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Abstract
We describe a method based on Rosetta structure refinement for generating high-resolution all-
atom protein models from electron cryo-microscopy density maps. A local measure of the fit of a
model to the density is used to directly guide structure refinement and to identify regions
incompatible with the density that are then targeted for extensive rebuilding. Over a range of test
cases using both simulated and experimentally generated data, the method consistently increases
the accuracy of starting models generated either by comparative modeling or by hand-tracing the
density. The method can achieve near atomic resolution starting from density maps at 4-6Å
resolution.

Introduction
Electron cryomicroscopy (cryo-EM) has matured to the point that density maps can
regularly be obtained at 4-8Å resolution. Methods have been developed to fit solved
structures into such maps, to find locations of secondary structure elements1,2 and determine
the topology of these elements3, to select and rethreading homology models using density
data4, and to flexibly fit models into density5,6,7,8,9,10,11. These methods generally start with
complete all-atom models, rather than the Cα-only models that are often traced through low-
resolution density.

The Rosetta structure prediction methodology12 has been successful at predicting structures
de novo for small proteins and for refining comparative models to higher resolution. Rosetta
uses Monte Carlo sampling to search for the lowest energy structure of the polypeptide
chain according to a detailed all atom force field. For small proteins (less than 100 amino
acids), Rosetta can in some cases generate atomic-accuracy models with no experimental
data. The bottleneck to more consistent de novo prediction is conformational sampling:
conformations within 1.5-2Å RMSd of the native structure generally have much lower
energies than non-native models, but for larger proteins such models are generated
extremely rarely. With even a small amount of data (e.g., NMR chemical shift data13) to
guide conformational sampling, Rosetta can consistently build atomic-level models for
proteins of 120 amino acids or less. Rosetta's rebuild-and-refinement protocol often
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improves the accuracy of comparative models, especially distant homologues (<30%
sequence identity).

In this paper, we adapt Rosetta to refine comparative models and low-resolution Cα traces
using density maps as a guide. The Rosetta energy function is augmented with a term that
assesses the agreement of a structure to experimental density data. By optimizing the
combination of the fit-to-density term and Rosetta energy, models are generated that are
simultaneously low in energy and fit the density. The method can generate models with
near-atomic accuracy using 4-8Å density maps.

Results and Discussion
The adaptation of Rosetta to utilize input density maps is described in the METHODS
section. We have developed two protocols; the first starts with an alignment to a
homologous protein of known structure, the second, with a low resolution Cα trace through
the density. In this section we describe application of the two methods to a variety of
structure modeling problems using both synthetic and experimentally determined density
maps.

Comparative modeling using synthesized density
This test involves the refinement of a set of models built from distant homologues into
synthesized low-resolution cryoEM density maps at 5Å and 10Å resolution. For each of
eight structures, noise-free maps were constructed using EMAN's mrc2pdb1, at both 5Å and
10Å resolution. The starting models are based on Moulder reference alignments14. Moulder
uses a genetic algorithm that simultaneously optimizes a sequence-alignment potential and a
potential on the threaded model implied by a particular sequence alignment. The top 300
threaded models according to Moulder's fitness function were refined into density using the
protocol outlined in Figure 1 (see METHODS section and supplementary materials for more
details).

The results of this refinement are shown in Table 1 and two examples are illustrated in
Figure 2. For each of the 8 structures, the refined model is closer to the native structure (in
terms of Cα and all-atom RMSd) than the best initial model. In some cases the initial model
that was closest to native was not the one highest ranked by Moulder; in some cases it was
not even in the top 20. In six of the eight cases at 5Å and four of the eight cases at 10Å, the
lowest-energy model was closer than 2Å to the crystal structure. Refinement improved
individual starting models from 1-3Å (see Supplementary Figure 1). Several structures at 5Å
resolution refined from 2-4Å RMSd to sub-1Å accuracy. These results show that the Rosetta
refinement procedure – restricted by a low-resolution density map to focus sampling in
relevant regions – can improve homology models, even those that are already quite close to
native.

Benchmark tests on real data
Refining the upper domain of RDV—The rebuilding and refinement-into-density
protocol illustrated in Figure 1 was applied to the upper domain (residues 173-292) of the
Rice Dwarf Virus (RDV) capsid protein P8. A 6.8Å resolution cryoEM map of this structure
has been determined15. The crystal structure of this protein has also been solved (pdb code:
1uf2)16, giving a standard against which to compare. A starting model was generated from
an alignment to a structural homologue from Bluetongue Virus17 (coat protein vp7, pdb
code: 1bvp) produced by GenThreader18. Details of this alignment are shown in
Supplementary Figure 2. The standard Rosetta rebuild-and-relax protocol (without density
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data) was used to create an initial 10000 models, which were then refined into density as
described in the METHODS section.

A superposition of the starting structure, crystal structure, and the lowest-energy model is
shown in Figure 3. The model has a Cα RMSd from the native structure of 3.7Å, compared
to 5.6Å in the lowest-energy threaded model. As expected, much of the error is in gaps in
the initial alignment: the model has an RMSd of 3.2Å over residues aligned in the template.
The starting template has an RMS error of 3.8Å over these same residues. The refined model
has a correlation with the density better than the crystal structure (see Supplementary Table
1).

Refining the equatorial domain GroEL from a hand-traced model—To test the
performance of the protocol for refining a Cα-only model into density, we used the 4.2Å
resolution D7 cryoEM map of GroEL19. The starting Cα trace was the hand-traced model
produced by Matthew Baker (pdb code: 3cau), shown in Figure 4. The rebuilding focused on
the equatorial domain (residues 2-136,410-525). Starting from the Cα-only model of this
domain, we applied the protocol described in the METHODS section and illustrated in
Figure 5.

The lowest-energy model generated – superimposed on the crystal conformation – is
illustrated in Figure 4. The Cα RMSd over the nine helices in the equatorial domain is only
2.2Å, compared to 3.4Å in the initial trace. The Rosetta model has errors in the termini and
loops so the Cα RMSd over all residues is only slightly better than the starting model (3.4Å
versus 3.6Å).

An illustration of an error in the initial trace that is corrected in the Rosetta model is
highlighted in Figure 4. In this case, the hand-traced Cα-only model does not have the
proper beta pairing in residues 206-216 (in the figure). Additionally, the orientation of the
adjacent helix (residues 191-201 in the figure) is much closer to native in the model than in
the original hand-traced model.

Rebuilding and refining the lower domain of RDV p8 from hand-annotated
helices—A second test refining a Cα-only model into density is provided by the lower
domain (residues 1-172,293-421) of RDV capsid protein P8. The density data is the same
6.8Å cryoEM map used previously. The initial model – provided by Matthew Baker –
consists of a set of helices that were located by the program ssehunter20. The topology of
these helices was inferred from a homologous protein in BTV18, and the helices were
mapped to the sequence using a consensus secondary structure prediction21. The helices
from our initial model, the docked crystal structure, and the lowest-energy model produced
from the Figure 5 protocol are shown in Figure 6.

The lowest-energy Rosetta model has a Cα RMSd to native of 4.5Å. Though several loops
are incorrectly placed, and a short helix is unwound in our prediction, the core is mostly
correct. The RMSd over the ten core helices is 2.8Å, compared to 4.7Å in the initial hand-
traced model. The initial model has several significant register shifts compared to the final
model; one that is corrected is highlighted in Figure 6. The refined model has a (Cα-only)
correlation with the map higher than does the starting model, but lower than the crystal
structure (see Supplementary Table 1).

Contributions to model accuracy
The protocols we have developed involve successive rounds of refinement at each
generation enriching for the lowest energy structures that best fit the density. When
choosing models to carry over from one generation to the next it is necessary to balance
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between fit-to-density and energy. In general, the lowest-energy decoys are not the ones that
best fit the density and vice versa. The energy difference between native and non-native
structures is in general much greater in the core than in loop regions, and indeed we find that
the Rosetta energy function better identifies the native structure of the core, while the fit-to-
density score does better in identifying t native loop conformations. For example, in the set
of models produced after one generation of rebuilding-and-refinement into density with
GroEL, the 5 models with lowest Rosetta energy over the core exhibit a median core RMSd
of 2.0Å, but a median whole-structure RMSd 5.6Å. In contrast, in the 5 models with best fit-
to-density, there is a somewhat worse median core RMSd of 2.3Å, but an improved median
whole-structure RMSd of 4.0Å. The selection criterion outlined in the METHODS section
aims to strike a balance between the two; however, preferring one term versus the other may
be beneficial for some applications.

There are also tradeoffs in the voxel spacing of the sampled density used during the
matching of protein fragments into the density map. Coarser sampling requires significantly
less time, but can reduce accuracy. We have found that in the resolution range explored in
this paper (roughly 4 to 10Å), a grid spacing of 2Å is best. Empirically, model
discrimination is about as good using 2Å grid spacing as it is with 1Å grid spacing; beyond
that, it deteriorates rapidly. For all experiments in this paper a voxel spacing of 2Å was used.

The protocol for refining Cα-only models consists of both backbone fragment insertions (as
in the Rosetta ab initio protocol) and rigid-body perturbation of secondary structure
elements (see METHODS for more details). To test the importance of rigid-body moves in
this protocol, we repeated the initial round of all-atom model building of GroEL, without
allowing rigid body perturbations of the initial structure; initial all-atom models were built
just using fragment insertions and loop remodeling. Without rigid-body perturbations,
among the lowest-energy 10% (5000) of models, no sampled models are closer than 4Å to
native, 1% are with 4.5Å, and 20% are within 5Å. Including rigid-body moves results in
about 0.3% of sampled models within 4Å of native, 8% of models within 4.5Å, and 45% of
models within 5Å. By enhancing sampling where errors are likely to occur (e.g., translations
along helical axes) while minimizing sampling where errors are less like (e.g., movement
normal to the helical axis), the rigid-body perturbations significantly improve the RMS
distributions of the sampled models.

Materials and Methods
Incorporating Fit-to-Density into Rosetta Modeling

Rosetta12 uses Monte Carlo sampling together with gradient-based minimization to generate
an ensemble of low-energy protein structures starting with either an extended chain or a
homology model of the protein. To enable rapid searching, sampling and energy function
evaluation are first carried out at a low-resolution level – in which sidechains are
represented as a single sphere – and subsequently at a high-resolution all-atom level. We
incorporate a scoring term into Rosetta that describes how well a particular protein
conformation agrees with density data. This density score is the log of the probability of
observing a particular correlation between a model's density (computed at some resolution)
and the experimental density data. Because we must perform torsion space minimization
with this function – and hence must evaluate it – many thousands of times, some
approximations must be made to make calculations tractable.

Given a protein conformation X={x1,…,xN}, where each xi describes the location of one
atom, and a density map ρo(y) over grid points y in the density map, we compute the
expected density ρc(y) by placing a Gaussian sphere of density at each atom:
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(1)

The parameters C and k are resolution-dependant parameters describing the shape of the
Gaussian blob; the parameter a is the mass of atom xi. The fit to density measure we employ
is a function of the correlation between ρc and the experimental map over a region specified
by a masking function ε. Using a mask is advantageous for several reasons: it minimizes the
effect of poor segmentation of the monomer, it makes correlation scores comparable
between different maps at the same resolution, and most importantly, it greatly facilitates the
calculation of gradients with respect to the atomic positions (see below). The masking
function, ε(y), restricts the calculation of the correlation to points in the density map within
some distance m of a specified subset of atoms in the protein:

(2)

where σ is the sigmoid function, σ(x) = 1(1 + e−x). The parameter m is the masking distance
(in our experiments 5Å if every atom is used to compute ρc and 8Å if only Cα's are used to
compute ρc); density beyond this distance from any atom will have marginal impact on the
fit-to-density score. This mask is used in computation of the correlation coefficient between
ρo(y) and ρc(y):

(3)

ρ̄o and ρ̄c are the average observed and calculated densities over the mask; so and sc are the
standard deviations of the observed and calculated densities, also over the mask.

For scoring, we convert this correlation into a negative log-likelihood. We compute the
probability that a particular correlation was generated by random chance, assuming that
correlations are distributed normally (this normal distribution is supported empirically; see
the supplementary materials), with mean μ and standard deviation σ. Given a correlation S,
the score is given as the log of the probability that a correlation greater than S is seen by
chance:

(4)

Here, Φ is the error function, . The parameters μ and σ are trained for
a particular resolution range by matching randomly oriented structures into a generated
density map at that resolution. This is similar to the cross-correlation used by Topf et al.11;
the key difference is that the density surrounding each residue is scaled independently. This
makes refinement sensitive to the shape of the density, rather than the absolute magnitudes,
which allows for different levels of contrast in different parts of the map.

Computing first derivatives of the density score (Equation 4) with respect to each atom's
movement is straightforward given the derivatives of the masked correlation (Equation 3).
Derivative calculation this requires computation of:

1. The change in the volume covered by the mask, ∂Σy ε(y)/∂xi, as the mask moves in
response to an atom's movement (since each atom's mask overlaps the mask of
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neighboring atoms, compression or expansion of the molecule leads to a change in
the mask's total volume).

2. The change in the mean and variance of the observed density as the mask moves,

which require calculation of ∂Σy ε(y)ρo(y)/∂xi and .

3. The change in the variance of the calculated density as each atom moves, which

requires calculation of 

4. The change in the masked product of observed and calculated density, ∂Σy
ε(y)ρo(y)ρc(y)/∂xi as the mask and each atom moves.

There are two aspects of the masking function ε (Equation 2) that are important for
computing these values. First, the functional form allows for straightforward factoring out of
the contribution of each individual atom to the derivatives in (1) and (2) above. Second, the
mask smoothly decays to 0, so the derivative is well defined. This allows us to quickly
compute each of the derivatives above – for a single atom's movement – by only considering
a small neighborhood of density around that atom. These Cartesian-space derivatives are
converted to torsion-space derivatives using the recursive relations of Abe et al.22, which
allows for torsion-space optimization (via a quasi-Newton minimizer) of the density score
and the energy.

The fit to the density is initially computed at low resolution and later in the conformational
search at high resolution. For the low resolution score, one Gaussian blob per residue is
placed on the Ca atom when computing the expected density ρc(y), with k = (π/(2.4 +
0.8R0))2 and C = (k/π)3/2 (for map resolution R0). The value k is chosen to maximize the
correlation between the single-Gaussian approximation and alanine's all-atom Gaussian
density. The single Gaussian approximation becomes a better representation as the map
resolution becomes worse, approaching 0.95 correlation as the map nears 10Å resolution.
For the low-resolution score, the masking function ε(y) is based on the distance to the
nearest Cα, and the masking distance is set to 8Å to include all the density associated with
the residue. The high-resolution score places a Gaussian placed on each atom, with k = (π/
R0)2 and C as before. A separate correlation is computed for each residue, with the mask
covering all atoms in the residue and in the two flanking residues on each side; the masking
distance is 5Å. This formulation allows us to compute the correlation over a much smaller
region, allowing for greater efficiency, while allowing the density score to guide sidechain
optimization.

The density score is added to the Rosetta energy function (low or high resolution depending
on the stage of the trajectory) with a weight wdens chosen such that the dynamic range (the
difference between the worst- and best- scoring models) of this term is approximately 0.5-1
energy units per residue (Rosetta's high-resolution energy function has a dynamic range of
roughly 2-3 energy units per residue, the low-resolution function has slightly less). For all
experiments in this paper, the weight on the low-resolution term was 0.02 and the weight on
the high resolution fit-to-density term 0.2.

Incorporating fit-to-density into Rosetta's rebuilding-and-refinement
Rosetta's rebuilding-and-refinement protocol has been used extensively for comparative
modeling from distant (<30% sequence identity) homologues. The approach consists of two
main phases. During the first phase, portions of the protein are chosen for aggressive
refinement. These portions may be chosen using several different criteria, but in general,
given some ensemble of starting structures (either from an NMR ensemble or threadings to
multiple templates or even multiple Rosetta simulations from a single starting model), they
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correspond to regions of high variation in the ensemble most likely to deviate from the
native conformation. These high-variance regions are aggressively remodeled using internal
loop-building algorithms together with Rosetta's low-resolution score. In the second phase,
the endpoints of these trajectories are then subjected to all-atom refinement with respect to
all sidechain and backbone degrees of freedom.

In very distant homology cases, it is often necessary to iterate through this process using an
evolutionary algorithm. Through successive generations, we want to enrich the population
for low-energy models, while maintaining a diverse ensemble of conformations. Thus,
Rosetta's rebuilding-and-refinement – when choosing models to propagate to the subsequent
generation – alternates between choosing the lowest-energy models (intensification) and
choosing a set of structures that explore conformational space (diversification). After each
selection round, the two-phase process is repeated; the protocol repeats until successive
generations converge to a single structure.

Incorporating the fit-to-density score into the Rosetta rebuilding-and-refinement method is
relatively straightforward. The complete protocol – illustrated in Figure 1 – is comprised of
three stages:

1. Coarse fragment rebuilding using Rosetta's low-resolution potential and Cα-only
fit-to-density.

2. All-atom refinement using Rosetta's high-resolution (all-atom) potential and Cα-
only fit-to-density.

3. For the lowest energy models from 2, sidechain repacking and all-torsion
minimization using Rosetta's high-resolution potential and all-atom fit-to-density

Refinement iterates over the first two stages for several generations, while the time-
consuming third phase is only carried out on a small subset of low-energy models. Though
rebuilding-and-refinement in steps one and two use the low-resolution density score, the
high-resolution score is used to select the segments to aggressively rebuild, and to select the
best-matching structures at each generation.

Selecting regions for aggressive remodeling—Rosetta's standard rebuilding-and-
refinement chooses regions to aggressively remodel using the population's positional
variation at each residue. When remodeling structures in the presence of density data, a
sliding-window fit-to-density score is used to determine which regions of the protein should
be aggressively remodeled. At each position in each starting structure, we consider the 9-
amino-acid fragment centered at that position. The correlation between the computed
density from this 9-amino-acid fragment and the density map – masked in a neighborhood
around the fragment – is calculated. A threshold correlation value is chosen, and all residues
with local correlation below this value are selected for remodeling. In order to prevent major
topology changes, we do not rebuild more than four residues into a helix or more than two
residues into a strand. Of the remaining residues, we select a correlation cutoff such that
approximately 30% of residues are rebuilt.

Aggressive remodeling—Once regions of potential error have been identified, local
sequence information is used to find a set of fragments (that is, backbone segments) with
similar local sequence and predicted secondary structure. 200 fragments – three and nine
amino acids in length – are selected, centered on each residue in each region. A break is
introduced at a random location in the region. Then, fragments are inserted at random into
the region. The insertions are made such that all movement is propagated toward the cut
using appropriate fold trees23. The insertions will generally open the chain at the cut; thus,
these fragment insertions are alternated with “closure moves” that slightly adjust backbone
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torsions (using cyclic coordinate descent24) to minimize the distance between both sides of
the cut. These moves are carried out in a Monte Carlo simulation, and each candidate
structure is scored using the Rosetta low-resolution potential function and the low-resolution
fit-to-density score. To remodel a segment of length n, 30n fragment insertion and closure
moves are made. The probability of making a closure move (versus a fragment-insertion
move) starts low, and is increased as the simulation progresses. Multiple regions are
remodeled one at a time; in each simulation, the order is randomly chosen.

Repacking and torsion-space minimization with low-resolution density score
—After aggressive remodeling, candidate structures are evaluated with the Rosetta all-atom
energy function and the low-resolution fit-to-density score. First, the energy is minimized
through combinatorial optimization of sidechain rotamer conformations25 with the backbone
held fixed. All backbone and sidechain torsion angles are then minimized with respect to the
sum of the Rosetta full atom energy and the low-resolution density score. This process is
repeated for 18 cycles; the lowest-energy structure encountered over these 18 cycles is
chosen.

Model selection—The standard Rosetta rebuilding-and-refinement alternates between
selecting a subset of structures optimized for energy (intensification generations) and those
optimized for diversity (diversification generations). The fit to density score is also used to
select which models are carried over in a subsequent generation. During both intensification
and diversification generations, the top 10% of models from the previous generation are
chosen using Rosetta energy alone. In intensification generations, the top 20 are selected
based on the average per-residue sliding-window correlation score over residues not selected
for aggressive remodeling. That is, structures are evaluated based on the fit to density of the
parts that will change relatively little during the next refinement round. During
diversification generations, these lowest-energy 10% of models are first clustered (to a 3Å
radius). The same selection criterion is employed; however, no more than one model is
taken from each cluster.

All-atom refinement with high-resolution density score—To generate more
accurate and physically realistic models, after several iterations of rebuilding-and-
refinement, we perform a final all-atom refinement with the high-resolution density score,
with 18 iterations of sidechain rotamer optimization and all-torsion minimization. During
this phase we also consider less-common sidechain rotamers at each position: in addition to
all rotamers with at least 1% population26, we also consider variants where the sidechain
torsions χ1 and χ2 are shifted + and − one standard deviation.

The advantage of this additional step is that the density score – which now includes density
contribution from sidechain atoms – now affects sidechain placement and not just torsion-
space minimization. Computing correlations over these smaller 5 amino acid windows
allows for greater efficiency, making the problem tractable. However, the computational
demands are moderately high, requiring several CPU-hours for this final refinement in a 150
amino acid structure.

Refining a Cα-only model
The protocol for generating an ensemble of physically feasible all-atom structures starting
with an initial Cα-only model – illustrated in Figure 5 – begins by breaking the protein into
individual secondary structure elements. Loops are removed from the structure. Then for
each individual secondary structure element, a set of 1000 protein fragments is chosen (from
a non redundant subset of the PDB) of the correct secondary structure type that most closely
matches the sequence. These 1000 fragments are sorted by Cα RMS to the starting model,
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and the closest 200 are then chosen. In each attempted move, a secondary structure element
is randomly chosen, a random fragment is inserted, the fragment is aligned to the Cα trace,
and the entire structure is minimized with respect to the Rosetta low-resolution steric
repulsive potential and the Cα constraints. Minimization uses a multistep quasi-Newton
optimization algorithm (BFGS). The backbone torsions within each segment as well as the
rigid-body orientation of each segment are simultaneously minimized. In each simulation,
100 of these moves are made.

In the second phase of the protocol, we perturb individual secondary structural elements. A
random secondary structure element is chosen, and is randomly perturbed by either: (a) a
rigid-body move or (b) a sequence-shifting move. For rigid-body moves, three rotational
parameters (rotation about the helical axis, two rotations perpendicular to the helical axis)
and three translational parameters are chosen from a Gaussian distribution. Parameters are
chosen such that the magnitude of motion is generally greater along the helical axis than it is
perpendicular to the helical axis (for this paper, the standard deviation of translational
motion used is 2Å along the helical axis and 0.1Å perpendicular to the helical axis; for
rotational motion these values are 60 degrees and 2 degrees, respectively). For sequence-
shifting moves, a direction and magnitude (i ∈ {-2, -1, 1, 2}) are randomly chosen. A
transformation is applied to give amino acid n the same Cα position, Cα–C and Cα–N
vector as the current amino acid n+i. If n+i extends beyond the secondary structure element
the previous position's transformation is applied. In each simulation, 500 of these moves are
made. This phase is similar to an approach to folding helical proteins27.

Finally, loops are rebuilt as in comparative modeling, sidechains are placed on the structure,
and the entire structure is relaxed with Rosetta's high-resolution energy. Throughout the
entire process, harmonic constraints keep Cα positions from deviating too much from their
initial positions. The weights on these constraints are chosen such that the majority of
models generated are within 4Å of the initial Cα trace. These models are then fed into the
refinement protocol outlined in the previous two sections.

Conclusion
With the incorporation of low-resolution density data, Rosetta can accurately refine models
threaded from structural homologues and low-resolution Cα-only models. We show that the
method improves the accuracy of models on a variety of synthetic and experimental cryoEM
density maps from 4-10Å resolution.

As noted in the introduction, flexible fitting models have been developed to refine models in
density. Most of the methods have focused on sampling relatively small degrees of freedom,
such as hinge regions, rather than the complete set of backbone and sidechain torsion angles,
as in our method. Previous approaches have generally started with all-atom models; to our
knowledge, ours is the first to refine Cα-only models into density.

It is perhaps surprising that by incorporating density data, Rosetta can achieve accuracy well
beyond the resolution of the map. How does a low-resolution map guide the detailed
placement of individual atoms in the protein? The answer is that in our approach a map,
rather than playing an instructive role in atom placement, instead constrains the search for
low-energy states to the small subspace consistent with the density. The Rosetta energy
function has sufficient accuracy that native structures nearly always are significantly lower
in energy than non-native structures so the primary bottleneck in structure prediction is
conformational sampling. A density map focuses Rosetta sampling in the relevant regions of
the conformational space, instead of wandering off into unproductive regions. We anticipate
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the method will prove broadly useful in determining physically realistic and more-accurate
models from cryoEM data.

There are several avenues for improvement of the method. First, refinement in the presence
of density terms can result in local distortions of secondary structure elements and breaking
of hydrogen bonds, and it may be useful to upweight the backbone torsional and hydrogen
bond terms in the Rosetta forcefield when EM data is being used. Second, tracing beta-sheet
structures can be exceedingly difficult in a low-resolution density map, and it may be
possible to use the Rosetta de novo structure prediction methodology to build up beta sheets
– loosely constrained by the map – instead of relying on a starting Cα trace.

Code Availability
The fit-to-density scoring functions and code for refining models from a Cα trace will be
available in the next release, version 3.1, of Rosetta (see http://www.rosettacommons.org for
details) and are also available from the authors. Sample command lines are provided in the
supplementary materials.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The comparative modeling into density protocol. We initially build a threaded model from
some alignment (blue), using cyclic coordinate descent to close gaps in the alignment
(cyan). We then dock this threaded model into density, and identify regions that have a poor
local agreement with the density data (red). We aggressively resample the conformations in
these regions, scoring each potential conformation with Rosetta's low-resolution energy
function together with an agreement-to-density score. Finally, we optimize sidechain
rotamers and minimize all backbone and sidechain torsions using Rosetta's high-resolution
potential, also augmented with this agreement-to-density score. We iterate over these final
three steps until the lowest-energy models converge, at each iteration enriching our
population for those models with both favorable Rosetta energy as well as good fit to
density.
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Figure 2.
Comparative modeling into density on synthetic 10Å cryoEM maps for 1c2r (left) and 1cid
(right). Three hundred homology models were constructed using Moulder. From these
models, the best twenty were selected using fit-to-density score; these twenty were then
further refined using the protocol outlined in Figure 1. The best Moulder structure is shown
in red, while the crystal structure is shown is blue. The lowest-energy Rosetta model is in
green.
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Figure 3.
A comparison of the starting homology model (red), the crystal structure (blue), and the
model refined into density (green) for the upper domain of RDV P8 [1uf2, residues
173-292], docked into a 6.8Å cryoEM density map. The predicted model was built using a
homology model from bluetongue virus [1bvp], aligned with mGenThreader, which was
then iteratively refined using the method from Figure 1. The model has a Cα RMSd of 3.7Å,
compared to 5.6Å in Rosetta's lowest-energy threaded model.
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Figure 4.
The hand annotated Cα trace of the equatorial domain of GroEL (red), the model refined
into density (green), and the docked crystal structure [1oel, residues 2-136,410-525] (blue)
in the 4.2Å cryoEM density. The model has a Cα RMSd of 3.4Å, compared to 3.6Å in the
initial trace; however, the error in the core helices is much lower in the predicted model than
in the original trace, 2.23 versus 3.41Å. (inset-upper) The lowest-energy refined models
converge on near-native core packing. (inset-right) An error in the hand-traced model is
corrected by the refinement protocol. The handtraced model (upper) does not have the
crystal structure's (center) β pairing between residues 208-210 and 215-213. The refined
model (lower) recovers this pairing.
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Figure 5.
Building a model from a Cα trace. The input trace is segmented into individual secondary
structure elements. For each of these segments, a set of fragments is chosen based on both
sequence similarity to the target as well as low Cα RMS to the target trace (thin black lines).
Then these fragments are perturbed in a Monte Carlo simulation. Harmonic constraints on
the original Cα positions from the input trace keep the model from deviating too far. The
lowest energy model from each trajectory is chosen and loops are rebuilt using cyclic
coordinate descent. Finally, each model is docked into the density and passed through the
iterative refinement into density protocol (of Figure 1).
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Figure 6.
The starting model – a hand annotated Cα helix-only trace – of the lower domain of RDV
P8 (red), the crystal structure [1uf2, residues 1-172,293-421] (blue), and the lowest-energy
model refined into density (green), in 6.8Å cryoEM density data. The refined model has an
overall Cα RMSd of 4.5Å from native, and an RMSd of 2.7Å in the 10 core helices. The
initial Cα trace has an RMSd of 4.7Å over these same helices. (inset) Rosetta properly shifts
a helix by two residues.
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