there

were at least 1 linkage between the candidate gene and disease

genes. Several points were obtained by increasing the number of

linkages and the P-R curve of the neighborhood based method

were plotted. The highest precision of neighborhood based

method was 67%, when at least 3 linkages with disease genes

were considered, at the corresponding recall 12.43%. The

maximum F-score of the graphlet interaction based approach

was 0.466 while the random walk was 0.415, Endeavour was 0.436

and neighborhood based method was 0.4227.

ROC curves shows the performance of graphlet interaction as

well in Figure S4. The area below graphlet interaction curve is

larger than the other three approaches. The statistic data (TP, FP,

TN and FN) of the 4 approaches is in Table S2. The top 100

identified disease genes by the graphlet interaction are listed in

Table S3.

Graphlet interaction performed better than Endeavour. It is

probably because that Endeavour exploits different data sources

just by statistics, but does not consider the complex relationships

between the genes in the network. Random walk algorithm

considers the effect of network structure on the gene relationship.

However, in the process of the ‘‘random walk’’, the scores between

two genes are mainly determined by the direct connection. If a

gene has indirect link to a known disease gene, it is hardly

identified. The neighborhood based method also just considers the

direct connection between a candidate gene and disease genes.

The graphlet interaction approach considers not only the direct

but also the indirect connections. The graphlet interaction

includes 28 different types of linkages. There are 8 isomers which

contain node pairs which does not link each other directly in the

graphlet interaction. The score of a gene will be high enough if it

connects with known disease genes by many graphlet, even though

there is no direct connection between them.

Also, the graphlet interaction isomers reflect different topolog-

ical structures. Every graphlet interaction isomer represents a

unique topological structure, and they are non-isomorphic. The

graphlet interaction approach tends to identify genes with high

degree to be disease genes. Figure S5a shows a small network and

just graphlet with not more than 3 nodes were calculated as an

example. In the small network, node A is a known disease gene.

Node B and node C are candidate genes. Using both neighbor-

hood based method and random walk, node B and node C have

the same relationship with A. However, the graphlet interactions

of them are quite different. The graphlet interaction vector

between A and B is [1 0 1 3 0] and between A and C is [1 0 1 0 0].

The score of node B is 2.0 while the score of node C was 1.0.

Genes with higher degree tend to play more important roles in

biological function. The property of graphlet interaction made it

perform better than other approaches.

The graphlet interaction tends to identify candidate genes which

are in the same complex with disease genes as disease genes too.

Figure S5b shows another example. In the small network, node A

is disease gene. Node B and C are candidate genes. Node C is the

neighbor of A, but B is not. Using neighborhood based method,
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node C is more likely to be a disease gene than node B. However,

A and B are in the same complex, but C is not. The graphlet

interaction score of B is 1.0, which is higher than that of C (0.75).

Genes in the same complex often participate in the same function,

and the graphlet interaction approach tends to identify genes in

the same complex with disease genes.

To avoid bias, the whole disease datasets were used to validate

the performance of graphlet interaction approach compared with

random walk by leave-one-out cross-validation. Random walk was

the widely used approach based on interactome network as

graphlet interaction. 3 networks constructed from different data

sources, i.e. HPRD, BioGRID and KEGG, and the integrated

network were used respectively. The graphlet interaction per-

formed better than the random walk (Figure 5). Among the 4

networks, graphlet interaction performed the best and obtained

higher precision at all recall value by using KEGG network.

3.4 Predicting new disease gene
Furthermore, to demonstrate the ability of the graphlet

interaction to identify disease genes, new disease genes of the 4

common diseases, i.e. breast cancer, colorectal cancer, diabetes

and prostate cancer, were identified by the approach. The

performance of the graphlet interaction approach was compared

with random walk and Endeavor, respectively. The P-R curves

showed the precision of every disease (Figure 6). It revealed that

graphlet interaction approach performed better than the other two

methods. The performances of graphlet interaction approach and

random walk were more stable than Endeavour, which obtained

the highest precision at the largest recall of diabetes but very low

precision of breast cancer and prostate cancer. The reason may be

that in the annotations of KEGG, the disease genes of colorectal

cancer and diabetes were included, but not the breast cancer and

prostate cancer.

Then, new disease genes of the 4 diseases were identified by

graphlet interaction approach. The genes were ranked according

to the graphlet interaction scores. Genes which were not included

in the OMIM database were considered as new disease genes if

they were ranked ahead. Table 1 lists the top 20 ranked genes of

the 4 diseases. 34 genes among the total 80 genes being in the

OMIM database and the other 46 genes were new disease genes

identified by our method. These new identified genes were

checked whether some other researchers had identified them as

disease genes. 31 genes among the 46 new identified disease genes

were reported to be related to the corresponding diseases in the

literatures and labeled by ‘‘#’’ in Table 1. For example, PIK3R5

was found to be related to both breast cancer and colorectal

cancer verified by Wood, et al [30]. CDH3 [31], PRKDC [32]

and PRKCI [33] had all been reported to be the breast cancer

related genes. RHOA was identified by Wever, et al [34] as a

colorectal cancer related gene. HRAS [35], VAV1 [36], PDE3B

[37] and TYK2 [38] were suggested to relate to diabetes. CDH3

was also a prostate cancer related gene besides breast cancer [39].

CASP7 [40], SMC3 [41], PTPN12 [42] and GTF2I [43] were

validated as prostate cancer related genes by different researchers

and various experiments. The above researches further verified

our identifications, and suggested that the approach based on

graphlet interaction could obtain high precision in identifying

disease genes. There was no apparent evidence to prove the

relationship between the other 15 new identified genes and the

corresponding disease, for example MOS, SOS1, CTSD and

YWHAG. Our results suggested that these new identified genes

have high probability to be the disease genes.

Conclusion

We presented a new approach which identified disease genes

based on interactome network. The approach applied graphlet

interaction to determine whether a gene had closely relationship with

known disease genes. The scores of the graphlet interactions between

candidate genes and known disease genes were calculated and genes

were ranked according to the scores. A gene with higher scores had

higher probability to be a new disease gene. The performance of the

approach was evaluated by leave-one-out cross-validation, and

compared with random walk, Endeavour and neighborhood based

method. The results showed that the approach based on graphlet

interaction perform better than the other methods. To avoid bias,

the approach was carried out on 3 independent networks and the

integrated network, and the results showed the similar tendency.

Finally, the approach was applied to identify new disease genes of 4

common diseases, and proved that these identified new disease genes

had high probability to be disease genes.

Supporting Information

Figure S1 Normalized number distribution of graphlet
interaction isomers I1 to I28. a. Equal numbers of disease

genes and random genes were chosen and the normalized number

distributions of graphlet interaction isomers were compared.

Because there were too many zeros values, the bars of zero values

were not shown to make the histogram readable. The horizontal

axis is the normalized number of isomers. The longitude axis is the

number of genes corresponding to the normalized number of

isomers. b. Equal numbers of disease genes and random genes

which have non-zeros values were chosen and the normalized

number distributions of graphlet interaction isomers were

compared. The horizontal axis is the normalized number of

isomers, which was logarithmic scaled to make the histogram

clear. The longitude axis is the corresponding number of genes.

(TIF)

Figure S2 Distribution of graphlet interaction scores,
comparing between disease genes and random genes.
Equal numbers of disease genes and random genes were chosen

and the distributions of the graphlet interaction scores were

compared. Because there were too many zero values, the bars of

zero values were not shown to make the histogram readable.

(TIF)

Figure S3 Correlations of graphlet interaction scores
and numbers of graphlet isomer. In the figures, every point

meant a gene. The horizontal coordinate meant the logarithmic

graphlet interaction score, and the longitudinal coordinate meant

the logarithmic average number of graphlet interaction isomer.

(TIF)

Figure S4 ROC curves of graphlet interaction approach
(red line), random walk (blue line), Endeavour (green
line) and neighbourhood based method (yellow line). The

horizontal coordinate meant the false-positive-rate and the

longitudinal coordinate meant the true-positive-rate. The graphlet

interaction approach curve was above others in most region. It

meant that when getting the same false positive, graphlet

interaction obtained higher true positive.

(TIF)

Figure S5 Schema models to reveal the advantages of
graphlet interaction. a. A is known disease gene. B and C were

candidate genes. B had high degree; b. A was known disease gene.

B and C were candidate genes. B was in the same complex with A.

(TIF)
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Table S1 Data subset of disease genes which include
904 disease genes and 42 disease families.

(XLSX)

Table S2 TP, FP, TN, FN and corresponding scores of
graphlet interaction, random walk, Endeavour and
neighborhood based method.

(XLSX)

Table S3 Top 100 candidate genes ranked by graphlet
interaction scores.
(XLSX)

Author Contributions

Conceived and designed the experiments: XDW YXQ ZLJ. Performed the

experiments: XDW JLH. Analyzed the data: XDW JLH. Wrote the paper:

XDW LY DQW.

References

1. Wang X, Gulbahce N, Yu H (2011) Network-based methods for human disease

gene prediction. Brief Funct Genomics 10: 280–293.

2. McKusick VA (2007) Mendelian Inheritance in Man and its online version,
OMIM. Am J Hum Genet 80: 588–604.

3. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, et al. (2007) The human
disease network. Proc Natl Acad Sci USA 104: 8685–8690.

4. Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human

disease. Cell 144: 986–998.
5. Jung SH, Hyun B, Jang WH, Hur HY, Han DS (2010) Protein complex

prediction based on simultaneous protein interaction network. Bioinformatics
26: 385–391.

6. Li X, Wu M, Kwoh CK, Ng SK (2010) Computational approaches for detecting
protein complexes from protein interaction networks: a survey. BMC Genomics

11: S3.

7. Hu P, Jiang H, Emili A (2010) Predicting protein functions by relaxation
labelling protein interaction network. BMC Bioinformatics 11: S64.

8. Zhao XM, Wang RS, Chen L, Aihara K (2008) Uncovering signal transduction
networks from high-throughput data by integer linear programming. Nucleic

Acids Res 36: e48.

9. Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, et al. (2009)
Dynamic modularity in protein interaction networks predicts breast cancer

outcome. Nat Biotechnol 27: 199–204.
10. Park J, Lee DS, Christakis NA, Barabasi AL (2009) The impact of cellular

networks on disease comorbidity. Mol Syst Biol 5: 262.

11. del Rio G, Koschutzki D, Coello G (2009) How to identify essential genes from
molecular networks? BMC Syst Biol 3: 102.

12. Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-
based approach to human disease. Nat Rev Genet 12: 56–68.

13. Oti M, Snel B, Huynen MA, Brunner HG (2006) Predicting disease genes using
protein-protein interactions. J Med Genet 43: 691–698.

14. Navlakha S, Kingsford C (2010) The power of protein interaction networks for

associating genes with diseases. Bioinformatics 26: 1057–1063.
15. Lage K, Karlberg EO, Storling ZM, Olason PI, Pedersen AG, et al. (2007) A

human phenome-interactome network of protein complexes implicated in
genetic disorders. Nat Biotechnol 25: 309–316.

16. Xu J, Li Y (2006) Discovering disease-genes by topological features in human

protein-protein interaction network. Bioinformatics 22: 2800–2805.
17. Wu X, Jiang R, Zhang MQ, Li S (2008) Network-based global inference of

human disease genes. Mol Syst Biol 4: 189.
18. Kohler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for

prioritization of candidate disease genes. Am J Hum Genet 82: 949–958.
19. Aerts S, Lambrechts D, Maity S, Loo PV, Coessens B, et al. (2006) Gene

prioritization through genomic data fusion. Nat Biotechnol 24: 537–544.

20. Karni S, Soreq H, Sharan R (2009) A network-based method for predicting
disease-causing genes. J Comput Biol 16: 181–189.

21. Linghu B, Snitkin ES, Hu Z, Xia Y, Delisi C (2009) Genome-wide prioritization
of disease genes and identification of disease-disease associations from an

integrated human functional linkage network. Genome Biol 10: R91.

22. Przulj N (2007) Biological network comparison using graphlet degree
distribution. Bioinformatics 23: e177–183.

23. Milenkovic T, Przulj N (2008) Uncovering biological network function via
graphlet degree signatures. Cancer Inform 6: 257–273.

24. Milenkovic T, Memisevic V, Ganesan AK, Przulj N (2010) Systems-level cancer
gene identification from protein interaction network topology applied to

melanogenesis-related functional genomics data. J R Soc Interface 7: 423–437.

25. Ho H, Milenkovic T, Memisevic V, Aruri J, Przulj N, et al. (2010) Protein
interaction network topology uncovers melanogenesis regulatory network

components within functional genomics datasets. BMC Syst Biol 4: 84.

26. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, et al.

(2009) Human Protein Reference Database – 2009 update. Nucleic Acids Res

37: D767–772.

27. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, et al. (2006)

BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:

D535–539.

28. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for

representation and analysis of molecular networks involving diseases and drugs.

Nucleic Acids Res 38: D355–360.

29. Hu Z, Mellor J, Wu J, Yamada T, Holloway D, et al. (2005) VisANT: data-

integrating visual framework for biological networks and modules. Nucleic Acids

Res 33: W352–357.

30. Wood L, Parsons DW, Jones S, Lin J, Sjoblom T, et al. (2007) The genomic

landscapes of human breast and colorectal cancers. Science 318: 1108–1113.

31. Jacquemier J, Ginestier C, Rougemont J, Bardou VJ, Charafe-Jauffret E, et al.

(2005) Protein expression profiling identifies subclasses of breast cancer and

predicts prognosis. Cancer Res 65: 767–779.

32. Yu Y, Okayasu R, Weil MM, Silver A, McCarthy M, et al. (2001) Elevated

breast cancer risk in irradiated BALB/c mice associates with unique functional

polymorphism of the Prkdc (DNA-dependent protein kinase catalytic subunit)

gene. Cancer Res 61: 1820–1824.

33. Glunde K, Jie C, Bhujwalla ZM (2006) Mechanisms of indomethacin-induced

alterations in the choline phospholipid metabolism of breast cancer cells.

Neoplasia 8: 758–771.

34. De Wever O, Nguyen QD, Van Hoorde, Bracke M, Bruyneel E, et al. (2004)

Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide

convergent pro-invasive signals to human colon cancer cells through RhoA

and Rac. FASEB J 18: 1016–1018.

35. Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, et al. (2010) Gene

expression profiles of Beta-cell enriched tissue obtained by laser capture

microdissection from subjects with type 2 diabetes. PLoS One 5: e11499.

36. Fraser HI, Dendrou CA, Healy B, Rainbow DB, Howlett S, et al. (2010)

Nonobese diabetic congenic strain analysis of autoimmune diabetes reveals

genetic complexity of the Idd18 locus and identifies Vav3 as a candidate gene. J.

Immunol 184: 5075–5084.

37. Cong L, Chen K, Li J, Gao P, Li Q, et al. (2007) Regulation of adiponectin and

leptin secretion and expression by insulin through a PI3K-PDE3B dependent

mechanism in rat primary adipocytes. Biochem J 403: 519–525.

38. Wallace C, Smyth DJ, Maisuria-Armer M, Walker NM, Todd JA, et al. (2010)

The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters

susceptibility to type 1 diabetes. Nat Genet 42: 68–71.

39. Kumper S, Ridley AJ (2010) p120ctn and P-cadherin but not E-cadherin

regulate cell motility and invasion of DU145 prostate cancer cells. PLoS One 5:

e11801.

40. Kim MS, Park SW, Kim YR, Lee JY, Lim HW, et al. (2010) Mutational analysis

of caspase genes in prostate carcinomas. APMIS 118: 308–312.

41. Mahapatra S, Karnes RJ, Holmes MW, Young CYF, Cheville JC, et al. (2011)

Novel Molecular Targets of Azadirachta indica Associated with Inhibition of

Tumor Growth in Prostate Cancer. AAPS J 13: 365–377.

42. Sahu SN, Nunez S, Bai G, Gupta A (2007) Interaction of Pyk2 and PTP-PEST

with leupaxin in prostate cancer cells. Am J Physiol Cell Physiol 292: C2288–

2296.

43. Misra UK, Mowery YM, Gawdi G, Pizzo SV (2011) Loss of cell surface TFII-I

promotes apoptosis in prostate cancer cells stimulated with activated alpha –

macroglobulin. J Cell Biochem 112: 1685–1695.

Graphlet Interaction in Disease Genes Identify

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e86142


