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Abstract

Background: In women dynamic changes in uterine tissue architecture occur during each menstrual cycle. Menses,
characterised by the shedding of the upper functional layer of the endometrium, is the culmination of a cascade of
irreversible changes in tissue function including stromal decidualisation, inflammation and production of degradative
enzymes. The molecular mechanisms that contribute to the rapid restoration of tissue homeostasis at time of menses are
poorly understood.

Methodology: A modified mouse model of menses was developed to focus on the events occurring within the uterine
lining during endometrial shedding/repair. Decidualisation, vaginal bleeding, tissue architecture and cell proliferation were
evaluated at 4, 8, 12, and 24 hours after progesterone (P4) withdrawal; mice received a single injection of
bromodeoxyuridine (BrdU) 90 mins before culling. Expression of genes implicated in the regulation of mesenchymal to
epithelial transition (MET) was determined using a RT2 PCR profiler array, qRTPCR and bioinformatic analysis.

Principal Findings: Mice exhibited vaginal bleeding between 4 and 12 hours after P4 withdrawal, concomitant with
detachment of the decidualised cell mass from the basal portion of the endometrial lining. Immunostaining for BrdU and
pan cytokeratin revealed evidence of epithelial cell proliferation and migration. Cells that appeared to be in transition from a
mesenchymal to an epithelial cell identity were identified within the stromal compartment. Analysis of mRNAs encoding
genes expressed exclusively in the epithelial or stromal compartments, or implicated in MET, revealed dynamic changes in
expression, consistent with a role for reprogramming of mesenchymal cells so that they could contribute to re-
epithelialisation.

Conclusions/Significance: These studies have provided novel insights into the cellular processes that contribute to re-
epithelialisation post-menses implicating both epithelial cell migration and mesenchymal cell differentiation in restoration
of an intact epithelial cell layer. These insights may inform development of new therapies to induce rapid healing in the
endometrium and other tissues and offer hope to women who suffer from heavy menstrual bleeding.
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Introduction

The human endometrium displays a remarkable ability to

undergo cyclical episodes of proliferation, angiogenesis, differen-

tiation (decidualisation), inflammation and tissue breakdown

(menses) occurring up to 400 times during a women’s reproductive

life. Menstruation, the shedding of the upper functional layer of

the endometrium, represents the culmination of a molecular

cascade initiated by withdrawal of progesterone following the

regression of the corpus luteum [1,2]. Rapid restoration of tissue

integrity at the time of menses is essential to avoid excess blood loss

and to ensure the endometrium can regenerate in response to the

sex steroid hormones oestrogen and progesterone in preparation

for a potential pregnancy. The precise mechanisms responsible for

repair of the endometrium, without scarring, are not fully

understood. Recent microscopy studies have revealed that

shedding of the endometrium is a locally occurring, progressive

process, with areas of partially shed, as well as shed and

regenerating endometrium observed in close proximity within

the tissue [3,4].

Re-epithelialisation, a crucial process in endometrial repair,

occurs very rapidly and is independent of the actions of oestrogen

[5]. Based on observations originally made by Novak and Te
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Linde, in 1924, it has been suggested that new populations of

glandular and luminal epithelial cells arise from the epithelium of

glands that are retained in the basal layer after shedding of the

functional layer [6]. In the 1970s, Ferenczy suggested that the

surface epithelium was derived from a simultaneous proliferation

of cells at the exposed ends of basal glands and also from the

persistent and intact surface lining that bordered the denuded

areas of stromal tissue [5]. Recent data suggest that mechanisms

contributing to endometrial repair may need to be revisited in light

of results from studies on human endometrial stem cells [7],

circulating progenitor cells [8], and human endometrial side

population cells [9], all of which suggest novel role(s) in repair of

the tissue following menses.

Our understanding of the mechanisms regulating menstruation

has been informed by studies using human tissue explants and

xenografts, the latter being maintained in mice with a reduced

complement of immune cells [10,11]. In a series of elegant studies,

Marbaix and colleagues have demonstrated focal breakdown of

matrix components within the stroma and highlighted the pivotal

role played by matrix metalloproteinases [11]. Studies using

macaques with artificially induced menstrual cycles, report

increased expression of MMPs at menses, which complement

studies in human tissues [12]. In mice, stromal cell decidualisation

only occurs naturally in response to the presence of a blastocyst

[13] and in the absence of a pregnancy the uterus is remodeled

without shedding (menses). Finn and Pope were the first to

describe a protocol for the use of hormonal injections and artificial

induction of endometrial decidualisation in mice [14]. Stromal cell

decidualisation was induced by oil injection and when progester-

one support was withdrawn they exhibited features of menstru-

ation including immune cell infiltration and tissue degeneration

[14]. The model was later refined by Brasted et al [15] who used

an inbred strain of mice to reduce intra-animal variation and

altered the modes of delivery of the steroid hormones. They

showed endometrial breakdown at 16 hours (the earliest time

point) and complete endometrial regeneration by 48 hours [15].

This model has been widely used to complement and extend

studies on human tissues documenting leukocyte infiltration at the

onset of breakdown [16], changes in components of the

extracellular matrix [17] and expression of metalloproteinases

[18]. A recent study that used this model to examine the role

played by prostaglandins reported administration of COX-2

inhibitors reduced endometrial breakdown and leukocyte recruit-

ment [19] a finding that clearly recapitulates studies in women

[20,21].

The female reproductive system retains a remarkable degree of

developmental plasticity that allows it to adapt to the challenges

imposed by the menstrual cycle and pregnancy. Taylor and

colleagues have highlighted the expression of members of the

HOX gene cluster in the endometrium as evidence that the

recapitulation of developmental processes is an essential feature of

endometrial function [22]. Another process that plays a funda-

mental role in development, that may be recapitulated in adult

tissues, are changes in cell behaviour so that they switch between

mesenchymal and epithelial cell fates. This process is known as

mesenchymal to epithelial transition (MET) with the alternative

fate being defined as epithelial to mesenchymal transition (EMT)

[23]. In this paper we report an updated and modified mouse

model and highlight data that shed new light on the cellular and

molecular mechanisms responsible for the rapid, immediate/early

restoration of endometrial integrity.

Materials and Methods

Modified Mouse Model of Menstruation and Repair
All animal procedures were carried out in accordance with UK

legal requirements and in under licensed approval from the UK

Home Office. In the current study a mouse model of menstruation

described by Brasted et al [15] was modified to include non-

surgical induction of decidualisation and a longer decidualisation

period. Uterine tissues were also collected during a period of active

shedding and repair, time-points that have not been previously

described.

On day 0, C57BL/6J mice between 8–10 weeks of age were

ovariectomised to deplete endogenous steroid production. Mice

received daily injections of b-oestradiol (E2) in sesame seed oil

(100 ng/100 ml, days 7–9). A progesterone (P4)-secreting pellet

was placed sub-cutaneously on day 13; mice also received daily

injections of sub-cutaneous injections of E2 (5 ng/100 ml, days 13–

15). On day 15, decidualisation of one uterine horn was induced

by stimulation of the horn using sesame seed oil (20 ml) inserted

into the uterine lumen via the cervix using a non-surgical embryo

transfer device (NSET) from Datesand Ltd. (Manchester, UK).

The contra-lateral horn acted as a control. P4 withdrawal was

induced 90 hours after decidualisation by removing the P4-pellet.

Mice were culled by asphyxiation and cervical dislocation at time

of P4 withdrawal or 4, 8, 12, 24 and 48 hours thereafter (Figure 1).

Mice received an intra-peritoneal injection of bromodeoxyuridine

(BrdU, 2.5 mg/ml) 90 minutes prior to culling to detect cellular

proliferation. Blood sera were collected, uteri dissected and

collected into RNA later or 4% neutral buffered formalin. Any

mouse in which the oil-treated horn had not decidualised was

excluded from the study.

Histology and Immunohistochemistry
All samples were fixed in NBF overnight at room temperature,

rinsed in 70% ethanol and then stored in 70% ethanol, then

processed into wax. Serial, transverse 5 mm sections were cut onto

micro slides and incubated overnight. To determine gross

morphology, sections were stained with haematoxylin and eosin.

Single antibody immunohistochemistry [24] was carried out with

antibodies directed against BrdU, WT1 and pan cytokeratin.

Double immunofluorescence [25] was carried out with antibodies

directed against vimentin and pan cytokeratin. Details of

antibodies are provided in Table S1. Primary antibodies were

diluted in serum (and incubated at 4uC overnight). Secondary

antibodies were applied to sections for 30 minutes at room

temperature (diluted 1/500), before the addition or a tertiary

detection method, dependent upon the visualisation method used

(immunohistochemistry (IHC) or immunofluorescence). In the

case of IHC, streptavidin horseradish peroxidase was applied to

slides for 30 minutes, positive signals were visualised using the

chromogen 3,3-diaminobezidine (DAB). Reactions were stopped

by immersion in water, sections were counterstained in haema-

toxylin. For immunofluorescence, slides were incubated with the

tyramide signal amplificationTM kit for 10 minutes, then with

DAPI to enable nuclear counterstaining.

RNA Extraction
Uterine samples were added to RNeasy Lysis Buffer (RLT) with

1% b-mercaptoethanol and homogenized. Lysates were added to

RNeasy spin columns and total RNA was eluted according to

manufacturer’s instructions (Qiagen). The total concentration of

RNA in each sample was measured and then standardised to a

concentration of 100 ng/ml using RNAse free water.

MET and Endometrial Healing
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Quantitative RTPCR
Reverse transcription of RNA to cDNA was performed using

the Superscript VILO cDNA synthesis kit (InVitrogen) according

to manufacturer’s instructions. Samples were incubated at: 25uC
for 10 minutes, 42uC for 60 minutes and 52uC for 5 minutes in a

thermal cycler. Primers for each gene of interest were designed

using the Universal Probe Library Assay Design Center (Roche

Applied Science) and purchased from Eurofins (MWG Operon),

sequences are shown in Table S2. Reactions were prepared in

duplicate. Amplification was carried out at 95uC for 10 minutes

then 40 cycles of 95uC for 15 seconds and 60uC for 1 minute.

Analysis was performed using the DDCt method with the fold

change calculated relative to an internal control (18 s) and to the 0

hour control sample set. Statistical analysis was performed using

Graphpad Prism 5, significance was considered p,0.05 or less.

Student t tests determined significance between the decidualised 0

hour time-point and the latter time-points.

Array Analysis Using the RT2 Profiler PCR Array
RNA was analysed using Agilent Technologies according to the

manufacturer’s protocol: only samples with a RIN.6.0 were used

in the array. RNA samples (400 ng/ml) were treated to eliminate

genomic DNA before preparation of cDNA. The RT2 profiler

Mouse Epithelial to Mesenchymal Transition Array (SABios-

ciences, PAMM-090Z) was used with buffers supplied by the

manufacturer. The full list of genes detected by the SYBR Green-

optimized primer assays can be found at http://www.

sabiosciences.com/rt_pcr_product/HTML/PAMM-090Z.html.

A reaction mixture was prepared using the RT2 Real-Timer SyBR

Green/ROX PCR Mix kit according to manufacturer’s instruc-

tions; amplification was carried out as described above. Analysis

was performed using SABiosciences web portal, (http://

pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php), data

analysis was performed using the DDCt method comparing the 0

hour time-point to the 8 hour and 24 hour time-points as well as

the 8 hour to 24 hour time-point.

Progesterone ELISA
Determination of serum progesterone concentrations was

carried out using a progesterone ELISA kit (DEMEDITEC

diagnostics, Germany) as per manufacturer’s instructions. Samples

were analysed in duplicate, standard curve and average absor-

bance values were calculated using Masterplex Readerfit. Intra-

assay variation; CV 5.4–6.99%, inter-assay variation; CV 4.34–

9.96%. Progesterone concentrations are expressed in ng/ml.

Results

Development of a Modified Model of Mouse Menses
In the current study a mouse model of menstruation described

by Brasted et al [15] was modified to include non-surgical

induction of decidualisation and recovery of uterine tissues during

a period of active shedding/repair which in our model spanned a

period of 4 to 24 hours after removal of the progesterone pellet

(progesterone withdrawal) (Figure 1). In pilot studies, during which

uterine tissue was recovered 49 h after administration of oil via

trans-uterine injection, the degree of decidualisation (increase in

wet weight or presence of luminal decidual cell mass) in the strain

of mice used in our laboratory was highly variable. In their original

publication Finn and Pope [14] recorded a time-dependent

increase in decidualisation therefore we changed our protocol to

allow full decidualisation to occur (90 hours) before withdrawal of

P4. Notably a study published after we had modified our protocol

[26] also left the P4 implant in place until 4 days (,96 hours) after

stimulation with oil. An additional refinement of the protocol was

the introduction of a small volume of oil via the vagina and cervix

using a pipette tip designed for mouse IVF. We adopted the trans-

vaginal route to avoid subjecting the steroid-stimulated uterine

horn to the ‘insult’ of a trans-myometrial injection as the impact of

this on tissue function was uncertain.

Vaginal bleeding was observed as early as 4 hours after P4

withdrawal, was present in 87.5% of animals at 12 hours

(Figure 2A). Removal of the uterus at different times after P4

withdrawal revealed evidence of intense unilateral decidualisation

responses (Figure 2B) and time dependent-breakdown of the

decidualised tissue (Figure 2C–D). Blood cells can be observed in

the non-decidualised horn following vaginal lavage, where these

cells are flushed out of the decidualised horn (Figure 2C). In line

with expectations removal of the P4 pellet was associated with a

rapid fall in serum concentrations of progesterone (Figure 2E) such

that it was ,50% at 4 hours (p,0.05). Overt bleeding had stopped

by 24 hours (Figure 2F).

Histological evaluation of transverse tissue sections showed a

decidual cell mass filling the lumen of the horn at time of P4

withdrawal consistent with a robust decidualisation response. As in

women, variation in the breakdown and shedding of decidual

tissue was observed; in all tissues examined, dissociation of the

decidual mass from the underlying endometrium was associated

with an apparent loss of tissue integrity (Figure S1). Shedding of

the decidual mass resulted in portions of the stroma becoming

denuded of overlying epithelium (Figure S2).

Figure 1. Summary of time line for mouse model of menstruation and regeneration. Colour coding pink = ‘proliferative phase’,
blue = ‘secretory phase’, red = ‘menstrual phase’. Ovex; ovariectomy, E; b-oestradiol, P; progesterone. b-oestradiol concentrations in brackets (ng/
100 ml), P4 pellet (1 mg/ml). One uterine horn was stimulated on day 15 via oil injection into the luminal cavity; ‘‘menses’’ was induced by P4 pellet
removal on day 19. BrdU was injected 90 minutes prior to tissue recovery at 4, 8, 12 and 24 hours after the removal of the P4 secreting pellet.
doi:10.1371/journal.pone.0086378.g001
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Immunolocalisation of BrdU Suggested Proliferation of
Epithelial Cells could Contribute to Restoration of an
Intact Luminal Epithelium

Cells that were actively proliferating at the time of tissue

recovery were detected by incorporation of BrdU into cell nuclei

during the 90 minutes prior to cull in uterine tissue sections at all

time points. At the time of progesterone withdrawal (0 hours)

stromal cells in the basal compartment and a few of the luminal

epithelial cells were proliferating (not shown). At 4 (Figure 3A–B)

and 12 (Figure 3C–D) hours many proliferating cells were present

in both the basal stroma and epithelial layer lining the lumen.

Proliferation of epithelial cells continued at the luminal surface at

24 hours and was also detectable in a few epithelial cells lining the

basal glands (Figure 3E–F).

Immunohistochemistry and Quantitative Analysis of
Genes Associated with Epithelial and Stromal Cell
Phenotype Provided Evidence for Re-epithelialisation by
Epithelial Cells at the Luminal Surface

In samples recovered at all time-points, where the shed decidual

mass had detached from the underlying basal layer, areas of

denuded stroma were documented immediately adjacent to

regions where luminal epithelial cells remained intact (Figure

S1). Epithelial cells in regions of the lumen and cells lining the

basal glands are strongly immunopositive for cytokeratin

(Figure 4A–C). In Figure 4D, the luminal epithelium adjacent to

an area of denuded endometrium is shown, as depicted by the

arrowheads. Adjacent to this region is what appears to be a

Figure 2. Gross morphology, bleeding and progesterone concentrations. A, Mouse at 12 hours after P4 withdrawal showing blood in
vagina; B, The non decidualised control (left) and the decidualised horn (right) upon dissection (12 hours after withdrawal); C, Blood cells are
detectable in lumen of the non decidualised horn following vaginal lavage (24 hours after withdrawal); D, Shed tissue expelled from cervix (24 hours
after withdrawal), decidualised horn shows regression; E, Serum concentrations of progesterone (ng/ml). Statistical analysis was carried out by
Student t test, comparing each time-point to the 0 hour time-point *p,0.05 **p,0.01 and ***p,0.001; F. Percentage of mice bleeding between 4
and 24 hours. This was calculated as a percentage of mice that were identified to be bleeding at each time-point of the total number of mice
examined at each time-point.
doi:10.1371/journal.pone.0086378.g002
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‘leading edge’ of rounded luminal epithelial cells that appear to be

‘‘rolling’’ across an area of the denuded stroma.

To complement the histological evaluations depicted in Figure 4,

analysis of mRNA concentrations for known markers of cellular

phenotype were investigated by qRTPCR. Dynamic changes in

gene expression and an apparent reciprocal relationship between

mRNAs expressed by known stromal cell markers (Cdh2, Wnt4,

vimentin) and epithelial cell markers (Cdh1, Wnt7a, Krt18) were

documented (Figure 5).

For example, significant increases in mRNA concentrations for

definitive stromal cell markers N cadherin (Cdh2) and vimentin

were detected at 4 and 8 hours after progesterone withdrawal

(Figure 5A and C, p,0.01, p,0.001) consistent with relative

increases in stromal cells positive for BrdU at this time (Figure 3A–

D). Concentrations of Wnt4 mRNAs (known to be involved in

endometrial stromal cell development in utero) were maintained

until 8 hours (Figure 5B) before decreasing at 12 and 24 hours,

similar decreases were observed for Cdh2 and vimentin at this time

(Figure 5A and C). Consistent with epithelial cell proliferation

(Figure 3 A, C, E) and the pattern of cytokeratin staining reported

above (Figure 4) there was a progressive, significant, increase in the

total concentration of Krt18 mRNA from 8 to 24 hours (Figure 5F).

Notably, at 12 and 24 hours Cdh1 (E-Cadherin) a key marker of

endometrial cell identity, was significantly increased compared

with the 0 hour time-point (Figure 5D, p,0.001). mRNA

concentrations for Wnt7a, known to play a key role in endometrial

epithelial cell formation during embryonic development, were also

significantly increased at 12 and 24 hours (Figure 5E).

Figure 3. Proliferation of uterine cells between 4 and 24 hours after P4 withdrawal. To identify proliferating cells, animals were injected
with BrdU 90 minutes prior to tissue recovery. A; Proliferating luminal epithelial cells detected in tissues 4 hours after progesterone withdrawal. B; In
the same tissue, stromal cells in the basal layer are positive for BrdU (arrows). C; At 12 hours, luminal epithelial cells were positive for BrdU, no BrdU
positive cells were identified in the shed cell mass. D; In the same tissue, stromal cells close to the luminal edge were positive for BrdU (arrowheads),
new epithelial cells were identified lining the lumen in an area of tissue where the decidualised tissue had shed (arrows). E; At 24 hours after
withdrawal, endothelial cells were positive for BrdU (arrowheads), the intact luminal epithelium was also positive for BrdU. F; In another sample at 24
hours, the stromal compartment was exposed to the lumen (arrowheads); note stromal cells positive for BrdU are interspersed throughout the basal
layer and evidence of glandular epithelial cell proliferation was also detected (arrows). BL; Basal layer, LE; luminal epithelium, DS; decidualised stromal
cells, M; myometrium, SC; shed cells. Scale bars are equal to 100 mm or 50 mm where indicated.
doi:10.1371/journal.pone.0086378.g003
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Immunohistochemistry Suggested Some Epithelial Cells
Originated in the Stromal Compartment

Studies were undertaken to immunolocalise cytokeratin and

vimentin as a complement to studies measuring their mRNAs in

tissue homogenates (Figure 6, Figure S3). At all time-points, cells

with intense immunostaining for cytokeratin were identified lining

glands within the basal compartment of the endometrium (Figure

S3B and C and Figure 6F, arrows). In samples recovered at 24

hours after P4 withdrawal cytokeratin-immunopositive cells were

present within the stromal compartment but only in regions

denuded of luminal epithelium (Figure 6A, B, depicted by

arrowheads).

Dual immunofluorescence co-staining for vimentin and cyto-

keratin identified cells that were immunopositive for both vimentin

and cytokeratin indicating that these cells had stromal and

epithelial properties (Figure 6C–G, yellow, dual-labelled cells

indicated by white arrowheads). At 12 hours, a few dual-labelled

cells were detected in the stroma adjacent to the myometrium

(Figure 6D) and cytokeratin positive cells (green) were present in

the stroma (Figure 6E). At 24 hours, cells co-staining for vimentin

and cytokeratin were identified in the stromal compartment

adjacent to the lumen (Figure 6G, white arrowheads). These

findings appear consistent with some stromal cells adopting a

transition/intermediate phenotype prior to differentiation into

epithelial cells.

Array Analysis and Quantitative RTPCR Revealed Changes
in Expression of Genes Associated with MET

Analysis of gene expression changes using a focused PCR array

revealed a greater proportion of genes were up-regulated than

down-regulated at both 8 and 24 hours when compared with 0

hours. Of the 21 changes in gene expression detected by

comparing the 8 and 24 hour time points, 12 were up-regulated

whereas 9 were down-regulated (Table 1). Those genes which

displayed significant changes in gene expression are outlined in

Tables S3 and S4. Consistent with results of qRTPCR analysis,

expression of the cytokeratin (Krt7) and E-Cadherin (Cdh1) in the

array were both markedly increased in samples recovered at 24

hours (Table S4). Other striking changes in gene expression at 24

hours (Table S4) would all be consistent with re-establishment of a

mature, functional epithelial compartment associated with resto-

ration of junctional integrity: cell adhesion molecules Dsc2

(desmocollin 2, 4 fold increase) and Spp1 (osteopontin, 23 fold

increase) and the intracellular junction protein Dsp (desmoplakin, 9

fold increase).

A number of changes detected on the array mirrored those

reported in human tissue at time of menses, including a striking

up-regulation in expression of Mmp3 (a 3 fold increase at 8 hours,

and a 61 fold increase at 24 hours); Mmp9 was also significantly up-

regulated between 8 and 24 hours (11 fold increase, not shown).

To complement and extend the data obtained using the PCR

array, bioinformatic analysis was conducted using Metacore

software (Figure 7). Analysis of genes identified as up-stream

regulators of Cdh1 and Cdh2, both of which changed in a dynamic

way in our uterine tissue, highlighted both an association with

MMPs as well as with Smad2 which we have previously identified

Figure 4. Immunostaining for pan-cytokeratin illustrates re-epithelialisation of the endometrium consistent with cell migration.
Pan-cytokeratin, used as a marker for epithelial cells, was observed in the luminal epithelium and the glandular epithelium. A; The shed decidualised
cell mass was observed to be detaching from the underlying stromal cell compartment at 24 hours after progesterone withdrawal. B; The denuded,
underlying stroma, as indicated by the arrowheads, next to a region of luminal epithelial cells. C; The luminal epithelium next to an area of denuded
basal stroma (arrowheads). D; Round epithelial cells appear to be ‘‘rolling’’ along an area of the denuded basal stroma. LE; luminal epithelium, G:
glandular epithelium, SC; shed cells. Scale bars are equal to 200 mm, 100 mm or 20 mm where indicated.
doi:10.1371/journal.pone.0086378.g004
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as involved in TGFß signaling in human endometrial stromal cells

[27]. Six other genes were identified for further study, these were;

WT1 (not represented on the array), Snail (Snai1) and Slug (Snai2)

as all three have been identified as key regulators of transitions

between the mesenchymal and epithelial states [reviewed in [28],

Smuc (Snai3), Twist and Mmp3.

QRTPCR analysis revealed a transient and significant increase

in expression of Wt1 and Snai1 at 4 hours (P,0.05, Figure 8 D and

A respectively) and a significant decrease in Snai2 (Slug) at 8 and

12 hours (Figure 8B) which is in agreement with the results

obtained using the PCR array which detected a 2 fold decrease in

the 8 hour sample (4 and 12 hours not examined). Snai3,

(Figure 8C) not previously studied in the endometrium, was

significantly increased at 12 and 24 hours, consistent with results

obtained using the PCR array (15 fold increase at 24 hours). A

gradual increase in Twist was detected (Figure 8E), with a

significant increase at 12 and 24 hours. Consistent with findings

in the array, Mmp3 was significantly up-regulated at 8, 12 and 24

hours (Figure 8F), with the highest expression at 24 hours

(consistent with the 61 fold increase obtained in the array).

To complement the QRTPCR analysis, immunohistochemistry

for WT1 was carried out to determine cellular localisation of the

protein (Figure 9). At the time of progesterone withdrawal (0

hours, Figure 9A) nuclei of the decidualised stromal cells, stromal

cells in the basal layer and luminal epithelial cells were positive for

WT1. Consistent with the changes in mRNA concentrations,

WT1 expression was maintained at 4 hours (Figure 9B) and 8

hours (Figure 9C) however by 12 hours (Figure 9C) WT1

expression had decreased and was limited to the stromal cell

compartment.

Discussion

In women, extensive tissue remodelling occurs during menses

with restoration of homeostasis requiring rapid and co-ordinated

re-epithelialisation, stromal cell remodelling and endothelial cell

proliferation. Studies on the regulation of endometrial repair have

been informed by studies in mouse models using two different

induced models of tissue shedding. The most widely used model is

the one originally proposed by Finn and Pope [14] that was

modified and widely utilised by the Salamonsen laboratory [15–

17] and revised in the current paper. Notably, mirroring the

situation in women where endometrial repair occurs at a time

when both oestradiol and progesterone levels are low, termed a

‘‘steroid-depleted’’ environment, endometrial repair was reported

to occur in the absence of oestrogen in a mouse model of

endometrial breakdown [16]. A second mouse model relies on

formation of a corpus luteum following mating with a vasecto-

mised male, this induces a rise in progesterone and makes the

uterus receptive to a decidualising stimulus; progesterone with-

drawal can be induced by administration of an antiprogestin

[29,30]. Of these mouse models overt vaginal bleeding has only

been detected in the current paper and in two recent studies by

Rudolf, Roese and colleagues [26,29] one of which used the

pseudopregnant model [29]. A key feature of our study and that of

Menning et al [26] was the induction of a substantial and

sustained decidual response stimulated by P4 released by an

implant left in place for 90–96 hours after introduction of oil into

the uterine lumen. In our model, endometrial breakdown occurred

within 4 hours of the withdrawal of progesterone, consistent with a

70% decrease in serum progesterone concentrations and evidence

of blood in the vaginal smear. A direct comparison with the other

Figure 5. Dynamic changes in concentration of mRNAs specific to stromal and epithelial cell compartments. Comparison between
concentrations of mRNAs encoded by genes typically expressed in stromal (Cdh2, Wnt4, vimentin) and epithelial (Cdh1, Wnt7a, Krt8) cells at 0 hours
(full decidualisation) and following P4 withdrawal 4, 8, 12 and 24 hours prior to tissue recovery. Statistical analysis was performed by Student t test,
comparing each time-point to the 0 hour time-point: *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0086378.g005
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models in which bleeding was recorded [26] is not possible

because tissue was not recovered until 24 hours after P4

withdrawal. In a recent paper, a critical period of progesterone

withdrawal was reported to precede endometrial breakdown [31]

and the authors reported that replacement of progesterone after

12–16 hours was sufficient to reverse the effects of progesterone

withdrawal. However, the authors do not report any evidence of

endometrial bleeding until 12 hours after the withdrawal of

Figure 6. Cytokeratin positive cells were identified lining the luminal epithelium and glands as well as in the stroma with the latter
appearing to be in transition between stromal and epithelial cell identity. A; A subset of stromal cells adjacent to the luminal surface were
immunopositive for pan-cytokeratin at 24 hours after progesterone withdrawal (arrowheads). B; In another sample, positive pan-cytokeratin stromal
cells (arrowheads) were detected adjacent to the luminal surface of a denuded area of endometrium. C; Immunofluorescence for epithelial cells
stained for cytokeratin (green) and mesenchymal cells stained for vimentin (red) in the mouse endometrium. 12 hours after progesterone withdrawal,
vimentin positive decidualised cells were observed, budding into the lumen. D; Vimentin and cytokeratin positive cells were observed in the stroma,
close to the myometrium (arrowheads). E; stromal cells were positive for cytokeratin. F and G; 24 hours after progesterone withdrawal an area of shed
endometrium is observed. Co-localisation of vimentin and cytokeratin (white arrowheads) was detected close to the surface of the underlying stroma.
BL; basal layer, G; glandular epithelium, SC; shed cells, M; myometrium. Scale bars are equal to 50 mm where indicated.
doi:10.1371/journal.pone.0086378.g006

Table 1. Number of gene changes in MET PCR array.

Time-point No. Genes Up-regulated No. Genes Down-regulated

8 hours (compared to 0 hours) 20 4

24 hours (compared to 0 hours) 43 5

24 hours (compared to 8 hours) 12 9

doi:10.1371/journal.pone.0086378.t001
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progesterone, despite a reported drop in progesterone concentra-

tions from ,128 ng/ml to ,14 ng/ml in the first 8 hours [31]. In

our model, circulating progesterone concentrations are maximal

prior to progesterone pellet removal at 8 ng/ml, bleeding is

recorded at 4 hours when progesterone concentrations are ,3 ng/

ml. Therefore it is likely that it is not the drop in progesterone that

triggers breakdown but a minimal progesterone concentration

threshold, which once the level has dropped below it, it cannot be

recovered.

Results obtained with the current model mimic features of

human menstruation including disturbances in expression of

epithelial and junctional proteins such as desmoplakin [32] and

Figure 7. Metacore analysis of genes detected in mouse uterus that were associated with regulation of E cadherin and N cadherin.
To filter data, the full gene array list was input into MetacoreTM software and any gene that was found to have no known interaction with E and N
cadherin was excluded. Arrows indicate direct effects on other genes in the pathway. Green arrows indicate activation, whereas red arrows show
inhibitory action.
doi:10.1371/journal.pone.0086378.g007

Figure 8. Endometrial remodelling was associated with dynamic changes in concentrations of mRNAs expressed in stromal and
epithelial cell types as well as those encoded by genes implicated in MET. mRNA concentrations for candidate genes involved in
mesenchymal to epithelial transition and tissue remodelling; Snai1 (Snail), Snai2 (Slug), Snai3 (Smuc), Wt1, Twist and Mmp3 following progesterone
withdrawal. mRNA expression for the decidualised horn (black bars) was normalised against the control 0 hour horn. Statistical analysis was
performed by Student t test, comparing each time-point to the decidualised 0 hour time-point, *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0086378.g008
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significant increases in expression of MMPs [33]. Studies in mice

with a conditional knockout of Cdh1 have demonstrated an

essential role for the gene in development of the uterus with

knockout mice having abnormal epithelial development and

reduced expression of cytokeratin 8 and occludin [34]; a link

between expression of these key epithelial cell protein components

was also observed in the current study with expression of Cdh1,

cytokeratins (Krt19, 7) and occludin (Ocln) all being up-regulated in

our 24 hour samples.

Detailed immunohistochemical evaluation provided evidence

that stromal cells adjacent to areas denuded of epithelium were in

transition between having a mesenchymal (vimentin positive) cell

fate and an epithelial one, indicative of MET. Notably, although

we have no data from normal menstruating human endometrial

tissue, transitions between a epithelial and mesenchymal state

plays a fundamental role in formation of tissue systems with

expression of WT1 playing a pivotal role in regulating cell fate

[35].

Huang et al [36] used genetic fate mapping to examine uterine

regeneration and remodeling following parturition. They found

evidence that stromal and epithelial compartments maintain

separate fates during normal oestrous cycles, but in restoration

of tissue integrity following parturition a subset of stromal cells

differentiate to become incorporated into luminal and glandular

epithelium. In our model of induced menses we first noted stromal

cells that were in a transitional state within the basal compartment

at 12 hours after progesterone withdrawal with a more robust

response at 24 hours, the latter being in position to complement

the restoration of an intact epithelial layer by migrating/

proliferating epithelial cells. A study recently published by

Patterson et al [30] examined uterine tissue recovered following

parturition, as well as a menses model based on induced

pseudopregnancy and progesterone withdrawal by ovariectomy.

Their results using reporter lines confirmed those of Huang et al

and they also found a subset of stromal cells double stained for

vimentin and cytokeratin located close to the myometrial epithelial

border 24 hours after ovariectomy. In this study we examined

expression of genes known to regulate the process of MET. These

extend our previous studies on the role of TGFß1, a protein

documented as a regulator of EMT in endometrial cancer [37], in

regulation of endometrial stromal cells. In a previous study we

found evidence for Smad2 dependent suppression of expression of

progesterone receptor [27]. In the current study we documented

changes in expression of WT1 as well as Snai1, 2 and 3. Changes

in WT1 and Snai1 were both transient occurring in the immediate

phase of tissue shedding. We also detected a robust increase in

expression of Snai3 (5 fold at 8 hours, 15 fold at 24 hours). Mice

with knockout of Snai3 are viable and fertile but double knockout

of Snai2/3 resulted in marked depletion of bone-marrow derived

cells [38] raising the possibility that Snai3 may play a previously

unrecognised role in regulation of bone-marrow derived cells in

the uterus [39]. We also speculate that reduced expression of Snai2

(Slug) at 8 and 12 hours might relieve repression of the Cdh1 gene

favouring epithelial cell fate. As the decidualised functional layer

sheds, it is possible that it secretes factors that initiate repair. In our

mouse model, progressive shedding of the decidualised functional

stroma was observed (8 hours after progesterone withdrawal); in

addition to this, residual luminal epithelial cells were observed to

be ‘‘moving’’ towards sites of newly exposed endometrium. We

postulate that as the endometrium detaches from the underlying

Figure 9. Immunostaining for WT1 illustrates dynamic changes in cellular localisation during breakdown and repair. A;
Immunopoistive staining for WT1 was detected in decidualised stromal cells, stromal cells of the basal layer and the luminal epithelium at the time of
progesterone withdrawal. B; At 4 hours, strong immunostaining was maintained in the basal and decidual layers of the tissue. C; By 8 hours, strong
immunopositive staining was localised to areas close to the luminal epithelium. D; By 12 hours, fewer immunopositive cells were observed, these
were limited to the stroma, no immunostaining for WT1 was detected in the luminal epithelium. LE; luminal epithelium, G: glandular epithelium, SC;
shed cells, DS; decidualised stroma, M; myometrium. Inset; negative control. Scale bars are equal to 100 mm where indicated.
doi:10.1371/journal.pone.0086378.g009
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basal stroma, it secretes factors that promote repair. A study by

Gaide-Chevronnay et al on human tissues, supports a role for the

degenerating endometrium supporting its own repair [11].

Evidence includes an increase in leukocyte chemokines, extracel-

lular matrix (ECM) proteins and enzymes involved in prostaglan-

din synthesis were detected in the functional layer of menstrual

phase tissue. Furthermore, a scanning electron microscopy study

by Garry et al observed that immediately after shedding, a

fibrinous matrix appears to ‘‘seal’’ the endometrium prior to re-

epithelialisation [3]. In support of this a previous mouse model of

breakdown has shown that extracellular matrix proteins were

increased at the time of repair and were localised to the luminal

edge of the uterine horn [17].

A role for the degenerating functional stroma in endometrial

repair has not been widely studied. Although, it is tempting to

speculate that it may play a role in the pathology of endometrial

disorders. For example, women with heavy menstrual bleeding

may have a dysfunctional stroma that does not secrete repair

factors, resulting in delayed repair and a longer bleed.

Conclusions

The current study has used an updated mouse model to

investigate the mechanisms that contribute to restoration of tissue

integrity following shedding of the uterine lining. These studies

have revealed a potentially important role for MET in the

complex cellular dynamics that underpin rapid healing of the

endometrial lining each cycle and have implications for manage-

ment of women suffering from disturbances in endometrial

function, including heavy bleeding, and development of new

non-surgical therapies for these conditions.

Supporting Information

Figure S1 Loss of endometrial integrity during endo-
metrial breakdown. Haematoxylin and eosin staining of tissues

collected at 8 and 12 hours after progesterone withdrawal. A; The

functional decidualised stroma detaches basal layer resulting in

exposed regions of underlying stroma (arrows). B; At 12 hours, the

shed cell mass disaggregates with the underlying stroma (arrows).

SC; shed cells. Scale bars are equal to 50 mm where indicated.

(TIF)

Figure S2 Shedding results in a denuded stromal cell
compartment. Haematoxylin and eosin staining of tissues

collected at 24 hours after progesterone withdrawal. A and B;

shedding of the functional stroma (SC) results in areas of denuded

basal stroma, with no evidence of luminal epithelial cells

(arrowheads). SC; shed cells. Scale bars are equal to 50 mm where

indicated.

(TIF)

Figure S3 Epithelial cell dynamics during endometrial
breakdown. Pan-cytokeratin, used as a marker for epithelial

cells, was observed in the luminal epithelium and the glandular

epithelium at 0 and 4 hours after progesterone withdrawal. A; At 0

hours, the luminal epithelium is immunopositive for pan-

cytokeratin. A cluster of cells in the decidualised stroma are also

positive (arrow). B; in the same tissue, weak immunostaining for

cytokeratin was detected in the decidualised stroma. C; glands in

the basal stroma are immunopositive for cytokeratin at 4 hours

after progesterone withdrawal. D; in the same tissue the leading

edge of the decidualised stroma, that is beginning to breakdown, is

immunopositive (arrowheads). LE; luminal epithelium, DS;

decidualised stroma, BL; basal layer, G; glandular epithelium.

Scale bars are equal to 100 mm where indicated.

(TIF)

Table S1 Details of Antibodies.
(DOCX)

Table S2 Primer sequences, accession numbers and
UPL probe numbers used for genes of interest.
(DOCX)

Table S3 Significant changes in gene expression 8 hours
after progesterone withdrawal, as displayed by up- or
down- fold regulation when compared against the 0 hour
group, n = 6.
(DOCX)

Table S4 Significant changes in gene expression 24
hours after progesterone withdrawal, as displayed by
up- or down- fold regulation when compared against the
0 hour group, n = 6.
(DOCX)
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