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SUMMARY
Covariate adjustment in randomized clinical trials has the potential benefit of precision gain. It
also has the potential pitfall of reduced objectivity as it opens the possibility of selecting
“favorable” model that yields strong treatment benefit estimate. Although there is a large volume
of statistical literature targeting on the first aspect, realistic solutions to enforce objective inference
and improve precision are rare. As a typical randomized trial needs to accommodate many
implementation issues beyond statistical considerations, maintaining the objectivity is at least as
important as precision gain if not more, particularly from the perspective of the regulatory
agencies. In this article, we propose a two-stage estimation procedure based on inverse probability
weighting to achieve better precision without compromising objectivity. The procedure is
designed in a way such that the covariate adjustment is performed before seeing the outcome,
effectively reducing the possibility of selecting a “favorable” model that yields a strong
intervention effect. Both theoretical and numerical properties of the estimation procedure are
presented. Application of the proposed method to a real data example is presented.
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1. INTRODUCTION
As many clinical trials suffer from high cost, difficulty in recruitment, and subject attrition,
efficient estimation of the treatment effect is important. Typical clinical trials collect a fairly
rich list of covariates at baseline, including demographics, medical history, medications, lab
results, pre-treatment outcome and so on. The rationale behind baseline covariate adjustment
is that characteristics predictive of the outcome can be used to account for some of the
variation in the outcome, which results in more precise estimate or more powerful test.

The most popular and well-studied method to adjust for baseline covariates for a continuous
outcome is the Analysis of Covariance (ANCOVA) [1–3]. The ANCOVA essentially is a
regression model by treating the outcome as the dependent variable and baseline covariates
and treatment assignment indicator (and possibly their interactions) as the independent
variables. In this article, we propose an alternative approach based on inverse probability
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weighting (IPW) for both continuous and binary outcomes, which also uses baseline
covariates to improve efficiency. The IPW estimator is intuitively appealing as weighting is
a well-understood approach for estimation problems and there is no concern of model
misspecification since the fitted model is always correct (see Section 2.3). Our main
theoretical conclusion is that the IPW estimator with the weight estimated from a logistic
regression is asymptotically equivalent to the ANCOVA estimator that includes both the
main and interaction terms of the covariates and treatment indicator [3], and behaves
essentially the same with finite samples. The IPW estimator initially originated from sample
survey studies [4] and later was extended to address issues of incomplete data and
confounding in observational studies [5–7]. Following these work in the literature, we
estimate the average treatment effect by the difference of the weighted arm-specific means
with the weights being the inverse of the “estimated” probability of receiving the assigned
treatment. By “estimated” probability we mean fitting a model for the treatment arm
indicator given baseline covariates, and then estimating the probability based on the model
and estimated parameters. This might sound a bit strange as in a randomized trial the
treatment assignment is known and does not depend on observed and unobserved covariates.
Nevertheless, as explained in Section 2 and verified in Section 3, the “chance” variation of
treatment assignment proportions among different covariate strata allows the model to
improve precision.

We want to emphasize that the intention of this article is not to seek the estimator with
optimal precision. Instead, our aim is to seek a balance of precision gain and objective
inference in clinical trials. There is a rich literature on covariate adjustment for the
improvement of precision [1, 2, 8–12], including the recent IPW approach with
augmentation by regression function [13, 14]. Nevertheless, there is still debate on whether
or not such an adjustment should be made, or if needed how it should be made [2, 8, 15, 16].
Center to the debate is the issue of objective inference in randomized trials, as covariate
adjustment opens the possibility of selecting “favorable” models. For instance, when
ANCOVA is used to adjust for covariates, variable and/or model selection can be used to
choose an “optimal” model that “best accentuates the estimate and/or statistical significance
of the treatment difference” [16].

To objectively incorporate covariate adjustment, Tsiatis et al. [3] proposed a principled
strategy that relies on analyzing data from the control and intervention arms separately using
the regression approach followed by a comparison based on the two fitted regression
models. In addition, the analyst is blinded to which treatment arm is being analyzed. The
approach allows variable and model selection to optimize efficiency whereas in the
meanwhile reduce the probability of fitting “favorable” model. However, it is possible that
the data analysts might still obtain information from other sources (e.g. study protocol,
certain aspects of the data set) that allow them to guess the treatment arm of the data given
to them, which may influence the analysis. A more rigorous control is to pre-specify what
and how covariates are to be adjusted in a study protocol [17], which also has its limitations.
For instance, once the study starts, extra information from other studies or literature may
suggest a predictive covariate that is being collected but is not included in the list of
covariates to be adjusted. Protocol revision is needed to incorporate this new covariate,
which involves many layers of processes and can be time-consuming. As can be seen in
Section 2.4, our approach offers a balanced strategy for efficiency improvement and
objectivity. A key feature of our approach is that the covariate adjustment is conducted in a
way such that there is no need for the covariates and outcome to be in the same data set
throughout the analysis process, effectively reducing the possibility of “cherry picking” by
examining the relationship between covariates and the outcome. In addition, our approach
offers some level of flexibility as the covariates to be adjusted for do not need to be pre-
specified in the study protocol.
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In what follows, we provide the background on ANCOVA estimators in clinical trials and
IPW estimators in observational studies in Sections 2.1 and 2.2, respectively. Our main
result is reported in Sections 2.3 and 2.4. A simulation study is described in Section 3 and a
real data application is presented in Section 4. We conclude the article with a discussion
section (Section 5).

2. METHOD
2.1 Background

We consider a typical randomized trial comparing an experimental intervention and a
suitable control for a continuous or binary end point. Let Y be the outcome, A be the
treatment assignment indicator such that A = 1 indicates experimental intervention and A = 0
indicates control. The corresponding randomization probabilities are r and 1−r, respectively.
Denote by X a vector of baseline covariates under consideration. Without loss of generality,
we will assume that the mean of X is 0. Finally, let (Yi,Ai,Xi),i = 1,2,…,n be the data
collected on n subjects, and let Σ denote the summation over the n subjects.

Often the primary interest of the trial is the inference on the difference of the population
means under intervention and control. If Y(0)and Y(1)are the potential outcomes under
control and intervention, respectively, then Y =AY(1) + (1−A)Y(0). The goal is to infer

Here the second equality is due to the randomization. A simple and widely employed
estimator of θ is the difference of the sample means

(1)

where r ̂ = ∑Ai / n. As baseline covariates that correlate with the outcome can be used to
improve precision, alternative estimators based on ANCOVA have been proposed in the
literature [3]. Specifically, least square estimators θ̂2 of the model

(2)

and θ̂3 of the model

(3)

have been shown to be consistent estimators of θ and asymptotically normal. An important
feature of these two estimators is that the above properties hold even if models (2) and (3)
are incorrect. Below we summarize some results from Tsiatis et al. [3] regarding the
estimators θ̂1, θ̂2 and θ̂3. First, all three estimators belong to a general class of augmented
semi-parametric estimators Θ,

(4)

where g0 and g1 are arbitrary scalar functions of X that distinguish different estimators. For
example, the two functions are constants for θ̂1 with g0 (X) = E(Y | A = 0) and g1 (X) = E(Y |
A = 1), whereas the two functions are of the form a +bTX with different values of a (scalar)
and b (vector) for θ̂2 and θ̂3. Second,θ̂3 is efficient among all estimators with both g0 and g1
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linear in X. Third, θ̂2 and θ̂3 are asymptotically equivalent when r = 0.5. Lastly, the estimator
with the smallest variance in this class is the one with g0 (X) = E(Y | X, A = 0) and g1 (X) =
E(Y | X, A = 1), that is, the true regression model within each arm. The last point is not
surprising because in that case the second term in (4) is the projection of the first term to the
space of functions of X, and therefore minimizes the variance of the random variable in (4).
In a similar sense, g0 (X) and g1 (X) for θ̂3 essentially are predictions of the outcome based
on a linear regression model within each arm.

The class of estimators in (4) is what is called the augmented inverse probability weighting
(AIPW) estimator [18] with the probability being the marginal randomization probability. It
turns out that a simple IPW estimator with the probability being the estimated propensity
score accounting for X also belongs to this class. In addition, if the propensity score is
estimated by a logistic regression, then the simple IPW estimator is asymptotically
equivalent to θ̂3. In the rest of Section 2, we provide more details along these lines.

2.2 Inverse probability weighting in observational studies
In a typical observational study, the setting and research goal is similar to the randomized
trial in Section 2.1, except that the treatment assignment indicator A may stochastically
depend on X and even unobserved variables. In this setting, θ̂1 usually is biased because
components of X associated with Y may not have the same distribution between the control
and intervention arms. The concept of propensity score [19] was introduced to correct the
bias. A key assumption for the propensity score based approach is no uncontrolled
confounding

(5)

which means conditional on X, the potential outcomes are independent of treatment
assignment indicator. The propensity score is then defined as the conditional probability of
A = 1 given X, p0 (X) = Pr[A = 1| X], which can be used in different ways to eliminate or
reduce bias [20]. Among them, the inverse probability weighting (IPW) approach essentially
estimates θ by the difference of weighted sample means with the weight being the reciprocal
of the probability of receiving the treatment actually assigned to the subject (the propensity
score is assumed to be bounded away from 0 and 1):

(6)

Straight forward algebra shows that θ̃I is an unbiased estimator of θ.

In practice, the propensity score usually is unknown and has to be estimated. A common
practice is to fit a parametric model (e.g. logistic regression) to the data to obtain an
estimated propensity score p(X,α̂), where α̂ is the parameter estimate usually obtained
through maximum likelihood estimation. As long as the propensity model is correctly
specified, i.e. there exists some α0 such that p(X,α0) = p(X) for all X, the estimator

(7)

is consistent for θ and asymptotically normal [5].

An interesting and seemingly counter-intuitive phenomenon is that θ̂I is asymptotically at
least as efficient as θ̃I[6, 7]. The rationale behind this is that the estimator α̂ results in an
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empirical propensity (p(Xi,α̂)) that is more effective in reducing the variation of the
numerators in (7) than the true propensity. Moreover, if p(X,α) and q(X,W,α,η) are two
nested identifiable parametric models with covariates X and (X, W) in the sense that there
exists an η0 (α) such that p(X,α) = q(X,W,α,η0(α)) for all α, X, and W. Moreover, suppose

the true propensity score is such that p0 (X,W) = q(X,W,α0,η0 (α0)) = p(X,α0). Then  using

the estimated propensity score based on q(X,W,α,η) is at least as efficient as  based on
p(X,α) [6, 7]. In other words, inclusion of extra covariates not related to the treatment
assignment will at least not compromise the efficiency asymptotically. We provide the proof
of these results in A.1 and A.2 in the. Brookhart et al. [21] has shown the same finding
through simulation studies.

2.3 Inverse probability weighting in randomized trials
In many randomized trials there exist baseline covariates that are correlated with the
endpoint (e.g. prognostic factors), and therefore “chance” imbalance of these covariates
between the two arms will increase the variation of the difference in sample means. The
results in Section 2.2 suggests that fitting “larger” propensity score models can improve
precision in observational studies, which motivated the idea of IPW estimation in
randomized trials for the improvement of efficiency. For a randomized trial, the propensity
score is known with a simple form: p0(X) = r for all X. Therefore, any family of distributions
covering this simple distribution is a correct model. In fact, θ̂1 in Section 2.1 is an IPW
estimator based on a model with only a constant. The following theorem shows that IPW
estimator θ̂I based on a parametric model p(X,α) belongs to the same class of estimators as
θ̂1, θ̂2 and θ̂3. The proof is included in A.3 of the Appendix.

Theorem 1. Let p (X,α) be a smooth parametric model such that there exists an α0 with p
(X,α0) = r for all X. Let α̂ be the maximum likelihood estimator of α, then

belongs to the class Θ in (4).

Theorem 1 establishes the potential efficiency gain by using a parametric family to “model”
the treatment assignment mechanism in a randomized trial. Specifically, based on the results
in Section 2.1, if the chosen model p (X,α) is such that asymptotically g0(X) = E(Y | X, A =
0) and g1 (X) = E(Y | X, A = 1) for θ̂I, then θ̂I will be efficient. Certainly, such a parametric
model might be difficult to identify as that would require the knowledge of the true
regression model within each arm. Nonetheless, as summarized in Section 2.1, a
simplification with g0 and g1 linear in X can still improve efficiency over the naive estimator
θ̂1. Logistic regression is the most widely used parametric model for the propensity score.
The following corollary states that θ̂I based on logistic regression is the most efficient
estimator with both g0 and g1 linear in X. The proof is included in A.4 of the Appendix.

Corollary 1. If p(X,α) = 1/[1+ exp(−αT X*)], X* = (1, XT)T, then θ̂I is asymptotically
equivalent to θ̂3 in Section 2.1. In other words, θ̂I is efficient among all estimators with both
g0 and g1 linear in X. Moreover,
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(8)

In many trials, r=0.5, which leads to

(9)

The R2 in (9) represents the R-square statistic by fitting a linear regression model to infinite
number of data points of (X,Y) with half from the control and the other half from the
intervention. Clearly, R2 in this case determines the amount of efficiency gain. More
importantly, since R2 will not decrease with added covariates, equation (9) indicates that
adding more covariates to the logistic regression model for the propensity score will at least
not compromise the asymptotic efficiency. A generalization of this result is that models with
more covariates are at least as efficient as models with fewer covariates.

Theorem 2. Let X and W be non-overlapping baseline covariate vectors. Let p(X,α) and
q(X,W,α,η) be smooth nested identifiable parametric models in the sense that there exists an
η0 (α) such that p(X,α) = q(X,W,α,η0 (α)) for every α, X and W, and there is an α0 such that
p(X,α0) = r for all X. Let α̂ and (ᾰ,η̆)be the maximum likelihood estimators of the model
parameters for the two models, respectively. Let θ̂I and θ̆I be the corresponding IPW
estimators

Then θ̆I is at least as efficient as θ̂I asymptotically.

The proof of Theorem 2 essentially is the same as the proof in A.2 and is omitted here.

2.4 Two-stage analysis strategy based on IPW estimator
The variance of the limiting distribution of the IPW estimator based on a logistic regression,
Γ, can be consistently estimated by
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(10)

where qi is the OLS fitted value of Ai − r by a linear regression of A−r on X* = (1,XT)T. The
proof of the consistency of (10) is included in A.5 of the Appendix.

A unique feature of the variance estimator in (10) is that the calculation only requires (Y,A,q)
and does not need X. The property allows a two-stage analysis strategy for objective
inference in randomized clinical trials, which is easy to implement. The main feature of this
approach is that the analysis is performed in two stages by either the same data analyst or
two analysts. In either case, the data analyst(s) never see(s) the outcome data and the
baseline covariates together in the same data set for drawing the primary conclusion of a
study, effectively reducing the possibility of selecting a favorable model through
examination of the relationship between the covariates and the outcome. In addition, the
covariates to be adjusted do not need to be specified until the time of fitting the propensity
score. Below are the steps on how this approach is implemented with two data analysts.

i. Stage 1 is performed by analyst 1 with data on (A,X):

a. Fit a logistic regression model for A (treatment assignment indicator) with
whatever covariate vector X is deemed appropriate. Obtain the estimated
propensity score p(X,α̂) for each subject.

b. Fit a linear regression model by OLS for A−r using the same covariate
vector X. Obtain the fitted value q for each subject.

c. Pass p(X,α̂) and q to analyst 2.

ii. Stage 2 is performed by analyst 2 with data on (Y, A, p(X,α̂),q):

Calculate the IPW estimate θ̂I as in Theorem 1 and the standard error using
formulae (10) for statistical inference.

Note that X needs not to be centered in the procedure above. Clearly, X and Y are never in
the same data during the two-stage analysis process. Compared with the approach by [3],
our strategy has more stringent control on what data the analysts have access to. On the
other hand, the estimator might not be the most efficient since our approach does not allow
the search for an “optimal” model for E(Y | X, A). However, this is necessary to avoid
potential bias introduced from the variable/model selection process so as to maintain the
objectivity of the study. In summary, the two-stage IPW estimator offers an improvement in
precision without compromising objectivity. The same procedure can be implemented with
one analyst, where the data set (A,X) can be made unavailable to the analyst after stage 1
through data management arrangement.

3. A SIMULATION STUDY
Theorem 2 suggests that larger models with more covariates will not compromise the
asymptotic efficiency, which might not be the case in finite samples. In particular, when
logistic regression is used, an added covariate with zero partial correlation with the outcome
will not increase R2 and may induce efficiency loss [22].

We first conducted a simulation study to understand the finite sample performance of the
IPW estimator for a continuous outcome. The main inference target is the difference of the

Shen et al. Page 7

Stat Med. Author manuscript; available in PMC 2015 February 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



population means under intervention and control, θ. We generated data using the following
model:

Based on this model, θ =γ. Let . Then simple algebra shows that . In
our simulation, we fix σ2 = δ2 = 2 so that R2 = 0.5. An R-square value of 0.5 is realistic as
often times there exists a baseline outcome measure that is correlated with the post-treatment
outcome measure with a Pearson correlation coefficient as high as 0.7 [23], leading to an R-
square of 0.49 based on a single covariate. We generated a total of 20 independent standard
normal variables and selected k=5, 10, and 20 of them in the regression model. For a given
k, we divide the covariate into five groups of equal size and assume the same coefficient
values for covariates within the same group. The five unique coefficients are 2-fold apart at
square scale. Therefore, as k goes from 5 to 20, the coefficients for the involved X gets
smaller with the summation at the square scale fixed at σ2 = 2. This reflects realistic
situations of either several strong prognostic factors or a number of weak prognostic factors.
We generated 2000 Monte Carlo data sets each composed of 200, 500 or 1000 subjects.

Three estimation procedures are considered, including θ̂1 (UNADJ), θ̂I based on logistic
regression (IPW), and the optimal estimator that is in the form of formulae (4) with g0 (Xi)
and g1 (Xi) replaced by the fitted values from separately estimated linear models within each
of the two arms (OPT). Actually in this case, IPW, OPT and the two ANCOVA estimators
(θ̂2 and θ̂3 in Section 2.1) are all asymptotically equivalent. For both IPW and OPT
estimators, all 20 covariates are included in the corresponding models. Note that this means
15 and 10 covariates are not associated with the outcome when k=5 and 10. Although
asymptotically equivalent, the OPT with all 20 covariates may have different finite sample
performance from the OPT with the relevant covariates only. Nonetheless, we will still keep
all 20 covariates and call it OPT to reflect the realistic situation where some of the
covariates are not correlated to the outcome conditional on the covariates already included in
the model. The results are summarized in Tables I and II. As all three estimators are
essentially unbiased (bias<0.01), we omitted the summary of bias here. From Table I, it is
clear that IPW and OPT are more efficient than UNADJ, with the standard error about 70%
that of the UNADJ for all scenarios. It is quite interesting to see this is the case even when
k=5, where 15 out of the 20 included covariates are not predictive of the outcome. The IPW
and OPT estimators have essentially the same efficiency. When n=200, both IPW and OPT
show clear trends in underestimating the standard error, leading coverage probability below
the nominal level. This is particularly apparent for IPW. As sample size gets large, the
standard error estimate gets more accurate, except a slight downward bias leading to a bit
under-coverage when n=500 and k=20. Table II summarizes the rejection probability for the
hypothesis H0 : θ = 0. Because IPW and OPT underestimates the standard error when
n=200, there is an apparent inflation of type I error. When sample size is large, both IPW
and OPT perform equally well, both are more powerful than the UNADJ. When n=500 and
k=20, the slight downward bias in estimating the standard error leads to a slight inflation in
the type I error rate.

We also conducted a simulation study for a binary endpoint. The primary interest is
difference of the proportions under the intervention and control. We generated data from the
following model:
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where Φ is the cumulative distribution function of a standard normal variable. We fix

, and consider k=5, 10, and 20 out of 20 X variables as in the case of a
continuous endpoint. The β values are also assigned the same way as in the continuous case.
The true proportions for the control and intervention arms are Φ(α / 2) and Φ((α + γ) / 2),
respectively. Since the true regression model is not linear anymore, the OPT is in the form
of formulae (4) with g0(Xi) and g1(Xi) replaced by the fitted value from separately estimated
probit models within each of the two arms. We also included θ̂2 (ANCOVA) for
comparison. Tables III and IV summarize the results based on 2000 Monte Carlo data sets of
size 1000. Overall, IPW and ANCOVA are very similar; both are more efficient and
powerful than UNADJ but less so than the OPT. This certainly is expected. When the true
event rates in the control and intervention arms are both 0.1, the OPT shows an inflation of
type I error rate (Table IV) for k=10 and 20. Therefore, the gain in power by OPT over IPW/
ANCOVA when the true event rates are 0.1 and 0.15 might actually be less than what is
shown in Table IV.

4. APPLICATION TO THE PBC DATA
The Mayo Clinic conducted a double-blinded randomized trial in primary biliary cirrhosis
(PBC) of the liver, in which the drug D-penicillamine (DPCA) was compared with a placebo
[24]. There were 424 patients who met the eligibility criteria, and 312 agreed to participate
in the randomized trial. We focus on the 312 subjects in the randomized trial. Our primary
aim is to compare the 2-year mortality between DPCA and the placebo. For this purpose, the
mortality status by year two can be ascertained for 311 subjects with one subject censored
before year two due to liver transplantation. Therefore, our analysis includes 311 subjects, of
whom 157 received DPCA and 154 received the placebo. The 2-year mortality rates for the
DPCA and placebo are 14/157=8.9% and 19/154=12.3%.

For each of the 311 subjects, a large number of clinical, biochemical, serologic and
histologic parameters were collected at baseline, which may be used to improve the
precision of the comparison. To apply the proposed method, we included all covariates in
the data set PBC [25] except those with missing values. There are in total 12 covariates
included in our propensity model, including sex, age in years at study registration, presence
of ascites (Yes/No), presence of hepatomegaly (Yes/No), presence of spiders (Yes/No),
presence of edema (0: no edema and no diuretic therapy for edema; 1: edema present for
which no diuretic therapy was given, or edema resolved with diuretic therapy; 2: edema
despite diuretic therapy), serum bilirubin (mg/dl), albumin (gm/dl), alkaline phosphatase (U/
liter), SGOT (U/ml), prothrombin time (seconds), and histologic stage (1, 2, 3, or 4). Here
presence of edema and histologic stage are treated as categorical variables in the model. We
summarize the distribution of the 12 covariates in Table V. It can be seen that most of the
covariates are balanced well. Proportion of hepatomegaly is slightly higher in the placebo
arm and serum bilirubin is slightly higher in the DPCA arm.

The analysis result is shown in Table VI, where UNADJ, IPW and OPT are the same
estimators as in the simulation studies. The efficiency gain of IPW and OPT over UNADJ is
apparent. IPW reduces the standard error by about 20% as compared with UNADJ, or a
relative efficiency of about 1.6. Clearly, some of the covariates are predictive of mortality.
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In fact, it was shown through model selection that a Cox model including age, serum
bilirubin, albumin, prothrombin time, and presence of edema predicted mortality well [24].
The interesting aspect of our analysis is that even with extra variables that are not predictive
of the endpoint, the efficiency gain is still quite pronounced. On a cautionary note, our
simulation studies showed that the asymptotic standard error estimate has downward bias
when sample size is relatively small (e.g. n=200). Thus, the actual efficiency gain in this
case may be smaller than 20%.

Serum bilirubin is positively correlated with 2-yr mortality and it has higher value in the
DPCA arm, which will make the estimate more negative (i.e. more treatment effect) after
adjustment. Yet, presence of hepatomegaly is also positively correlated with the outcome
and it has higher proportion in the placebo arm, which will make the estimate more positive
(i.e. less treatment effect). Estimates from IPW and OPT are lower than the UNADJ, which
is a net consequence of adjusting for multiple variables.

5. DISCUSSION
The IPW estimator is shown to be asymptotically equivalent to the ANCOVA estimator that
includes both the main effects of baseline covariates and their interactions with the treatment
assignment indicator. The performance under finite samples is also similar. Our simulation
study shows that substantial efficiency gain can be achieved with IPW as long as the
propensity model includes covariates with moderate to small correlations with the outcome.
This is the case even when a significant proportion of the covariates included are not
correlated with the outcome and the sample size is relatively small. Our simulation studies
also suggest that there may be downward bias in the asymptotic standard error estimate
when the sample size is relatively small, which could lead to inflation of type-I error. Thus,
we suggest simulation studies be performed in practice to properly calibrate standard error
estimate when sample size is small.

It is well established that stratification variables in a randomized trial should be included in
the ANOVA model to for efficiency gain, which is also true for the proposed IPW method.
Other covariates can include those deemed to be related to the outcomes. One advantage of
our method is that the list of covariates to be included in the propensity model does not need
to be specified until the actual fitting of the propensity score. The analysis enjoys some level
of flexibility on which covariates to use based on updated literature and other sources of
information. In addition, if feasible, one can perform a “stage 0” analysis to examine the
relationship between covariates and the outcome without the presence of treatment
assignment indicator to select a list of covariates with possibly better prediction power for
efficiency improvement.

The two-stage analysis strategy to draw inference on the treatment effect based on IPW
offers an improvement in precision without compromising objectivity. As covariate
adjustment using IPW is more efficient than the unadjusted estimator asymptotically, and is
so under realistic finite samples, it provides a simple and easy-to-implement solution for
clinical trials striving for both cost-reduction and objective interpretation of the data. The
IPW approach prevents the analyst from predicting the outcome through variable and model
selection. This may sound limited since model and variable selection through the
examination of the relation of a large covariate list and outcome may offer better precision.
However, such analyses can be prone to subjectivity and subsequently leads to misleading
results [22]. In addition, in certain cases the gain in efficiency through variable selection
over pre-specified variable list might be limited as the extra variables outside the pre-
specified list often have weak partial correlation with the outcome. It should be noted that
IPW approach may allow the data analyst to select covariates after data on (X, A) are seen
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(e.g. select “unbalanced” covariates in addition to the pre-specified list). Nevertheless,
without extra knowledge on the correlations between X and Y beyond what was known at the
design stage, such practice might not help much [22].

One difficulty of IPW estimators encountered in observational studies is that the estimated
probability can be close to 0 or 1, leading to numerical instability. This is unlikely to occur
in randomized trials as the treatment assignment ratio is fixed at some value far from 0 and
1. Therefore, the typical concern of extreme weights in applying IPW is not relevant here.
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Appendices

APPENDIX

A.1 Asymptotic efficiency of θ̂I

By Taylor expansion at the true value α0, we have
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Here Si is the score function for subject i evaluted at the true value α0 and I is the Fisher

matrix evaluated at α0. Therefore, by central limit theorem,  is asymptotically
normal with variance equal to Var(U−V). Since E(U) = E(V) = 0 and Var(V) = E(UV)), it
follows

Since Var(U) is the variance of the limiting distribution of , it follows that θ̂I is at
least as efficient as θ̃I
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A.2 Asymptotic efficiency of IPW estimators based on two nested
parametric models

Let  be the IPW estimator based on the fitted propensity score using the "large" model

q(□,α,η) and  be the IPW estimator based on the fitted propensity score using the "small"
model p(□,α). Based on the result in A.1, we have

Here

S and I are the score and Fisher information matrix evaluated at (α0,η0) for the large model,
and S1and I11 are the score and Fisher information matrix evaluated at α0 for the small
model. Write

By the formula of blockwise inversion,

Since Ω is positive definite, . Thus Var(VL)≥

Var(VS).  is at least as efficient as .
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A.3 Proof of Theorem 1
Under randomization, the true propensity score p0(X) = r for all X. Based on the result of A.
1, the influence function for θ̂I can be written as

The score function S and Fisher information matrix can be written as

Since X ⊥ A, the Fisher information matrix can be written as

By plugging the expression of S and I in the expression of IF, we have

where

A.4 Proof of Corollary 1
Under logistic regression model,∂p(X,α0) / ∂α = r(1−r)X*. Plugging in the result in Theorem
1 leads to
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Similarly

Therefore, θ̂I has the same g0 and g1 as θ̂3 (Tsiatis et al., 2008) and they are asymptotically
equivalent.

Since the influence function is

The asymptotic variance of θ̂I is

Because S = (A−r)X* and I = (1−r) E(X*X*T),
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A.5 Proof of consistency of the estimator Γ̂ in (10)

First, it is easy to see that .

Let Y(Y1,Y2,…,Yn)T,A = (A1,A2,…,An)T, ,Q(q1,q2,…,qn)T,

, and let J be a diagonal matrix with the ith diagnonal entry being (Ai-r)2.

By the property of OLS, Q = X*(X*TX*)−1 X*T (A−r). Then

By the law of the large numbers and the continuous mapping theorem

It follows that

Since E((A−r)2X*TY) = r(1−r)2 E(X*TY | A = 1)+r2(1−r) E(X*TY | A = 0), It follows that

Hence, Γ̂→p Γ by the definition of Γ in equation (8).
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Table V

Baseline covariates for the 311 subjects in the PBC data. Numbers in parenthesis for continuous variables are
the standard deviations.

Placebo (n=157) D-penicillamine (n=154)

Male 20 (12.7%) 15 (9.7%)

Age (year) 51.4 (11.0) 48.6 (10.0)

Presence of ascites 143 (91.1%) 144 (93.5%)

Presence of hepatomegaly 85 (54.1%) 67 (43.5%)

Presence of spiders 112 (71.3%) 109 (70.1%)

Presence of edema

0 131 (83.4%) 131 (85.1%)

1 16 (10.2%) 13 (8.4%)

2 10 (6.4%) 10 (6.5%)

Serum bilirubin (mg/dl) 2.88 (3.64) 3.65 (5.28)

Albumin (gm/dl) 3.52 (0.44) 3.52 (0.40)

Alkaline phosphatase (U/liter) 156 (87) 144 (83)

SGOT (U/ml) 91.3 (53.7) 90.7 (54.6)

Prothrombin time (seconds) 18.2 (16.1) 21.4 (16.5)

Histologic stage

1 12 (7.6%) 4 (2.6%)

2 35 (22.3%) 32 (20.8%)

3 56 (35.7%) 64 (41.6%)

4 54 (34.4%) 54 (35.1%)

Stat Med. Author manuscript; available in PMC 2015 February 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shen et al. Page 23

Table VI

Treatment effect on 2-year mortality rate using 311 subjects in the PBC data. For IPW, logistic regression with
the main effects of the twelve covariates was used to fit the propensity model. For OPT, separate logistic
regression models for the outcome were fitted to the two arms with the main effects of the twelve covariates.

Method Estimate of the difference in mortality rates (%)
(DPCA minus placebo)

Standard error
(%)

p-value

UNADJ −3.42 3.49 0.33

IPW −4.62 2.75 0.09

OPT −5.23 2.65 0.05
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