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Abstract

Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic
mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may
play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation
strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances
into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the
plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus
of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance
to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any
other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana,
the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the
mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding.
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Introduction

Plants have evolved various mechanisms to detect herbivore

attack. They can respond to insect herbivores via perception of

mechanical damage and chemical cues that are released from

tarsal pads, insect eggs or oral secretions of insects [1]. The

detection of specific herbivore-derived cues, so called herbivory-

associated molecular patterns (HAMPs), allows plants to distin-

guish herbivore attack from wounding and often leads to the

activation of herbivore-specific defense responses [2]. Perception

of HAMPs generally triggers the induction of jasmonate biosyn-

thesis, including jasmonic acid (JA) and its active isoleucine

conjugate JA-Ile [2]. Activation of the JA pathway, in turn,

controls the biosynthesis of defense metabolites that increase a

plant’s resistance to herbivores [3].

An increasing number of studies indicate that herbivores can

also release effectors that suppress jasmonate-dependent immune

responses [4]. Glucose oxidase activity, present in oral secretions of

lepidopteran herbivores and aphids, induces salicylic acid (SA, 2-

hydroxy benzoic acid) signaling, leading to the suppression of JA-

dependent defenses, which ultimately increases the performance of

herbivores [5,6]. Oviposition often precedes the onset of herbivore

feeding and in some cases eggs are equipped with chemical cues

that suppress jasmonate-dependent defenses in the plant. Ovipo-

sition by Pieris brassicae on A. thaliana, for example, was found to

reduce the level of anti-herbivore defense of host plants by

inducing SA production and expression of SA marker genes, such

as the pathogenesis related 1 (PR1) gene [7,8].

Some herbivores, including leaf miners and gall-inducing

insects, also release plant growth hormones (cytokinins and auxin)

that modulate a plant’s physiology [9,10]. However, these

hormones are likely to originate from microbial symbionts

[11,12]. It remains unknown if herbivores directly release

phytohormones, that may alter plant defense responses, as has

been described for various pathogens [13,14].

Until now, only insect herbivores were analyzed with regard to

their defense suppression activity. Whether molluscan herbivores,

which are major pests in many agricultural and ecological settings,

also employ strategies to suppress plant defense responses is

currently not known. We recently found that mollusks are natural

herbivores of A. thaliana in Germany and in the United States [15].

This plant employs jasmonate biosynthesis and signaling to

increase its resistance against slugs and snails [15]. In addition,

A. thaliana responds to the slime of molluscan herbivores by

activating the JA pathway and increasing its resistance to

subsequent herbivory [15,16]. Here, we examined the hypothesis

that slugs and snails supplement their locomotion mucus with

plant hormones to alter plant defense responses.
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Materials and Methods

Mollusk Cultivation
The snails and slugs used for experiments included species that

occur sympatrically with A. thaliana (Arion fucus, Deroceras laeve,

Deroceras reticulatum, Helix pomatia, Lehmannia marginata, Malacolimax

tenellus, Helicella itala, Perforatella incarnata, Trochulus hispidus, Monacha

cartusiana, Succinea putris, Xerolenta obvia), as well as one exotic species

(Achatina fulica). All mollusks were cultivated in a climate chamber

(Snijders scientific, Tilburg, The Netherlands), under constant

humidity of 80%, a temperature of 16–20uC, and short day

conditions (9.5 h light/13.5 h dark). All slugs and snails were

collected around Jena (GPS: 50.92050uN, 11.61162uE) and

Martinfeld (51.28634uN, 10.17949uE, Thuringia, Germany). No

specific permissions or approvals were required for collecting slugs

and snails at these locations and no dangered or protected species

were collected. Achatina fulica is an important pest in many tropical

countries and was provided by Dr. Gustavo Bonaventura.

Different numbers of snails were separated in large plastic boxes

(OKT easyfresh, Sternwede, Germany; 26.5613615 cm) depen-

dent on their size. Slugs were maintained in smaller boxes

(10.56468 cm) and the number of individuals in one box

depended on their size and social compatibility. Potatoes, lettuce

and cucumber were provided, with the addition of cuttlebone for

calcium (ArtNr.5050, TRIXIE Heimtierbedarf GmbH & Co. KG,

Tarp, Germany). The food was changed twice a week and the

boxes were cleaned and provided with fresh tissue paper and

moistened with tap water.

Plant Cultivation
Arabidopsis thaliana plants for experiments were grown in a

standard growth substrate (Fruhstorfer Nullerde:vermiculite:sand,

8:1:1) in a climate chamber (21uC, 55% relative humidity and

130 mmol m22s21 photosynthetically active radiation) with a

photoperiod of 10 h light/14 h dark.

Deroceras Reticulatum Behavior
Observations were made under short day conditions, 10 hours

light (white light: 380–800 nm) and 14 hours dark (infrared light:

725–925 nm). D. reticulatum behavior was recorded using a

Logitech Webcam 600 and the program Webcam XP. Four

individuals were placed in a plastic box (26.5613615 cm) filled

with soil, wood, stones and one A. thaliana (Col-0) plant. Every ten

minutes, the behavior of D. reticulatum was recorded by taking a

picture of the setup. Pictures were edited with Adobe Photoshop

CS5 12.0 and converted into time-lapse videos with VirtualDub

1.9.11.0. File size was reduced using Mac X Free MP4 Video

converter.

Hormone Analysis
Locomotion mucus of different slugs and snails were collected

by allowing them to crawl over pre-cleaned fastener (Velcro,

http://www.velcro.com/Products/For-Fabrics/Sew-On/Sew-

On.aspx) that was washed with water and 99% Ethanol and dried

at 80uC for 5 h prior to use. To collect only freshly produced

mucus, all slugs and snails were allowed to crawl over tissue paper

before slime was collected. After initial screening, the analysis of D.

reticulatum mucus was replicated four times. Phytohormones were

extracted as described in [6]. In brief, the fastener (with and

without mucus) was extracted with 1 mL Ethyl acetate (spiked

with labeled internal standards for salicylic acid (50 ng per

sample), abcisic acid (50 ng per sample), jasmonic acid (JA, 10 ng

per sample) and JA-isoleucine (50 ng per sample)), vortexed for

10 min and centrifuged at 16.000 g. Supernatant was evaporated

and re-dissolved in 200 mL 70% MeOH. LC-MS analysis was

done as described [17]. Leaf treatments were done as described in

GUS-staining experiments. Leaves were harvested at indicated

time points, flash frozen in liquid nitrogen and extracted as

described above, with the exception that 500 mL 70% MeOH was

used for re-dissolving the dried leaf extracts.

GUS-staining Experiments
PR1::GUS plants were provided by Philippe Reymond

(Department of Plant Molecular Biology, University of Lausanne,

CH-1015 Lausanne, Switzerland). Leaves of four weeks old A.

thaliana PR1::GUS plants were wounded with a fabric pattern

wheel and locomotion mucus was applied by allowing D. reticulatum

to crawl over the wounded leaves. Wounding alone and

application of water served as control. Water application was

done by gently striking the leaf with one finger (with glove) to

mimic slug movement. GUS staining was performed 48 h after

treatments as described previously [7]. Briefly, leaves were

incubated overnight at 37uC in X-Gluc solution (Sigma) and de-

stained twice in 99% Ethanol, followed by incubation in chloral

hydrate solution (80 g chloral hydrate, 10 ml glycerol, 30 ml

water) until leaves were completely transparent. Pictures were

taken with a Canon Powershot SD1000 camera (www.canon.de).

Results

Slugs and snails secrete mucus, which aids their locomotion and

protects them from desiccation. These characteristic ‘‘slime’’ trails

persist on plants long after the slugs and snails are gone (Video S1,

[15,18]). A. thaliana responds to mucus of molluscan herbivores

[15,16]. Here we tested if locomotion mucus of slugs and snails

contains phytohormones that may alter anti-herbivore plant

defenses, including SA, JA, JA-Ile and ABA [2]. We extracted

locomotion mucus from 13 different slug and snail species that

occur sympatrically with A. thaliana and analyzed their phytohor-

mone levels. Although we did not find any traces of JA, JA-Ile and

ABA, the mucus of one slug species (D. reticulatum) contained

significant amounts of SA (Figure 1). Since all slugs and snails,

which were cultivated under similar conditions and were cleaned

before extraction (see material and methods) we can exclude that

SA was carried over from the cultivation boxes. The extraction of

D. reticulatum locomotion mucus was repeated 4 times and we

always found the characteristic molecular ion of SA, although the

concentration of SA varied between 2.8–15 nmol*g mucus fresh

mass21. We also treated leaves with locomotion mucus of D.

reticulatum and found a significant increase in SA levels from this

leaf material, when compared to non-treated control leaves

(Figure 2).

It was previously shown that butterfly egg depositions increase

SA levels in leaves of A. thaliana and that this leads to higher

expression of SA marker genes, including PR1 [8]. We used

transgenic A. thaliana plants that express b-glucuronidase (GUS)

under the control of the promotor of the SA-responsive PR1

marker gene (PR1::GUS), to test if simulated slug feeding leads to

increase in PR1 promotor activity. Applying D. reticulatum

locomotion mucus to wounded leaves of PR1::GUS plants

increased b-glucuronidase activity, but not after wounded leaves

were treated with water (Figure 3). In our short-term experiment

(48 h treatment), we found that PR1-promotor activity was only

activated at wounding sites of mucus-treated leaves. Leaves

supplied with mucus alone did not lead to activation of PR1::GUS

activity. Wounding probably increased the absorption of SA into

leaf tissue, leading to the activation of SA-responsive gene

expression.

SA in Molluscan Mucus
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Discussion

Grazing by mollusks can be the dominant form of herbivory in

various ecosystems [19–21]. Selective damage by slugs and snails

during the seedling stage can change plant community composi-

tion and ecosystem functioning [22–25]. Slugs, such as D.

reticulatum are also serious pest in many crops [26]. Despite their

importance, little is known about the chemical communication

between plants and molluscan herbivores. Here, we found that the

locomotion slime of D. reticulatum contains SA and induces the

promotor of an SA-related gene in rosette stage A. thaliana plants.

Since none of the other molluscan herbivores contain SA in their

locomotion mucus, our data suggest that the excretion of SA is

highly species-specific. We found no correlation between SA levels

and the age of the slugs or the time that they have been in captivity

(data not shown), indicating that the production is not influenced

by environmental conditions.

Origin of SA
In addition to its well-known occurrence in plant tissues, SA is

widely found in the animal kingdom. Mammals contain levels of

SA in their blood and in addition to its origin from plant material;

there is evidence that SA can be synthesized from ingested benzoic

acid [27]. Whether the SA we found in the locomotion mucus of

D. reticulatum is sequestered from plant material or synthesized via

plant-derived benzoic acid by the slugs requires further work.

Supplying food of D. reticulatum with labeled SA or precursors of

SA will help to answer these questions. Since several genera of

bacteria are known to synthesize SA [28,29], this metabolite could

also be provided by microbes living in the mucus of D. reticulatum.

Treating D. reticulatum with antibiotics may reveal its potential

microbial origin.

Figure 1. Dercoreas reticulatum contains salicylic acids in its locomotion mucus. LC-MS spectra of salicylic acid (left) and its internal standard
(right) from locomotion mucus extracts from 13 different molluscan herbivores.
doi:10.1371/journal.pone.0086500.g001

Figure 2. Increased salicylic acid levels in extracts of Arabidopsis
thaliana leaves supplied with locomotion mucus of Deroceras
reticulatum. Average 6 SE of five biological replicates. Different letters
indicate significant differences between treatments for each time point
(ANOVA, Turkey HSD, P,0.05).
doi:10.1371/journal.pone.0086500.g002

Figure 3. Locomotion mucus of Deroceras reticulatum increases
PR1 promotor activity in transgenic Arabidopsis thaliana
PR1::GUS plants. Leaves were wounded and water or D. reticulatum
locomotion mucus was applied to wounds. Blue color indicates PR1
promotor activation. Pictures from two independent experiments are
shown.
doi:10.1371/journal.pone.0086500.g003

SA in Molluscan Mucus
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Ecological Implications
SA is an important plant hormone that regulates various aspects

of plant growth and development, including regulation of

photosynthesis [30–33] and cell expansion [34]. SA mediates

plant defense against biotrophic and hemibiotrophic pathogens

and some sucking insects [35]. Priming of SA-related defense

responses increases disease resistance and plant fitness in the field

[36]; however, activating the SA-pathway reduces plant growth

and fitness in pathogen-free environments [37,38]. These data

demonstrate that SA can profoundly influence plant interactions

with their environment. Whether SA provided by D. reticulatum to

plant tissues changes plant growth or their resistance to pathogens

and herbivores requires further research. When D. reticulatum was

provided with A. thaliana as sole food source, the slugs supplied

locomotion mucus for more than one day before they started

consuming leaves (Video S1). It is tempting to speculate that the

gap in feeding was caused by the time required to suppress anti-

herbivore defenses via SA in the mucus. However, A. thaliana

might also not present a suitable food source for D. reticulatum and

our observations were done under very artificial conditions.

Whether D. reticulatum applies mucus to other plant species prior to

leaf consumption in natural settings and if this alters plant growth

and defense against herbivores and pathogens requires further

observations.

Cultural Implications
The potent analgesic and antipyretic activities of plant tissue

extracts, such as willow bark, in humans had been known for

many centuries before the identification of SA, as the likely active

compound [39]. SA is also used as medical tinctures against warts

[40,41]. Interestingly, rubbing the slime of slugs over warts has

been used as anti-wart treatments as described in folklore books in

the 19th century [42]. The concentration of SA that we found in

the locomotion mucus of D. reticulatum is several orders of

magnitude lower than that of in commercially available wart

treatments. Other slug secretions, such as the thick mucus secreted

by slugs as defense during attack, may contain higher concentra-

tions of SA, which may justify its use as wart cures. These

secretions are currently being investigated.

Supporting Information

Video S1 Deroceras reticulatum activity on Arabidopsis
thaliana.
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