
rsif.royalsocietypublishing.org
Research
Cite this article: Kolodny O, Edelman S,

Lotem A. 2014 The evolution of continuous

learning of the structure of the environment.

J. R. Soc. Interface 11: 20131091.

http://dx.doi.org/10.1098/rsif.2013.1091
Received: 23 November 2013

Accepted: 5 December 2013
Subject Areas:
computational biology

Keywords:
evolution of cognition, foraging theory,

decision-making, representation,

statistical learning
Author for correspondence:
Oren Kolodny

e-mail: orenkolodny@gmail.com
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsif.2013.1091 or

via http://rsif.royalsocietypublishing.org.
& 2014 The Author(s) Published by the Royal Society. All rights reserved.
The evolution of continuous learning of
the structure of the environment

Oren Kolodny1, Shimon Edelman2 and Arnon Lotem1

1Faculty of Life Sciences, Department of Zoology, Tel-Aviv University, Tel-Aviv 69978, Israel
2Department of Psychology, Cornell University, Ithaca, NY 14853, USA

Continuous, ‘always on’, learning of structure from a stream of data is studied

mainly in the fields of machine learning or language acquisition, but its evol-

utionary roots may go back to the first organisms that were internally

motivated to learn and represent their environment. Here, we study under

what conditions such continuous learning (CL) may be more adaptive than

simple reinforcement learning and examine how it could have evolved from

the same basic associative elements. We use agent-based computer simu-

lations to compare three learning strategies: simple reinforcement learning;

reinforcement learning with chaining (RL-chain) and CL that applies the

same associative mechanisms used by the other strategies, but also seeks

statistical regularities in the relations among all items in the environment,

regardless of the initial association with food. We show that a sufficiently

structured environment favours the evolution of both RL-chain and CL and

that CL outperforms the other strategies when food is relatively rare and the

time for learning is limited. This advantage of internally motivated CL

stems from its ability to capture statistical patterns in the environment even

before they are associated with food, at which point they immediately

become useful for planning.
1. Introduction
Effective control of behaviour on the part of an animal requires at least a mini-

mal grasp of the structure of the ecological niche in which it is situated. For

many species, the requisite knowledge can be quite sophisticated. Thus, a for-

ager can benefit from a representation of the spatial layout of its range, a

social animal—of the dominance hierarchy in its group, and a tool user—of

the cascading effects of the various actions that the tools afford. While such rep-

resentations are clearly beneficial when fully in place, their acquisition—both

over evolutionary time and in individual learning—presents a problem: inter-

mediate steps in the acquisition process may not be useful and in any case

are not necessarily incrementally reinforced. In this paper, we examine such

learning, in which a learner continuously attempts to learn all regularities in

its environment regardless of their immediate value. We refer to this mode of

learning as continuous, and focus on its relationship with reinforced learning

in the context of a foraging task. We chose to refer to the learning mode of inter-

est as ‘continuous’ because the alternative (‘unreinforced’) would be misleading

in that occasional reinforcement does occur in the tasks that we explore.

In psychology, the intuition behind reinforced learning [1,2] is captured by

Thorndike’s [3] ‘Law of Effect’, which pertains to reinforcement learning as

well as to associative learning, such as classical and operant conditioning. Most

learning models studied by evolutionary biologists and behavioural economists

in the vast fields of game theory and decision-making fall under this rubric

[2,4,5]. However, animals (and especially humans) are likely to use a much

richer representation of their environment than captured by simple ‘n-armed

bandit’ models of reinforcement learning. A richer representation—a causal

model or a cognitive map—can be constructed by reinforcement learning through

backward chaining, where items associated with primary reinforcers can become

secondary reinforcers, with which additional items can be associated in turn. This

process can result in associative chains or networks of secondary reinforcers
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Figure 1. An example of a part of a training set from one of the environments.
Circles (red in online version) emphasize occurrences of the reinforcer ’f ’ ( food).
The learner receives the data as a single continuous linear sequence (illustrated
in the figure as in a text page ordered from left to right, one row after the
other). (Online version in colour.)
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through which the learner can navigate to the primary reinfor-

cer [6–8]. The drawback of using this process for constructing a

world model is that it requires that each item in the chain be

reinforced and turned into a secondary reinforcer before the

next item down the road can be learned.

An alternative to backward chaining is learning the

environment in a non-reinforced fashion. For example,

instead of learning diagnostic features only in the vicinity

of food, an animal may be internally motivated to acquire a

stream of data along its path, from which it can construct a

world model [9]. There is ample evidence for the existence

of such learning in animals, ranging from studies of explora-

tory behaviour in mice and rats [10] to research on play

behaviour in young animals [11–13] and in adult individuals

[14–16]. Young animals, in particular, often show interest in

novel objects, which they can distinguish from dozens of pre-

viously encountered objects without reinforcement [17].

There are also indications that explorative actions are not

random, but directed at uncovering regularities that may be

adaptive [18]. Animals may also be self-motivated to learn

to recognize their social peers or group members and to

acquire information about them [19]. Finally, seldom-

reinforced or non-reinforced, continuous learning (CL) in

the present sense may be involved in some of the most

advanced forms of cognition, such as vocal learning and

language acquisition [20–22], and its mechanisms are becom-

ing a central theme of exploration in machine learning,

psychology and neuroscience (reviewed in [23]).

While CL seems useful, it can also be very costly in terms

of memory and computation. First, it requires focusing on

relevant input while discarding unnecessary information.

Second, the relevant input may take the form of a constant

stream of data whose segmentation and statistical analysis

can be taxing [24]. How could learning mechanisms capable

of addressing these problems [20,25,26] have evolved in the

first place?

In this paper, we study the conditions under which CL is

more adaptive than reinforced learning in the context of

animal foraging and examine how it could have evolved on

top of the basic learning by association. We used agent-based

computer simulations to compare three learning strategies:

local reinforcement learning (LR) that associates environmen-

tal cues with food only if they are experienced in the same

locality as the food; reinforcement learning with chaining
(RL-chain), which supports construction of a world model

through backward chaining; and CL, which uses not only the

same associative mechanisms as the first two strategies, but

also seeks statistical regularities in the relations among all

items in the environment, regardless of initial association

with food. To identify the ecological conditions that favour

the evolution of CL, we tested the three models in foraging

environments differing in their statistical properties. The

CL model described here is based on the same algorithms

elaborated elsewhere for the more complex task of learning

grammatical structure from child-directed speech [20], thus

offering a common framework for studying the evolution of

CL in a wide range of cognitive tasks.
2. Material and methods
In our framework, all three types of learners construct a graph-

based model that represents some properties of the environment.
The learners then use a decision-making procedure to apply this

knowledge to guide foraging, whose outcomes in turn determine

fitness. Depending on the type of learning and on the learning

process, the resulting world model may be as simple as a single

association between a food item and one or more environmental

cues, or as complex as a rich network representing almost all the

elements of the environment and their statistical relationships.

For simplicity, we assume that all the elements that comprise

the simulated environments are stimuli or reinforcers that can

be learned, such as sticks, rocks, leaves, berries or edible insects.

Foraging environments were constructed using Matlab (2012)

scripts, simulations were programmed in Java (using JDK v. 6.0)

and statistical analysis was carried out in JMP v. 10.0.

2.1. The environments
Environments in our simulations are represented by graphs, with

vertices standing for discrete elements—natural objects, such as

rocks or trees; edges denote immediate spatial proximity between

elements. For each type of environment, the structure of the graph

is generated by a set of rules, some of which are stochastic. For

simplicity, we assume that the objects are recognized by learners

with no perceptual errors. Each type of object is denoted by a

letter (‘a’ through ‘z’); the type denoted by ‘f’ represents an exter-

nal reinforcer (food) and is typically rare. In all simulations

described in this paper, the environment was composed of 11

element types, including the food element: fa,b,c,d,e,f,v,w,x,y,zg.
To simplify the simulations, the environments were gener-

ated as linear sequences intended to correspond directly to the

learner’s experience of the encounters with the stimuli rather

than to the (possibly more complex) structure of the world

(figure 1). This allowed us to define the rules governing the struc-

ture of an environment in terms of a matrix of transition

probabilities M, whose entry mij corresponds to the probability

that element i will be followed by element j (see the electronic

supplementary material, tables T1–T11)—in other words, as a

first-order probabilistic Markov chain [27]. The environment in

each simulation run is described by a single such matrix. For

details on the construction of each training set, see §2.3.

We simulated four types of environment:

(1) Uniform environment, in which the transition probabilities

between all types of elements, including food, are identical

(see the electronic supplementary material, table T1).

(2) Environment with cues for finding food, in which the transition

probabilities between all non-food elements are identical,

but some of them (group A: fa,b,c,d,eg) can serve as cues

for the presence of food (i.e. have a non-zero probability of

appearing before food), while all the others (group B:



Figure 2. An example of a part of a training set in a patchy environment. To
emphasize the patchy structure of the environment, elements that belong to
the two groups (group Afa,b,c,d,eg and group Bfv,w,x,y,zg) were under-
lined by a different line style. Circles (red in online version) mark the
occurrences of the reinforcer ‘f ’ ( food). (Online version in colour.)
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Figure 3. An illustration of the structure of patchy environments.
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Figure 4. A schematic of the graph types constructed by each learning
model: (a) LR, (b) RL-chain and (c) CL. Only nodes connected with links
to some other nodes are shown in the figure (although all nodes encountered
are monitored for their frequency of occurrence; see main text). Backward
reinforcement learning (b) operates in phases, marked by different colours.
In the first phase, associations between the predicting elements (cues) and
the primary reinforcer are constructed. In the second phase, these predicting
elements turn into secondary reinforcers and further associations can be
added to them from other elements, and so on for the third and fourth
phases. In the CL (c) the phases (marked with a different set of colours)
may be much faster, occurring whenever data elements are encountered.
Note that all links in (c) which do not involve the primary reinforcer are
highly likely to be constructed before phase 1 of (b) is completed, because
the primary reinforcer is typically rare, while other elements are common.
Thus on completion of phase 1 by the backward chaining learner (b), the
continuous learner (c) would have already constructed a full world model.
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fv,w,x,y,zg) are non-cue elements in that they never occur

before food (see the electronic supplementary material,

table T2). The positive probability of finding an ‘f’ after one

of the cues (‘a’, ‘b’, ‘c’, ‘d’ or ‘e’) was taken from a narrow

gamma distribution with parameters G(100, 225). This choice

of distribution leads to a clear distinction between the two

groups of elements and reasonably low variance over repeated

runs in the overall number of food elements in a training set.

(3) Patchy environment, which is similar to the previous type,

with the exception of being composed of patches: runs of

elements of the same group (A, B). This structure is gener-

ated by setting the within-group transition probability (TP)

to be higher than the between-groups TP. As a result, after

an encounter with the element ‘a’ (from group A), there is

a greater probability of encountering the elements ‘b’, ‘c’,

‘d’, ‘e’, (also from group A) than ‘v’, ‘w’, ‘x’, ‘y’, ‘z’ (from

group B; see figures 2 and 3, and electronic supplementary

material, table T3).

(4) Directed network environment, in which the transition probabil-

ities between any two types of elements may be non-zero and

are generally not equal. The sequential patterns that can

emerge under these conditions are common, for example, in

natural environments with hierarchies of elements, such as a

forest environment where an animal can expect the order:

forest floor! tree trunk! branches! twigs! leaves. We

generated and explored a number of subtypes of the directed

network environment that differed in their level of entropy

and in the rarity of food predictors (see the detailed descrip-

tion in the Results section, and references therein to TP

matrices and illustrations of these various subtypes).

2.2. The learning models
As mentioned earlier, we modelled three types of learning mech-

anisms: LR, RL-chain (henceforth referred to as ‘chaining’) and

CL (figure 4). In all three of them, the learner receives a sequence

of elements, representing a corpus of experience of a certain

foraging environment. From this, the learner constructs an

internal representation, which can then be used to choose

between alternatives in a simulated foraging task. As a baseline,

we used a non-learner model that chooses at random.

2.2.1. Model 1: local reinforcement
In this model, every encounter with an element is registered by

the learner and the element is represented by a node whose

weight increases linearly with each additional encounter. Yet,

an association link between the element and the reinforcer

(food element) is established and receives weight only when
the element occurs immediately before the food element.

The weight of this link increases linearly with every additional

occurrence of that element immediately before the food element.

The result is a simple directed graph with links leading from

the learned elements (that can now be regarded as foraging

cues) to the food element (figure 4a). The weights of the links

represent the number of times each element was experienced

immediately before food during the training period.

To choose between alternatives in a simulated foraging task

(see further details in §2.3), a decision rule is applied according

to which the learner always chooses the element with the highest

food-finding score. This score is calculated in this case as the

weight of the link between the element and the food element,
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divided by that element’s node’s weight in the graph (which

represents its total number of occurrences)

ScoreðxÞ ¼
Wx!f

Wx
: ð2:1Þ

Thus, the score provides a measure of the probability of finding

food after the element is encountered.

2.2.2. Model 2: reinforcement learning with chaining
A learner that uses this model functions initially similar to a

local reinforcement learner, but additionally, once the weight of

a link between an element and the food element crosses some

threshold, that element turns into a secondary reinforcer. From

this point on, links between any other non-food element and

the secondary reinforcer may be established and increase in

weight each time the non-food element occurs immediately

before the secondary reinforcer. For reasons of reliability, a

non-food element can turn into a secondary reinforcement only

if it has occurred at least twice, and only if the score of its link

to food (or to a previously established secondary reinforcement)

crosses a certain threshold. The score of this link is calculated

as described in equation (2.1), representing the probability of

encountering food (or a previously established secondary rein-

forcer) after encountering the element. The score threshold that

must be crossed for an element to become a secondary reinforcer

increases with the distance of this element from the original rein-

forcer (the food element). This setting corresponds to the notion

that the strength of the reinforcement should be the strongest for

the primary reinforcer and should decrease gradually along

the chain (the thresholds were set to 0.004, 0.2, 0.2353, 0.2768,

0.3257, 0.3831, 0.4507, 0.5303 and 0.6239, using the formula

0.2�0.852(d21) to determine all thresholds after the first one, d
being the location of the secondary reinforcer along the chain).

The choice of thresholds and of minimum number of occurrences

for becoming a secondary reinforcer should, in a realistic setting,

be adapted to the typical environment that a learner must learn;

in our simulations, the thresholds were chosen so as to result

in a reasonable backward chaining process. Specifically, the

thresholds were set to a value that would not be too high, pre-

venting any chaining in most simulations runs, nor too low,

rendering the thresholds meaningless (turning all potential can-

didates into secondary reinforcers on the first encounter would

make the backward chaining almost identical to CL—see below).

After the backward chaining process constructs a graph of

nodes and links (figure 4b), it can be used for making foraging

decisions based on the food-finding score of each element. However,

this time the calculation of this score is much more complicated; it

cannot be derived from equation (2.1) because it should represent

the probability of finding food along the entire sequence that fol-

lows the scored element (not only the probability of finding food

in the next step). To assign these scores, we used a method inspired

by the spread of excitation in neural networks. An activation (of

magnitude 1) is injected into the graph at the node representing

the element to be scored. This propagates in the graph along the

directed links. At each node, the activation is multiplied by a

decay factor (0.95) and is distributed among the node’s outgoing

links, in proportion to each link’s relative weight. An activation

that drops below a certain threshold (0.05) stops propagating.

Once all activations have stopped, those that arrived at the primary

reinforcer node (food) are added together, and the sum is assigned

to the initial element as its score. This heuristic forms an estimate of

the probability that a reinforcer (food) will be found in the

sequence of elements following the scored element.

2.2.3. Model 3: continuous learning
A continuous learner creates associations between any two

adjacent elements as these are encountered, without regard to
whether or not they are reinforcers. As in the two previous cases,

the world representation that ensues is a directed graph over

nodes that represent elements in the environment (figure 4c).

The algorithm used to assign a food-finding score to nodes in

the graph is the same excitation spread process as described

above for the chaining model.

It is reasonable to assume that constructing a world model

(either by chaining or by CL) requires more memory and compu-

tation than using simple reinforcement learning. However,

because the magnitude of this cost and its effect on fitness are

not clear, we compared the success of the three learning models

assuming no differential cost in memory or computation. Our

results may therefore set the minimal requirements for chaining

and CL to be more successful than purely local reinforcement

(see Discussion).

2.3. Training and test procedure
In each simulation, a learner was trained on a particular envi-

ronment, and then tested for its foraging success in this

environment. We repeated the simulation 500 times for each

environment type or subtype. For each simulation run, an indepen-

dent set of rules (a TP matrix) that define the environment were

constructed. This was done by populating the TP matrix with ran-

domly drawn TPs, drawn from the proper distribution (see the

Results section for details regarding each environment and

the electronic supplementary material, tables T1–T11 for specific

examples). Using the TP matrix, a training set was generated: an

initial element was chosen at random, and then each successive

element was chosen probabilistically, based on the TPs from the

previous element. Except where noted otherwise, all training sets

were composed of 4000 elements, among which typically between

2 and 7 were food elements (the mean number of food elements

in each training set was 4.5+0.25). A test set prepared for each

simulation run consisted of a large number (2000, unless noted

otherwise) of four-element sequences generated using the same

TP matrix used to generate the training environment.

In each simulation, each learner was provided first with the

training set as input. After training, the learner was presented

with the 2000 test sequences. The learner could only ‘see’ the first

element of each test sequence and had to choose the most promising

1000 sequences based on the food-finding score of the first element.

The success rate of a learner in each simulation was defined as the

total number of food elements that occurred in the sequences it

chose, divided by the total number of food elements that occurred

in the test set (sequences in which the first element happened to

be food were not taken into account and runs in which the entire

test set contained no food elements were also omitted).

We compared the success rates of the three learning models

in relation to each other and in relation to the baseline (random

choice) model. In each simulation, all three learning mechanisms

were trained and tested with copies of the training corpus and

the test set that were drawn from the probability distribution

especially for that simulation. We ran 500 simulations under

each condition (set of parameter values) as described later. The

training corpus and test sets in each simulation were unique,

and thus the statistical analyses we conducted were two-tailed

paired t-tests between each two learners. Unless noted otherwise,

all ‘statistically significant differences’ refer to paired t-tests with

N ¼ 500, d.f. ¼ 498 and p , 0.0001, which remained highly

significant also when controlling for multiple testing.
3. Results
3.1. Uniform environment
As expected, when the environment is uniform, no learner

had an advantage over another learner or over the baseline
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random-choice model (figure 5a). This result confirms that

when there are no cues or other regularities in the environ-

ment that can aid foraging, learning by all three models is

not adaptive. It also confirms that no model has a built-in

advantage or disadvantage owing to some programming

artefacts or other factors unrelated to learning as such. The

results remained the same with a training set of 10 000

characters (see electronic supplementary material, figure S1).

3.2. Environment with cues for finding food
In this environment, all three learners foraged with signifi-

cantly higher efficiency than the random-choice baseline

(paired t-tests, t498 . 5.45, p , 0.0001 in all cases) but no lear-

ner was better than the other (figure 5b). Thus, all three

learners were equally successful, showing no advantage for

constructing a world model through chaining or CL. This

result demonstrates a case where learning is clearly adaptive

but because the only useful regularities in the environment

are local, no further elaboration beyond LR is necessary. We
ran the simulation with a training set of 10 000 elements to

ensure sufficient time for learning, and the results remained

the same (see electronic supplementary material, figure S2).
3.3. Patchy environment
In the patchy environment (figure 5c), all learners outper-

formed the non-learner baseline and there were significant

differences among the three: RL-chain was significantly better

than LR, and CL was significantly better than RL-chain

( p , 0.0001 in all cases, see above).

Recall that in the patchy environment, the elements of

group A (fa,b,c,d,eg) are more likely to lead to food, both

directly, as ‘f’ is more likely to occur after an element of

group A, and indirectly, as elements of each group are reliable

predictors of one another. This helps to explain the present

result: the LR may eventually reach the optimal foraging

rule, after experiencing multiple instances in which each of

the different elements of group A preceded the food element.

If food is rare, this takes a long time. The RL-chain learner is

similarly limited in its first phase of learning, but once some

elements of group A are associated with food, other elements

of this group quickly become secondary reinforcers and can

be used to identify the correct patch even if they had never

occurred immediately before food. This can explain why RL-

chain is more successful than the LR. Finally, the CL is expected

to be the fastest; from the beginning of the training phase, it col-

lects data that allow it to uncover associations between food

and non-food elements, as well as between different non-

food elements. This logic predicts that a longer training

phase, or more frequent food elements, would decrease and

eventually eliminate the difference in success rate among the

learners, which we confirmed through additional simulations

(see the electronic supplementary material, §4).
3.4. Directed network environment
3.4.1. Constructing different subtypes of the directed network

environment
We simulated four subtypes of the directed network environ-

ment. A significant dimension on which these subtypes

differed is the entropy of the network: the variance among

transition probabilities, which determines the predictability

of paths through the network (we use the term ‘entropy’

here informally to refer to a measure of orderliness of a net-

work; see [28]). In a high-entropy network, the probability of

all trajectories of a given length is similar, whereas in a low-

entropy network, certain trajectories are much more likely

than the others.

Another dimension along which the directed graph sub-

types differed is in the frequency of the reliable predictor of

food—the one most likely to turn into a secondary reinforcer.

In nature, not only is the reinforcer itself sometimes rare, but

in many cases its most immediate and reliable predictors are

rare as well (the footprint or the smell of prey, for example).

The four directed network subtypes are illustrated in

figure 6. Concrete examples of each are provided in the

electronic supplementary material as probability matrices

(see electronic supplementary material, tables T5, T7, T8 and

T10). The first subtype, a high-entropy network (figure 6a), was

implemented by allowing all transitional probabilities (TPs)

among non-food elements to differ from one another, by
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(see the electronic supplementary material, figure S4b). See related TP
matrices in the electronic supplementary material, tables T5 and T6.
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randomly drawing them from an exponential distribution (see

the electronic supplementary material, §5.1 for details).

In the second network subtype (figure 6b: high-entropy
network with a bottleneck), we did the same, using an expo-

nential distribution for the TPs, but also determined that

besides the element ‘e’, all non-food elements would have a

zero probability of preceding ‘f’ (food), while the element ‘e’

would have a positive small probability of preceding it, so

that the mean number of ‘f’ occurrences in each training set

would be as before (see the electronic supplementary material,

table T7 for a typical TP matrix example). Thus, ‘e’ was the only

direct predictor of food, but links between all other non-food

elements may be learned in order to navigate to ‘e’. This feature

of the graph is realistic in many real-life foraging tasks, but pre-

cludes high foraging success based on LR alone (because the

number of test sequences where ‘e’ is the first element is, on

average, only around 10%).

To produce a directed network with low entropy (figure 6c),

we applied the same principles described above but also

formed a dominant trajectory among the elements in the TP

matrix. This was done by increasing the probabilities of

moving along the chain: v!w! x! y! z! a! b! c

! d! e to be approximately 100 times greater than the back-

ground TPs in the network (see bold arrows in figure 6c, and

the electronic supplementary material, table T8).

Finally, to produce a low-entropy network with rare predic-
tors of food, we combined the low-entropy condition with a

situation in which ‘e’ and ‘d’, the closest predictors of food,

were also rare (figure 6d ). This was done by dividing all

the TPs leading to ‘d’ and ‘e’ from all other non-food

elements by 75 (before normalizing the TP matrix; see the

electronic supplementary material, table T10 as an example).

3.4.2. Learning performance in high-entropy environments
When the directed graphs representing the environment had

a high entropy, the differences in foraging success among the

three learners were small (figure 7a). Their improvement over

the baseline should be attributed mainly to learning of the
local dependency between elements ‘e’ and ‘f’. The

network-constructing learners (RL-chain and CL) were not

more successful than LR. A possible reason for this is that

although the TPs among elements were different from each

other, and some routes in the network were more likely to

lead to food than others, when entropy is high, even perfect
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knowledge of the TPs allows only limited predictive power.

This explanation is supported by a set of 500 simulations in

which the training set was extremely long: 50 000 elements

(see the electronic supplementary material, §5.2)

To decrease slightly the entropy of the graph, we gener-

ated a similar environment, while drawing the TPs from a

gamma distribution, leading to higher variance among

them (see the electronic supplementary material, table T6).

The results in this case (figure 7b) show that RL-chain and

CL performed significantly better than LR, suggesting that

they could take advantage of inferring the probability of

encountering food along routes in the network and not

only of local regularities. Moreover, in this environment,

when training was shortened to only 2000 elements, CL

had a significant advantage over RL-chain (see the electronic

supplementary material, §5.3).

3.4.3. Learning performance in high-entropy networks with
bottlenecks

When the directed graph had a ‘bottleneck’ in the form of a

single element (‘e’) that could precede food (‘f’; figure 6b),

there were significant differences in foraging success among

the three learners (figure 8). The learners that construct a

model of the environment (RL-chain and CL) were clearly

better than LR (paired t-tests, t498 ¼ 7.45, 9.41; p , 0.0001 in

both cases). Between them, CL was the best, although only

marginally so (paired t-test, t498 ¼ 2.66; p ¼ 0.0081). CL’s

advantage was larger when the training set was shortened

to 2000 elements (see electronic supplementary material,

figure S5, p , 0.0002), demonstrating that the advantage of

CL over RL-chain in this environment stems from its speed.

3.4.4. Learning performance in directed networks with
low entropy

In environments derived from a network that is highly struc-

tured and contains a bottleneck (figure 6c), we found the

same trend as before: RL-chain and CL were significantly

more successful than LR (figure 9a), and CL had a large

advantage over RL-chain when the training set was shortened

to 2000 elements (figure 9b). When we extended the training set

to 24 000 characters or increased the ‘f’ frequency, we found, as
expected, that the differences between these learners decrea-

sed (see electronic supplementary material, figures S6a, S6b
and table T9). It is important to note that extending the training

set, or increasing the frequency of food occurrence in it, did not

help LR as it did in the patchy environment (compare to elec-

tronic supplementary material, figures S3a, S3b). The reason for

this is that in this type of environment the occurrence of food

can be inferred reliably from elements that are typically found

a number of elements ‘upstream’ from it and disregarding this

information is costly.

3.4.5. Learning performance in low-entropy networks with rare
predictors of food

In an environment that is structured and in which not only

the food is rare but also its predictors (figure 6d ), there

is an advantage to RL-chain and CL over LR and a large

advantage—greater than those seen previously—to CL over

RL-chain (figure 10a). This is because CL, which takes advan-

tage of all encountered data, is much faster than the gradual

backward construction of a graph, which is severely limited

when the key elements are all rare. Even extending the train-

ing set to 16 000 elements or increasing the frequency of food

occurrence by a factor of 25 did not significantly alter this

outcome (figure 10b,c), because the rarity of local predictors

maintains a bottleneck for the chaining process.
4. Discussion
In this study, we explored the possible reasons for an evol-

utionary transition from strictly reinforced to continuous,

rarely reinforced, learning. We focused on animal foraging,
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for which reinforcement learning is typically applied and

where the goal of learning is clearly defined [29]. Using the

foraging paradigm, we identified conditions under which

individuals that learn the environment in a continuous

manner, regardless of food findings, can nevertheless find

more food items than those that rely on reinforcement learn-

ing. Moreover, all our models of learning were based on

the same mechanistic building blocks of associative learning

and differed only in the rules governing the acquisition of

new data. Thus, our results point to a specific characteristic

of the learning process on which natural selection can act in

generating the evolutionary transition from reinforced to

CL, or vice versa, depending on environmental conditions.

At the proximate level, the transition to CL may be achieved

by assigning relevance not only to data items that are in close

proximity to the reinforcer but also to continuous streams of

data, for example those observed along the animal’s path of

movement [9]. Then, the mere detection of repeated elements

and regularities in the data streams may in itself evolve to be

rewarding [9,26].

In what follows, we discuss some aspects of the

simulation results and their possible implications.
4.1. The conditions for the evolution of continuous
learning

We compared the success of CL with that of LR and RL-chain

(or chaining) in a set of simulated foraging environments. The

comparison with chaining was important for teasing apart

the advantage stemming from constructing a world model in

general and the advantage of constructing such a model in a

continuous, non-reinforced fashion. As mentioned earlier,

because we did not assign costs to memory and computation

in our simulations, our results set the minimal requirements

for the success of backward chaining and CL (see also §4.3).

We identified two main factors favouring the evolution of

CL: structured environment and limited time for training. The

structured environment gives advantage to model-constructing

learners that can then predict the presence of food more than one

step ahead. Thus, a structured environment favours both

CL and RL-chain. However, the limited time for training gives

CL an advantage over RL-chain because CL learners construct

their world model much faster; they acquire data and construct

a network right from the outset, without waiting for multiple

encounters with food. As expected and confirmed by our simu-

lations, this advantage increases when food or its most reliable
predictors are rare. It is important to note that the advantage of

faster model construction may be realized not only when a

well-defined time window for training is limited (as in our simu-

lations). In the real world, food depletion by other foragers is

extremely common and a competitive head start is highly

advantageous [30,31]. In such competitive situations, time for

learning is in practice almost always limited, and therefore if

the environment is sufficiently structured to justify modelling,

it is probably more adaptive to construct the model through

CL. Evolutionary simulations in which the various learners

would actually compete with each other may further elucidate

the role of competition and population dynamics in the evol-

ution of the learning mechanisms considered here. While such

simulations are beyond the scope of this paper they certainly

offer an interesting direction for future work. In particular,

such simulations may be useful in exploring the condi-

tions under which a stable polymorphism of more than one

learning strategy may emerge.

In addition to the main findings discussed above, our

simulations yielded a few less intuitive results that are

important to consider:

(a) Not every type of highly structured environment favours
model-constructing learners. In the patchy environment, for

example, we found that given enough time or frequent

food elements, LR was as successful as CL or RL-chain.

The patchy environment is structured, but it is structured

in a way that requires a forager only to identify whether

a data item belongs to one patch type or another. Given

sufficient time to experience food in the vicinity of

each of the other elements, LR learners can obtain this

information (see the electronic supplementary material,

figure S3). Their representation of the world would be

simple but sufficient for making the necessary foraging

decisions. This result suggests that for animals that live

in a stable patchy environment, LR may be good enough.

(b) Model-constructing learners are favoured only if the environ-
ment is ‘sufficiently’ structured. Our results show that LR

learners can be as successful as model-constructing lear-

ners also when the environment is somewhat structured



rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20131091

9
but not structured enough, i.e. when the network’s entropy

is high. Although, intuitively, a structured environment is

expected to favour model-constructing learners, in §3.4.2

we showed that if the entropy of a directed network

environment is high, even perfect knowledge of the statisti-

cal regularities of the environment may not improve

foraging success. This is because the probabilities of find-

ing food along different paths in the network are quite

equal, making chance events more influential than the

ability to act according to these probabilities. In nature,

we believe, many environments are structured and may

be best characterized as directed network environments.

Yet, it is quite possible that many of these networks are

not sufficiently structured to make model construction suf-

ficiently effective. Moreover, given that model construction

may also incur costs in terms of memory and computation,

not every structured environment would favour it; the

environment must be sufficiently structured that the pre-

dictive power of the model improves foraging success to

the extent that it outweighs the costs of constructing and

managing a world model.

(c) In strongly directed network environments, model construc-
tion is better even when food is common and the time for
learning is unlimited. We already stressed the advantage

of model-constructing learners in strongly directed net-

work environments but it is still worth noting that this

advantage over LR persisted even when food items

were common and the learning period was in practice

unlimited (see §3.4.4). The reason for this is that orderly

structured environments contain useful information for

finding food that cannot be learned by LR. This implies

that even when the environment is stable and organisms

are long lived, if the environment is also structured as a

strongly directed network, LR learners will be displaced

by model-constructing learners.

When considering the above-mentioned types of learning, it

is important to bear in mind that for the same individual it may

still be adaptive to use different learning strategies for different

tasks or domains. For example, it is possible that a visual search

for food in the forest may be best supported by CL of the stat-

istical regularities of the forest environment, while searching

for food by scent may be best served by local reinforcement.

This is to be expected if the visual environment is structured

while the olfactory environment is either patchy or insuffi-

ciently structured. Thus, a prediction of our study that may

be tested by future empirical work is that the type of learning

applied for different tasks or domains should be related to the

statistical properties of the data available to the learner in

these domains. Note that we distinguish between the statistical

properties of the acquired data (see [9]) and that of the real

environment, because dogs, for example, may be able to sense

the complex structure of an olfactory environment that will be

perceived by humans as poorly structured or patchy.
4.2. Further benefits of continuous learning
There are several benefits of CL that were not demonstra-

ted explicitly by our simulations but can be inferred from

them indirectly. First, the advantage of CL when time for

learning is limited implies that it will also be advantageous

in environments whose structure is changing, either seasonally,

periodically, or as a result of habitat loss or succession.
This should also be the case for organisms that frequently

change their environment as a result of migration or dispersal.

Obviously, if changes are too frequent and the learning period

is therefore too short, any learning is likely to fail [32], especially

learning that is more complex [4]. However, our results suggest

that given a certain level of environmental complexity, CL is

always faster than chaining, implying that it is likely to succeed

under a wider range of changing environments.

The second potential benefit of CL is the ability to adapt

quickly to changes in the behavioural goal, for example,

when switching to a new type of food. Because continuous

learners construct a more complete world model, and not

only goal-directed chains, which lead to a particular reinfor-

cer, they can quickly use regularities that previously had no

direct use but had been learned nonetheless. When a new

type of reinforcer is introduced, learning its association

with only one or two items that are already represented in

the network would immediately provide multiple cues for

searching it from almost anywhere in the environment.

Finally, our foraging model can also be applied to the case

of predator avoidance and fear learning [33,34]. The main

difference is that instead of learning to navigate to the reinfor-

cer, animals will now learn to navigate away from it, as it

represents a source of danger or the location of a predator.

Most importantly, in this case, CL is expected to be better

than chaining because not only it is faster, but also any

encounter with the reinforcer is potentially dangerous.

4.3. The costs and challenges of continuous learning as
a driving factor in cognitive evolution

As mentioned earlier, our model did not assign cost to memory

and computation, and therefore only set the minimal condi-

tions for the evolution of CL. The prevalence of CL in nature

(see Introduction) suggests that at least on several occasions in

the course of evolution, its benefits exceeded the costs. The

amount of data that can be acquired by the sensory system

is typically enormous, making memory and computation extre-

mely challenging issues to a continuous learner [24]. Moreover,

the acquisition of continuous streams of data presents the chal-

lenges of segmenting the input into the most useful units [35,36]

and of constructing the model in a way that would facilitate

efficient search, as well as appropriate decision-making and

planning [37,38]. It is therefore expected that right from the

start, the evolution of CL would give rise to new selective

pressures acting towards reducing the costs of memory and

computation, improving the management and use of the

model, and minimizing the acquisition and storage of unnecess-

ary data. In short, the transition to CL selects for the evolution of

relatively advanced cognitive mechanisms.

In this study, we simulated only simplified environ-

ments with a relatively small number of discrete data units,

bypassing the above-mentioned challenges of data segmenta-

tion and complex statistical regularities. Elsewhere [20], we

successfully used an extended version of our model to replicate

empirical results from human language acquisition, including

those involved in word segmentation, syntax learning and sen-

tence production. We therefore suggest that modelling the

evolution of CL from its most basic forms (as we did here) to

elaborate ones [20,26,39] offers a biologically plausible frame-

work for studying the incremental evolution of advanced

cognition from its basic associative elements [9,40–42]. In

theory, the rapid transition from reinforced to continuous,



rsif.royalsocietypublishing

10
rarely reinforced, learning that can then select for more complex

cognitive mechanisms could have taken place almost as early as

the evolution of associative learning itself, possibly near the

Cambrian explosion [43,44]. If this understanding is correct,

CL and its resulting cognitive structures may be much more

common than implied by current knowledge of behavioural

and neural mechanisms (see [41] for the case of insects).

Evidence for CL may nevertheless be revealed by different

responses to familiar and novel items that have no reward
value (as in [17]), or by showing a preference for such items

that cannot be explained by local reinforcement or chaining.
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