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Two strategies are often adopted for enrichment analysis of pathways: the

analysis of all differentially expressed (DE) genes together or the analysis of

up- and downregulated genes separately. However, few studies have exam-

ined the rationales of these enrichment analysis strategies. Using both

microarray and RNA-seq data, we show that gene pairs with functional

links in pathways tended to have positively correlated expression levels,

which could result in an imbalance between the up- and downregulated

genes in particular pathways. We then show that the imbalance could greatly

reduce the statistical power for finding disease-associated pathways through

the analysis of all-DE genes. Further, using gene expression profiles from

five types of tumours, we illustrate that the separate analysis of up- and down-

regulated genes could identify more pathways that are really pertinent to

phenotypic difference. In conclusion, analysing up- and downregulated

genes separately is more powerful than analysing all of the DE genes together.
1. Introduction
The enrichment analysis of pathways is a basic task for biologically interpreting

a list of interesting genes extracted from various ‘omics’ data generated by

microarray, next-generation RNA sequencing (RNA-seq) or other high-through-

put biotechnologies [1,2]. A vast number of enrichment analysis tools have been

developed. The most popular type is singular enrichment analysis and tools of

this type include GO-function [3], DAVID [4], GoMiner [5], Onto-express [6],

BINGO [7], GOseq [8] and many others [1]. These tools are quite similar as

they all calculate the enrichment p-values of pathways for a user-preselected

list of interesting genes using slightly different statistical methods, including

Fisher’s exact test, the x2-test, the hypergeometric and binomial distribution

tests and others [1–3,9]. Fisher’s exact test [10] is appropriate for analysing

pathways containing a small number of genes and the x2-test is adequate

when the number of genes is greater than five [11]. Similar to Fisher’s exact

test, the hypergeometric distribution [12] is used for sampling from a small

number of genes but approximates to the binomial distribution when the

number of genes is large [13]. The binomial is more suitable when a large

number of genes are considered, while the other three are applicable for analy-

sis with a small number of genes. When identifying significant pathways, the

differences among these statistical methods will not be dramatic [9,14]. In

studies comparing gene expression profiles of two phenotypes, researchers

usually consider the differentially expressed (DE) genes detected between the

two phenotypes as genes of interest and apply a selected enrichment analysis

tool to identify the pathways associated with the phenotypic difference. Cur-

rently, there are two different strategies to apply to an existing singular

enrichment analysis tool. The often-used strategy of applying a singular enrich-

ment analysis tool is to analyse all of the DE genes together (referred to as the

all-DE strategy for short) [15–17]. The alternative strategy is to analyse the up-

and downregulated genes separately (referred to as the separate-DE strategy for

short) [18–20]. However, the rationales of these two strategies have not been

strictly scrutinized or compared.
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Table 1. Datasets analysed in this study. T denotes the number of tumour
samples; N denotes the number of normal samples. Abbreviations are same
as in figure 2.

cancer T : N data source

BC 42 : 143 GSE10780

CRA 32 : 32 GSE8671

GC 38 : 31 GSE13911

KIRC 465 : 68 TCGA

LUAD 125 : 37 TCGA
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Based on the Kyoto Encyclopaedia of Genes and Genomes

(KEGG) pathways [21], which provides different types of func-

tional links among genes or their corresponding proteins, some

studies report that the numbers of the up- and downregulated

genes in disease when compared with normal controls could

be highly imbalanced in biological pathways [22,23]. Some

pathways are even found to comprise only up- or downregulated

genes in a particular disease [22,24]. However, to our knowledge,

no study has systemically examined the imbalance of up- and

downregulated gene numbers in pathways that are disturbed in

a disease and, more importantly, how this imbalance influences

the singular enrichment analysis of pathways.

In this report, using both microarray and RNA-seq data-

sets of gene expression profiles of five types of tumours, we

first show that gene pairs with functional links defined in

the KEGG database tended to exhibit positively correlated

expression levels. We then show that this tendency could

lead to the imbalance between the numbers of up- and down-

regulated genes in disease-associated pathways. We further

illustrate numerically that, owing to this imbalance, analysing

all of the DE genes together could greatly reduce the power

of disease-associated pathway detection. Finally, we vali-

date this conclusion for the singular enrichment analysis of

pathways based on Gene Ontology (GO) [25]. Another five

singular enrichment tools were also compared to support

our conclusion.
2. Material and methods
2.1. Datasets
We collected three microarray datasets from the Gene Expression

Omnibus database [26] and two RNA-seq datasets from The

Cancer Genome Atlas database [27] for five types of tumours

(table 1). All of the microarray datasets were generated using

the Affymetrix HG-U133 Plus 2.0 platform. The raw data were

preprocessed using the Robust Multi-array Analysis algorithm

[28] and the SOURCE database [29] (March 2011) was used to

annotate the CloneIDs to GeneIDs. All of the RNA-seq datasets

were generated using the Illumina HiSeq platform. The raw

data were TMM normalized [30] using the edgeR BioConductor

package [31].

2.2. Kyoto Encyclopaedia of Genes and
Genomes pathways

In the KEGG database, biological pathways are described in KEGG

Markup Language (KGML) files, including nodes (genes or com-

pounds) and edges (functional links) [21]. The KGML data files

were obtained manually from the KEGG website on 16 January

2012. A total of 216 pathways were analysed after excluding the

pathways without functional links between genes. Totally, these

216 pathways included 30 263 functional links comprising 4171

genes measured in the microarray datasets and 33 367 functional

links comprising 4548 genes measured in the RNA-seq datasets.

If a functional link was included in multiple pathways, we counted

it only once. A total of 11 types of functional links were analysed

(figure 1).

2.3. Correlation analyses of expression of functionally
linked genes

For a dataset, suppose there were totally m samples including

both the tumour and normal samples. For each gene pair, let

the expression levels of gene X and gene Y be given by
X ¼ ðx1; x2; . . . ; xmÞ and Y ¼ ðy1; y2; . . . ; ymÞ; respectively. Then

the Pearson correlation coefficient of their expressions, denoted

by R, was calculated as

R ¼
Pm

i¼1 ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 ðxi � �xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 ðyi � �yÞ2

q : ð2:1Þ

The hypotheses tested by Pearson’s test are

H0 : r ¼ 0 and Ha : r = 0;

where r represents Pearson’s population correlation coefficient.

A positive correlation coefficient indicates that expression levels

of the two genes increase or decrease together, whereas a nega-

tive correlation coefficient indicates that increased expression of

one gene correlates with decreased expression of the other.

After the multiple testing was corrected with a false discovery

rate (FDR) [32] of less than 5%, a significantly positively (or nega-

tively) correlated gene pair was referred to as a positively (or

negatively) associated gene pair.

For a given dataset, all of the measured genes annotated in

the KEGG pathways were considered as the background genes.

Then, using the binomial distribution model, we tested whether

the gene pairs with functional links in the KEGG pathways

were more likely to have positively (or negatively) correlated

expression levels than background gene pairs that were ran-

domly extracted from the background genes. The number of

the background gene pairs (N ) was calculated by using the

following formula:

N ¼ n2 � n
2

; ð2:2Þ

where n represents the number of the background genes. If the

null hypothesis that the frequency of positively (or negatively)

associated gene pairs among the gene pairs with functional

links of a particular type equals to the background frequency

was true, then the probability of observing at least M1 positively

(or negatively) associated pairs by chance from M gene pairs

with functional links of a particular type could be calculated

by the following cumulative binomial distribution model:

P ¼
XM
i¼M1

M
i

� �
ðPeÞið1� PeÞM�i; ð2:3Þ

where
M
i

� �
is calculated as

M
i

� �
¼ M!

i!ðM� iÞ! ð2:4Þ

and Pe represents the background frequency of positively associ-

ated gene pairs (Pe1
) (or negatively associated gene pairs (Pe2

)).

Let N1 represent the number of positively (or negatively) associ-

ated gene pairs among the N background gene pairs, then Pe1

(or Pe2
) was calculated as

Pe1
ðor Pe2

Þ ¼ N1

N
: ð2:5Þ
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Figure 1. Different types of functional links between genes in the KEGG database.
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If the p-value , 0.05, we rejected the null hypothesis and

accepted the alternative hypothesis that the frequency of posi-

tively (or negatively) associated gene pairs among the gene

pairs with functional links of a particular type is higher than

the background frequency.

2.4. Imbalance between the up- and downregulated
genes in pathways

For microarray data, the significance analysis of microarrays

(SAM) method [33] was used to identify DE genes with an FDR

[32] less than 5%. In a dataset, a DE gene was considered upregu-

lated if its d(i) value outputted by SAM, representing its relative

difference of expression between the tumour and normal samples,

was larger than zero. A DE gene was considered downregulated

if its d(i) value was smaller than zero. For RNA-seq data, differen-

tial expression of a gene was assessed by the exactTest method of

the edgeR package [31] with an FDR [32] less than 5%. A DE

gene was considered upregulated if its logFC value outputted by

exactTest, representing the log fold change of expression in

tumour versus normal samples, was larger than zero. A DE gene

was considered downregulated if its logFC value was smaller

than zero. A DE gene was either upregulated (henceforth termed

an upregulated gene) or downregulated (henceforth termed a

downregulated gene).

For a pathway, the degree of imbalance between the up- and

downregulated genes was defined as the absolute difference

between the numbers of the up- and downregulated genes divided

by the number of all of the DE genes in this pathway. Let

xi represent the degree of imbalance between the up- and

downregulated genes in the ith pathway, which was calculated as

xi ¼
jni1 � ni2 j
ni1 þ ni2

; ð2:6Þ

where ni1 and ni2 represent the numbers of up- and downregulated

genes in the ith pathway, respectively. Let yi represent the fre-

quency of positively associated gene pairs among all of the

significant gene pairs in the ith pathway, which was calculated by

yi ¼
mi1

Ni
; ð2:7Þ
where mi1 represents the number of positively associated gene

pairs and Ni represents the number of all significantly correlated

gene pairs in the ith pathway. Then, using the Spearman rank cor-

relation test, we analysed the correlation between the frequencies

of positively associated gene pairs among all of the significant

gene pairs in the pathways and the degrees of imbalance between

the up- and downregulated genes for the pathways. Suppose there

were p pathways. Then the degrees of imbalance for all of the

p pathways could be represented by X ¼ ðx1; x2; . . . ; xpÞ; and

the frequencies of positively associated gene pairs in all of the

p pathways could be represented by Y ¼ ðy1; y2; . . . ; ypÞ: Convert-

ing the p raw values xi, yi to ranks Xi, Yi, the Spearman’s coefficient

of rank correlation, denoted by Rs, was calculated as

Rs ¼
Pp

i¼1 ðXi � �XÞðYi � �YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i¼1 ðXi � �XÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i¼1 ðYi � �YÞ2

q : ð2:8Þ

Let rs represent Spearman’s population correlation coefficient,

then the hypotheses tested by the Spearman rank test are

H0 : rs � 0 and Ha : rs . 0:

This is a one-sided test testing whether a high frequency of the posi-

tively associated gene pairs could lead to a high degree of imbalance

between the up- and downregulated genes. A p-value , 0.05 was

considered significant.

Fisher’s exact test was used to assess the significance of

the imbalance between the up- and downregulated genes in a

pathway by evaluating whether the ratio of the number of upregu-

lated genes to the number of downregulated genes in the pathway

was significantly different from that in the background. To do

this, we tested the null hypothesis that the ratios of numbers of

the up- to downregulated genes in a particular pathway and

in the background are equal, against the alternative hypothesis

that the two ratios are unequal. Considering that the DE genes in

many cancer types might not have balanced upward and down-

ward expression level changes [23,34], the ratio of numbers of

the up- to downregulated genes in the background was used

instead of 0.5 which indicates that the numbers of up- and down-

regulated genes are approximately equal in a disease. The

imbalance between the up- and downregulated genes in a path-

way was considered significant if the Fisher’s exact p-value , 0.05.
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2.5. Enrichment analyses based on Kyoto Encyclopaedia
of Genes and Genomes

For each dataset, three interesting gene lists were generated,

namely the all-DE gene list including both up- and downregulated

genes, up-DE gene list including upregulated genes and down-DE

gene list including downregulated genes. If k genes are identified

as interesting genes from n genes in a dataset and x of them

are annotated in a pathway with m genes, then the probability of

observing at least x genes in this pathway by chance can be appro-

priately modelled by the cumulative hypergeometric distribution

model as follows:

P ¼ 1�
Xx�1

i¼0

m
i

� �
n�m
k � i

� �

n
k

� � : ð2:9Þ

The hypergeometric distribution tested the null hypothesis

that the frequency of interesting genes in a pathway is equal to

the frequency of interesting genes in the background genes

against the alternative hypothesis that the frequency is higher

in the pathway than in the background. Thus, we used the

one-sided test. The significant pathways were identified after

multiple testing adjustments with an FDR [35] less than 5%.

For each dataset, to test whether the increased number of the

significant pathways detected by analysing the up- and down-

regulated genes separately could be observed by random chance,

we did random experiments by randomly assigning all-DE

genes into the up- and downregulated gene lists for the enrich-

ment analysis of pathways. First, for each dataset, all-DE genes

were randomly divided into sublist1 with the same length as

the up-DE gene list and sublist2 with the same length as the

down-DE gene list. Then, we used these two randomized sublists

to perform enrichment analysis separately and counted the total

number of the detected significant pathways. This procedure was

repeated 10 000 times. The p-value was defined as the percentage

of the random experiments in each of which the total number of

detected pathways was not less than the observed number of

pathways detected by the all-DE strategy (or the separate-DE

strategy) in the 10 000 random experiments.

Multiple datasets were used to assess the reproducibility of a

significant pathway detected from one dataset. As we previously

defined [36], the probability of observing the enrichment p-values

of a pathway smaller than 0.05 in at least k of n datasets by

chance could be modelled by the cumulative binomial distribution

model as follows:

P ¼ 1�
Xk�1

i¼0

n
i

� �
p0

ið1� p0Þn�i; ð2:10Þ

where p0 was estimated using the cumulative uniform distribution

model, based on the assumption that the enrichment p-values

follow a uniform distribution, i.e. every enrichment p-value has

an equal probability to occur between zero and one. A pathway

was defined as a non-randomly reproducible pathway across

different studies if p-value , 0.05 [36].

2.6. Enrichment analyses based on Gene Ontology
We used the GO-function algorithm [3], which is based on the

cumulative hypergeometric distribution model, to detect GO

terms that were significantly enriched for the genes of interest

from each dataset. The significant GO terms were identified

after multiple testing adjustments with an FDR [35] less than 5%.

We also compared the two strategies of the singular enrich-

ment analysis of pathways using another five commonly

applied singular enrichment tools including DAVID, GoMiner,

Onto-express, BINGO and GOseq, which calculate the enrich-

ment p-values using slightly different statistical models as
described in the electronic supplementary material file S1, table

S1. As only DAVID and GOseq are applicable to KEGG, we ana-

lysed them based on both GO and KEGG. The other tools were

analysed based only on GO. The adjusted p-values were calcu-

lated by using multiple testing adjustments with an FDR , 5%.
3. Results
3.1. Positively correlated expression of functionally

linked genes
First, we analysed the correlated expression patterns of gene

pairs with functional links in KEGG pathways without dis-

tinguishing which type of functional links they possessed.

In all five datasets, we observed more positively associated

gene pairs than negatively associated gene pairs among

all gene pairs with functional links in the KEGG pathways

(table 2). Using the binomial distribution model (see Material

and methods), we found that it was unlikely to observe by

chance the number of positive correlations among the gene

pairs with functional links, whereas the number of negative

correlations could be expected by chance for gene pairs ran-

domly extracted from the background (table 2). For example,

in the breast cancer (BC) dataset, among the 15 227 gene pairs

with functional links in the KEGG pathways that showed

significantly correlated expression levels (FDR adjusted

p-value , 0.05, Pearson’s correlation test), 64.7% (9854) were

positively associated gene pairs, significantly more than what

could be expected by chance ( p-value , 2.2 � 10216, binomial

test); whereas 35.3% (5373) were negatively associated gene

pairs, the number of which could be purely expected by

chance ( p-value ¼ 1, binomial test). The frequencies (Pe1
and

Pe2
) for positively and negatively associated gene pairs in the

background were listed in the electronic supplementary

material file S1, table S2.

We then examined the expression correlations of gene pairs

with functional links of each particular type. As expected, in all

five datasets, the gene pairs with activation links were more

likely to exhibit positively correlated than negatively correlated

expression levels (table 2). Similarly, the gene pairs with com-

pound links and binding/association links were also more

likely to have positively correlated than negatively correlated

expression levels, respectively (table 2). These three types of

functional links covered the majority (89%) of the gene pairs

with functional links in the KEGG pathways. Similar results

were found for the gene pairs with the other eight types

of functional links (see electronic supplementary material

file S1, table S3). Notably, our results showed that the gene

pairs with inhibition links also tended to exhibit positively

correlated expression levels (see electronic supplementary

material file S1, table S3), raising doubt on the existing assump-

tion that inhibition links tend to cause negatively correlated

expression levels [37,38].
3.2. Imbalance between the up- and downregulated
genes in disease-associated pathways

As described above, gene pairs with functional links in

KEGG pathways tended to exhibit positively correlated gene

expression levels. As a pathway is a collection of genes closely

connected by functional links, it tends to include more posi-

tively associated than negatively associated gene pairs. As the



Table 2. Correlated expression patterns of gene pairs with various types of functional links. Abbreviations are same as in figure 2.

dataset link positiveb negativec P1
d P2

e

BC all (30263)a 9854 5373 ,2.2 � 10216 1

activation (10125) 3370 1759 ,2.2 � 10216 1

binding/association (4078) 1521 634 ,2.2 � 10216 1

compound (12911) 3919 2255 ,2.2 � 10216 1

CRA all (30263) 7138 4042 ,2.2 � 10216 1

activation (10125) 2369 1327 ,2.2 � 10216 1

binding/association (4078) 1189 420 ,2.2 � 10216 1

compound (12911) 2888 1780 ,2.2 � 10216 1

GC all (30263) 6735 3311 ,2.2 � 10216 1

activation (10125) 2149 1142 ,2.2 � 10216 0.99

binding/association (4078) 1148 353 ,2.2 � 10216 1

compound (12911) 2717 1409 ,2.2 � 10216 0.99

KIRC all (33367) 21 979 1010 ,2.2 � 10216 0.99

activation (10835) 7163 297 ,2.2 � 10216 0.99

binding/association (4373) 3163 103 ,2.2 � 10216 0.99

compound (14563) 9152 507 ,2.2 � 10216 0.78

LUAD all (33367) 19 305 182 ,2.2 � 10216 0.99

activation (10835) 6197 39 ,2.2 � 10216 0.99

binding/association (4373) 2731 25 ,2.2 � 10216 0.88

compound (14563) 8250 93 ,2.2 � 10216 0.86
aThe number of the specific link.
bThe number of positively associated gene pairs.
cThe number of negatively associated gene pairs.
dThe binomial p-value for positively associated gene pairs.
eThe binomial p-value for negatively associated gene pairs.
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positive correlation of expression between two genes in all the

tumour and normal samples indicates that their expressions

tend to increase or decrease simultaneously [39], the genes in

a pathway tend to show similar expression changes (up- or

downregulation), potentially leading to an imbalance between

the up- and downregulated genes in the pathway disturbed

in a disease. To test this inference, we calculated the correla-

tion between the frequencies of the positively associated gene

pairs and the degrees of imbalance between the up- and down-

regulated genes in the pathways for each dataset. In the

BC dataset, the degrees of imbalance increased as the frequen-

cies of positively associated gene pairs increased ( p-value ,

4.32� 1029, Spearman’s rank correlation test); a similar

tendency was observed for the colorectal adenomas (CRA),

gastric cancer (GC), lung adenocarcinoma (LUAD) and

kidney renal clear cell carcinoma (KIRC) datasets, respectively

( p-value , 0.05, Spearman’s rank correlation test; see electronic

supplementary material file S1, table S4).

The imbalance between the up- and downregulated genes

in the pathways disturbed in a disease could influence the

power of the singular enrichment analysis of pathways. For a

dataset, suppose that the n background genes include n1 upre-

gulated genes and n2 downregulated genes. Then the expected

frequencies of the up- and downregulated genes observed in a

pathway by chance could be estimated by the background fre-

quency as q1 ¼ n1/n and q2 ¼ n2/n, respectively. The expected

frequency of all of the DE genes observed in this pathway by
chance could be estimated by the background frequency as

q ¼ (n1 þ n2)/n ¼ q1 þ q2. For a pathway, the observed fre-

quency ( f ) of all of the DE genes could also be divided into

two parts, f ¼ f1 þ f2, where f1 and f2 represent the observed fre-

quencies of the up- and downregulated genes, respectively.

When f1 is considerably larger (or smaller) than q1, the

observed frequency ( f ) of all-DE genes might not be signifi-

cantly different from q when f2 is smaller (or larger) than q2.

In this situation, this pathway might not be detected as signifi-

cant in an analysis that considered all of the DE genes together.

This suggests that the power to detect significant pathways

could be reduced in the presence of the imbalance between

the up- and downregulated genes in pathways. Below, we

numerically showed that the number of detecting significant

pathways could be greatly reduced through the all-DE strategy.
3.3. Significant Kyoto Encyclopaedia of Genes and
Genomes pathways and Gene Ontology terms
detected with different gene lists

For each dataset, three interesting gene lists, namely the all-

DE gene list, up-DE gene list and down-DE gene list, were

analysed for the detection of significant KEGG pathways by

employing the cumulative hypergeometric distribution test

[9]. In all of the microarray datasets, at the same FDR control

level of 5%, the separate-DE strategy produced much more
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Figure 2. Number of significant KEGG pathways for five tumour datasets.
(a) Venn diagrams for the number of significant KEGG pathways detected by
analysing the all-DE, up-DE and down-DE gene lists from the three microarray
datasets. (b) Venn diagrams for the number of significant KEGG pathways
detected by analysing the all-DE, up-DE and down-DE gene lists from the
two RNA-seq datasets. BC denotes breast cancer; CRA denotes colorectal adeno-
mas; GC denotes gastric cancer; KIRC denotes kidney renal clear cell carcinoma;
LUAD denotes lung adenocarcinoma. (Online version in colour.)
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significant pathways than the all-DE strategy (figure 2a).

Extremely, in the BC dataset, only one pathway was detected

with an FDR , 5% by the all-DE strategy, while a total of 20

pathways were detected by the separate-DE strategy at the

same FDR control level. Similar results were observed for

the RNA-seq datasets. As shown in figure 2b, in the LUAD

dataset, at the same FDR control level of 5%, separately ana-

lysing up- and downregulated genes detected 18 and 26

significant pathways, respectively, in contrast to four signifi-

cant pathways detected by analysing all of the DE genes

together. In the KIRC dataset, 30, 27 and 24 pathways were

detected by analysing up-DE, down-DE and all-DE gene

lists, respectively. The significant KEGG pathways detected

by analysing all-DE, up-DE and down-DE gene lists for the

five datasets were listed in the electronic supplementary

material, file S2.

Then, we examined whether the numbers of up- and down-

regulated genes in the significant pathways detected by the

separate-DE strategy but missed by the all-DE strategy were

imbalanced. As shown in figure 3, in all five datasets, the

numbers of up- and downregulated genes in all of the signifi-

cant pathways detected by the separate-DE strategy but

missed by the all-DE strategy were significantly imbalanced

(all p-value , 0.05, Fisher’s exact test), and many of these

pathways contained only up- or downregulated genes. To test

whether the increased number of the significant pathways

detected by the separate-DE strategy could be observed by

random chance, we conducted experiments by randomly

assigning all-DE genes into the up- and downregulated gene

lists for the enrichment analysis of pathways (see Material and

methods). Results of the random experiments for each dataset

showed that, without the imbalance between the up- and down-

regulated genes in pathways, the total number of significant

pathways detected by separately analysing two randomly

divided DE gene sublists was not more but significantly fewer

than that by applying the all-DE strategy ( p-value , 0.05,
electronic supplementary material file S1, table S5) in all

datasets except the BC and much fewer than that by applying

the separate-DE strategy (all p-value , 0.05, electronic sup-

plementary material file S1, table S5) in all datasets. The

p-value in the BC dataset was not significant but tended

to be significant ( p-value¼ 0.0961, electronic supplementary

material file S1, table S5), probably because the number of

significant pathways detected by the all-DE strategy observed

in the real data was only one. These results indicated that the

increased number of significant pathways identified by the

separate-DE strategy resulted from the imbalance between the

up- and downregulated genes in pathways.

One way to evaluate whether the significant pathways

detected from one dataset are really relevant to the pheno-

type is to assess their reproducibility in multiple datasets

[36]. As an example, we evaluated the reproducibility of the

significant pathways detected in the BC dataset using another

five datasets collected from GEO (see electronic supplemen-

tary material file S1, table S6). According to the binomial

test (see Material and methods), the probability of observing

the enrichment p-values of a pathway smaller than 0.05 by

chance in at least two of five datasets is 2.26 � 1022, and

thus it can be defined as a non-randomly reproducible path-

way across different studies. In the BC dataset, 19 significant

pathways were detected by the separate-DE strategy but

missed by the all-DE strategy, among which 16 had the

enrichment p-values smaller than 0.05 in at least two of

the additional five datasets. The only one pathway detected

by the all-DE strategy was also non-randomly reproducible

in the additional five datasets. This pathway was also

detected in the BC dataset and non-randomly reproducible

in the additional five datasets by the separate-DE strategy.

As another example, in the GC dataset, 32 out of the 36 sig-

nificant pathways detected by the separate-DE strategy but

missed by the all-DE strategy had the enrichment p-values

smaller than 0.05 in at least two of another five datasets

(see electronic supplementary material file S1, table S6). For

the five significant pathways detected by the all-DE strategy,

four were non-randomly reproducible across the additional

five datasets. These five pathways were also detected by the

separate-DE strategy in the GC dataset and all of them

were non-randomly reproducible in the additional five data-

sets. As a non-randomly reproducible pathway is more likely

to be really disturbed by some conditions relevant to the

phenotype, these results suggested that the separate-DE strat-

egy could detect more phenotype-related pathways than the

all-DE strategy could.

We were able to find evidence of biological relevance for

some of the pathways that were detected by the separate-DE

but missed by the all-DE strategy. For example, in the CRA

dataset, the focal adhesion pathway was significantly

enriched for downregulated genes (FDR adjusted p-value ¼

1.47 � 1023); the observed frequency of the downregulated

genes in focal adhesion was 0.41, whereas the frequency in

the background was 0.27. However, this pathway was not

detected as significant when analysing all-DE genes together

(FDR adjusted p-value . 0.05), because the observed fre-

quency of all of the DE genes in this pathway was 0.61

compared with the background frequency of 0.63. The focal

adhesion pathway is a canonical oncogenic pathway that is

involved in cell–extracellular matrix contact and plays an

essential role in cell attachment, motility, proliferation, differ-

entiation, survival and the regulation of gene expression [40].
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Figure 3. Number of up- and downregulated genes in significant KEGG pathways. Only pathways that are detected as significant by analysing the up- or down-
regulated genes but missed by analysing all of the DE genes together are plotted on the x-axis. For each dataset, the bar plot shows the gene number in each
pathway in the left y-axis. The corresponding imbalance degree of each pathway represented by filled diamond is shown in the right y-axis. The pathways detected
by analysis of the upregulated genes are shown on the left of the vertical line, and the pathways detected by analysis of the downregulated genes are shown on the
right of the vertical line. Abbreviations are same as in figure 2. (Online version in colour.)
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As another example, in the GC dataset, the p53 signalling

pathway was found to be enriched for upregulated genes

(FDR adjusted p-value ¼ 1.78 � 1022); the observed fre-

quency of the upregulated genes in this pathway was 0.59,

while the frequency in the background was only 0.37. How-

ever, this pathway was not detected as significant when all

of the DE genes were analysed together (FDR adjusted

p-value . 0.05), as the observed frequency of all-DE genes

in this pathway was 0.68 and the background frequency

was 0.62. It is well known that the activation of the p53 pathway

can initiate DNA repair, cell cycle arrest, cellular senescence

or apoptosis, which is related to the suppression of tumour

formation and response to many types of cancer therapy

[41]. As the third example, in the LUAD dataset, the JAK/

STAT signalling pathway was found to be enriched for down-

regulated genes (FDR adjusted p-value ¼ 3.22 � 1022), as the

observed frequency of the downregulated genes in this path-

way was 0.31 and the frequency in the background was 0.20.

When analysing all of the DE genes together, it was not

detected as significant (FDR adjusted p-value . 0.05), as the

observed frequency of all-DE genes in this pathway was

0.52 and the background frequency was 0.55. The dys-

regulation of the JAK/STAT signalling pathway has been

implicated in malignant progression, including lung cancer

[42]. The background frequency and the observed frequency

for each significant KEGG pathway can be found in the

electronic supplementary material, file S2.

Similar enrichment results were observed using GO-

function based on GO biological process terms for all five

datasets (table 3). For example, in the BC dataset, with an

FDR , 5%, only 22 significant GO terms were detected by

the all-DE strategy, whereas a total of 86 GO terms were
detected as significant when the up- and downregulated

genes were analysed separately, consistent with the tendency

observed in the analysis based on the KEGG pathways. The

significantly enriched GO terms detected by analysing all-

DE, up-DE and down-DE gene lists for the five datasets

were listed in the electronic supplementary material, file S3.

Notably, we found that, when performing the enrichment

analysis based on KEGG pathways, with the same FDR control,

all significant pathways detected by the all-DE strategy were

also found by the separate-DE strategy in each of the micro-

array datasets (figure 2a). However, in the RNA-seq datasets,

not all pathways detected by analysing all of the DE genes

together were found by analysing the up- or downregulated

genes separately at the same FDR level (figure 2b). Neverthe-

less, all of them could be detected by analysing the up- or

downregulated genes with an un-adjusted p-value , 0.05.

Similarly, the enrichment analysis based on GO showed that

some of the GO terms detected by the all-DE strategy were

also not found by the separate-DE strategy at the same FDR

level but could be detected with an un-adjusted p-value

, 0.05 (table 3). This result was probably owing to the loss of

power in the procedure of multiple test adjustments. By con-

trast, not all of the KEGG pathways and GO terms detected

by the separate-DE strategy could be found by the all-DE strat-

egy even with an un-adjusted p-value , 0.05. Only 12, 22, 16,

38 and 19 pathways detected by the separate-DE strategy

were detected by the all-DE strategy with an un-adjusted

p-value , 0.05 for BC, CRA, GC, KIRC and LUAD dataset,

respectively. For GO terms, the numbers were 63, 111, 77, 67

and 77, respectively (table 3).

Five other commonly applied enrichment tools, with their

default parameter settings, were also analysed. The results



Table 3. Numbers of significant GO terms detected by using the separate-DE strategy and all-DE strategy. Abbreviations are same as in figure 2.

tumour type up-DEa down-DEb all-DEc FDRd p-value1
e p-value2

f

BC 44 42 22 11 63 22

CRA 101 48 54 35 111 54

GC 86 31 38 24 77 38

KIRC 53 29 62 16 67 62

LUAD 29 79 39 14 77 39
aThe number of GO terms detected by analysing the upregulated genes.
bThe number of GO terms detected by analysing the downregulated genes.
cThe number of GO terms detected by analysing all-DE genes.
dThe number of overlapping GO terms detected by both the separate-DE strategy and all-DE strategy at the same FDR level.
eThe number of GO terms detected by the separate-DE strategy with an FDR , 0.05 that were also detected by the all-DE strategy with a p-value , 0.05.
fThe number of GO terms detected by the all-DE strategy with an FDR , 0.05 that were also detected by the separate-DE strategy with a p-value , 0.05.

Table 4. Number of significant pathways/GO terms detected by using the separate-DE and all-DE strategies for five other enrichment tools. Abbreviations are
same as in figure 2.

enrichment tool name annotations disease type up-DEa down-DEb all-DEc

DAVID GO BC 50 38 11

CRA 130 55 56

GC 124 34 45

KIRC 94 31 65

LUAD 28 85 29

KEGG BC 4 2 1

CRA 14 7 3

GC 10 6 3

KIRC 13 10 4

LUAD 6 4 1

GoMiner GO BC 196 372 156

CRA 392 455 270

GC 356 111 111

KIRC 460 119 408

LUAD 121 450 250

Onto-Express GO BC 269 289 238

CRA 559 364 336

GC 425 315 115

KIRC 491 277 340

LUAD 202 468 268

BINGO GO BC 86 226 48

CRA 220 195 97

GC 257 66 65

KIRC 141 79 36

LUAD 43 353 33

GOseq GO KIRC 219 164 219

LUAD 114 350 220

KEGG KIRC 26 27 23

LUAD 12 13 1
aThe number of pathways/GO terms detected by analysing the upregulated genes.
bThe number of pathways/GO terms detected by analysing the downregulated genes.
cThe number of pathways/GO terms detected by analysing all-DE genes.
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showed that the separate-DE strategy also produced much

more significant KEGG pathways/GO terms than the all-

DE strategy with an FDR of 5% in all five datasets (table 4).
oyalsocietypublishing.org
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4. Discussion
Our results revealed that gene pairs with various types of

functional links defined in KEGG pathways tend to have

positively correlated expression levels; thus, the genes in a

pathway that is disturbed in tumour cells tend to be up- or

downregulated similarly owing to their close functional

links. This analysis provided the biological foundation for

the separation of the up- and downregulated genes in the

singular enrichment analysis of pathways. Then, we revealed

that the imbalance between the up- and downregulated genes

in pathways could greatly reduce the power to detect signifi-

cant pathways by analysing all of the DE genes together, as

demonstrated by the results of five tumour datasets. There-

fore, singular enrichment analysis of pathways through the

separate-DE strategy is both reasonable and powerful, even

though currently the all-DE strategy is still widely applied.

Notably, many researchers often refer to the KEGG path-

ways that are enriched for up- or downregulated genes as

activating or inhibiting pathways [19,43]. However, considering

a KEGG pathway as an activating or inhibiting pathway based

only on its enrichment for up- or downregulated genes may be

inappropriate [44]. For example, though the focal adhesion

pathway was significantly enriched for downregulated genes,

it also involved many upregulated genes, and may be activated

in tumour cells to facilitate the invasion and migration of

tumour cells [45]. Further, as the posttranslational modifications

could inhibit or activate the functions of proteins [21,38,44,46],

they should be considered in determining the activation or inhi-

bition of a perturbed pathway. Thus, interpreting the biological

meaning of an identified pathway requires domain-dependent

knowledge and further experimental data.

Generally, we should keep in mind the limitation of the

enrichment analysis of pathways: a statistically ‘significant’

pathway only indicates that this pathway is disturbed non-

randomly. In fact, a pathway is deemed statistically signifi-

cant if an event observed for this pathway, such as the

frequency of interesting genes in this pathway as observed

in the singular enrichment analysis [3] or an enrichment

score for this pathway as observed in the Gene Set Enrich-

ment Analysis (GSEA) [47], could not be expected to occur

just by chance. As for the biological event(s) that may lead

to the occurrence of this non-random statistical observation,

there are various possibilities such as the dysfunction of

one or several specific regulator genes of the pathway by

methylation or mutation changes or the deregulation of one

or several microRNAs targeting genes in this pathway. In

other words, a pathway found to be statistically significant

does not directly indicate what biological event(s) has led

to its statistical significance and the underlying specific

biological implications require generation of biological

hypotheses for wet laboratory experiment validation. Thus,

there are no any predefined ‘gold standards’ for biological

validation of the pathways found to be statistically significant

in real data. As the statistical significance of a pathway

detected by an enrichment analysis tool is self-proved at a

predefined FDR level, the more significant pathways an

enrichment tool can find, the higher power it has. In addition,
to demonstrate that the significant pathways detected by the

separate-DE strategy are phenotype related, we first illus-

trated that the increased number of significant pathways

detected by the separate-DE strategy could not be observed

by random chance using a randomization technique. Then,

using multiple datasets for breast and gastric tumours

respectively, as examples, we showed that most of the signifi-

cant pathways were non-randomly reproducible across

different studies. Finally, for some of the pathways that

were detected by applying the separate-DE strategy but

missed by applying the all-DE strategy, we found evidences

from the published literature to support that they could be

related to the corresponding phenotype. Though simulation

studies could be applied to evaluate the performance of

enrichment analysis tools by setting which pathways are dis-

turbed in what ways in advance [48], simulation results are

usually heavily dependent on the models for generating the

simulated data, risking bias in producing data preferentially

favourable to a specific hypothesis of the data distribution [3].

Therefore, in this work, we did not present the result of a simu-

lation experiment that numerically demonstrated that the

separate-DE strategy is more powerful than the all-DE strategy

when imbalance between the up- and downregulated genes

exists in the disturbed pathways.

We suggested that singular enrichment analysis of pathways

through a separate-DE strategy is more powerful for finding sig-

nificant functional pathways documented in the KEGG or GO

database. The same suggestion should be applicable to other

gene sets if genes in them tend to exhibit positively correlated

expression by any transcriptional or non-transcriptional

mechanisms, which could introduce the imbalance between

the up- and downregulated genes between different pheno-

types. For example, the MSigDB database [49] provides gene

sets besides the KEGG pathways (C2 gene sets) and GO terms

(C5 gene sets), including sets of target genes corresponding to

different microRNAs or transcription factors (C3 gene sets),

sets of co-expressed genes (C4 gene sets), sets of genes represent-

ing signatures of cellular pathways that are often deregulated in

cancer (C6 gene set), and sets of genes representing immunolo-

gic signatures under specific conditions (C7 gene sets). These

kinds of gene sets are already known to be co-regulated under

specific conditions, and thus could have positively correlated

expression. For the C1 gene sets containing genes located in

the same chromosome or cytogenetic band, genes in them

could also tend to be simultaneously upregulated (or down-

regulated) by chromosomal amplifications (or deletions) or by

epigenetic mechanisms. These five types of gene sets are all

likely to have imbalanced numbers of up- and downregulated

genes under a specific condition, as numerically demonstrated

in our analysis using the five tumour datasets (see electronic

supplementary material file S1, table S7). Briefly, in all datasets,

the separate-DE strategy detected more significant gene sets

than the all-DE strategy and at least 88.89% of the significant

gene sets detected by the separate-DE strategy but missed by

the all-DE strategy exhibited significantly imbalanced numbers

of up- and downregulated genes according to the same evalu-

ation for KEGG pathway analysis ( p-value , 0.05, Fisher’s

exact test, electronic supplementary material file S1, table S7).

The singular enrichment analysis requires a list of user-

preselected interesting genes. Therefore, enrichment tools of

this class are also called the threshold-dependent tools

[50]. By contrast, another class of tools such as GSEA are

threshold-free, which take all genes from a microarray
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experiment without a cut-off for defining DE genes. They are

efficient in finding categories containing high frequencies of

lowly DE genes, while the singular enrichment tools can be

more powerful in detecting categories containing low fre-

quencies of highly DE genes [51]. For example, in the GC

dataset, based on KEGG pathways, the singular enrichment

analysis of pathways using hypergeometric distribution

detected 28 pathways by the separate-DE strategy, among

which 19 pathways were not found by using GSEA. By con-

trast, five out of 14 pathways detected by GSEA were missed

by the hypergeometric distribution test. This result validated

that these two main streams of enrichment analysis methods

would be mutually complementary [50].

Finally, we note that a similar problem also exists for the

singular enrichment analysis of pathways using other types

of ‘omics’ data. For example, for genome-wide methylation

data, our previous study revealed that the genes differentially

hypermethylated or hypomethylated between the cancer
samples and normal controls tended to be enriched in dis-

tinct functions and that many functional categories were

significantly enriched for hypermethylated (or hypomethy-

lated) genes and simultaneously significantly depleted of

hypomethylated (or hypermethylated) genes [52]. Thus, the

hypermethylated and hypomethylated genes in cancer gen-

omes should also be separately analysed for the singular

enrichment analysis of pathways. We propose that efficient

pathway analyses should consider more details of the bio-

logical properties of the interesting genes under study

because of their fundamental importance in determining

which functional categories will be identified.
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