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Abstract  

Automated Word Sense Disambiguation in clinical documents is a prerequisite to accurate extraction of medical 
information. Emerging methods utilizing hyperdimensional computing present new approaches to this problem. In 
this paper, we evaluate one such approach, the Binary Spatter Code Word Sense Disambiguation algorithm, on 50 
ambiguous abbreviation sets derived from clinical notes. This algorithm uses reversible vector transformations to 
encode ambiguous terms and their context-specific senses into vectors representing surrounding terms. The sense 
for a new context is then inferred from vectors representing the terms it contains. One-to-one BSC-WSD achieves 
average accuracy of 94.55% when considering the orientation and distance of neighboring terms relative to the 
target abbreviation, outperforming Support Vector Machine and Naïve Bayes classifiers. Furthermore, it is 
practical to deal with all 50 abbreviations in an identical manner using a single one-to-many BSC-WSD model with 
average accuracy of 93.91%, which is not possible with common machine learning algorithms.  

 

Introduction 

Ambiguity (one word with multiple possible meanings) is very common in clinical text, especially for clinical 
abbreviations (including both acronyms and other abbreviated words) (1-2). Ambiguous words are often used to 
convey essential medical information (3), so correctly interpreting the meaning of an ambiguous term, referred to as 
Word Sense Disambiguation (WSD) (4), is important. Consequently, automated WSD is a critical cornerstone for 
the development of high quality medical Natural Language Processing (NLP) systems (5). However, automatic 
interpretation of the correct meaning of a given word within a sentence is non-trivial, and remains one of the major 
challenges in medical NLP research (6-7). Many WSD methods have been proposed, including Machine Learning 
(ML)-based, knowledge-based, and hybrid approaches. Among them, supervised ML algorithms have shown 
excellent performance in WSD tasks. However, individual classifiers need to be built for each ambiguous term, 
which makes ML-based methods less practical. As one of the approaches to solve automatic WSD, there is a 
recently emerged distributional model named the Binary Spatter Code Word Sense Disambiguation (BSC-WSD) 
algorithm, which is based on the hyperdimensional computing paradigm (8). This algorithm has shown performance 
comparable to established ML approaches on a disambiguation test set derived from the biomedical literature (9), 
but has yet to be adapted to, or evaluated in the context of the task of disambiguating clinical terms. 

This paper discusses the evaluation and refinement of the BSC-WSD algorithm for clinical abbreviation 
disambiguation with two main contributions: 1) We demonstrate that the BSC-WSD algorithm can achieve a better 
performance than the Support Vector Machine (SVM) and the Naïve Bayes (NB) algorithms for disambiguation of 
clinical abbreviations; and 2) We modify the BSC-WSD algorithm to take into account the orientation and distance 
of other terms with respect to the ambiguous term (i.e., occurrence to the left or to the right of the ambiguous term), 
achieving a better performance. Unlike the other approaches evaluated, a single BSC-WSD model can disambiguate 
all abbreviations in the corpus without complex parameter optimizations, indicating a more practical solution for 
clinical WSD.  
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Background 

Supervised ML algorithms have been utilized to address the WSD problem in the clinical domain (10-11). In 
general, supervised ML achieves high performance when trained on enough annotated samples with well-distributed 
senses (12). It is well known that obtaining sufficient numbers of annotated examples for supervised ML creates a 
bottleneck (13), as it requires the effort and time of medical experts. The SVM and NB algorithms are commonly 
used classifiers with stable performance on clinical WSD tasks (10). However, no clearly superior ML algorithms 
have been identified for the resolution of ambiguous abbreviations to date (11,14). Another limitation of ML-based 
WSD methods is that an individual classifier is required to resolve each ambiguous word. 

As inputs for supervised ML algorithms, various types of features from overlapping multi-disciplinary fields have 
been considered. Generally, these are categorized into domain knowledge-based, linguistic, statistical, and general 
document-level features from the fields of biomedical NLP, computational linguistics, statistics, and medicine (15). 
Domain knowledge-based features often rely on medical vocabularies and ontologies such as the Unified Medical 
Language System (UMLS) (16) and customized medical dictionaries. Linguistic features are derived from the 
patterns of human natural languages, and statistical features use general distributional information such as co-
occurrence statistics. Lastly, clinical features often include clinical contextual information such as medical 
specialties or section header titles in clinical notes. Among various feature types, the statistical Bag-of-Words 
(BoW) feature, which considers the words surrounding an ambiguous term, has been broadly used for clinical WSD 
tasks (10-11). 

Emerging approaches to modeling semantics have used reversible vector transformations to encode additional 
information about the target term, such as the relative position of other terms (17-18) and syntactic dependencies 
(19). In recent work, we have used a reversible vector transformation to encode the sense of an ambiguous term into 
semantic vector representations of neighboring terms. A vector representation that combines elemental vector 
representations for an ambiguous word (term) and one of its senses (meanings) is generated. This combined “word-
sense” vector is encoded into the semantic vector representations for terms surrounding the ambiguous word. When 
a new context with the ambiguous term is encountered, applying the inverse of this transformation to the semantic 
vectors for the terms in this context results in the recovery of the (sense) vector representation for the context-
appropriate sense of the term concerned. This approach, named the Binary Spatter Code WSD algorithm (BSC-
WSD) in accordance with the underlying representational approach (20), showed comparable performance to 
existing supervised ML methods on a test set derived from the biomedical literature (9). However, it has yet to be 
evaluated for abbreviation disambiguation, or on clinical texts.  

The Binary Spatter Code (BSC) (21) is one of a family of representational approaches collectively known as Vector 
Symbolic Architectures (VSAs) (22). VSAs were developed in response to Fodor and Pylyshyn’s widely publicized 
critique of the inability of connectionist models of cognition to encode nested compositional structure (23). As such, 
they descend from Smolensky’s tensor product-based approach (24), but offer considerable advantages in scalability 
on account of their utilization of reversible vector products that preserve the dimensionality of their component 
vectors. For example, the BSC uses pairwise exclusive OR (XOR) to combine high-dimensional binary component 
vectors, while Plate’s widely-used Holographic Reduced Representations use circular convolution of either real or 
complex component vectors (25). VSAs have been applied to model a range of cognitive phenomena (for example 
(17,26,27)), by encoding information using vectors of high dimensionality as a representational unit. On account of 
this representational choice, it has been argued that VSAs and their operators represent a new computational 
paradigm, termed hyperdimensional computing (8), which provides human-like characteristics such as robustness to 
noise, approximate matching and analogical reasoning that are absent in traditional computational architectures. 
While a detailed account of this argument is beyond the scope of this paper, we refer the interested reader to Pentti 
Kanerva’s excellent introduction to the subject for further details (8).  

Recently, VSAs have been used to encode additional information into distributional models of semantics (17–19). 
Of particular relevance to the current work, Sahlgren and his colleagues used an alternative approach in which 
reversible vector transformation is achieved by permuting vector elements (18), to encode the relative position of 
terms in a sliding window. In some of these experiments, permutation of elemental vectors representing terms was 
used to indicate their orientation to the left or to the right of a target term. This approach produced the best results in 
a synonym test evaluation when compared with other ways of encoding relative position, suggesting that encoding 
orientation in this manner may be beneficial for distributional models of term semantics. Motivated by this finding, 
as well as the precedent for encoding orientation provided by the seminal Hyperspace Analog to Language model 
(HAL) (28) and recent findings that terms to the left of an ambiguous term may be of greater value for classification 
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(15), we introduce in this paper a novel variant of the BSC-WSD algorithm. This model uses permutation of 
elemental vectors to indicate their orientation with respect to a target term, with the hypothesis that this additional 
information will lead to enhanced performance. In addition, we evaluate the effect of weighting the contribution of 
surrounding terms to a context vector such that their contribution is inversely proportional to their distance from the 
target term, an approach that also has precedent in the HAL model (28).  

In the section that follows, we describe our experiments in which we evaluate this novel variant of BSC-WSD 
against our original BSC-WSD implementation, as well as two widely used supervised ML methods, using a set of 
human-annotated ambiguous clinical abbreviations. 

 

Method 

Data set 

The Natural Language Processing/Information Extraction (NLP/IE) (University of Minnesota) group released a 
dataset consisting of the most frequent acronyms and abbreviations encountered in clinical text (29). Moon et al. 
have created a dataset containing 50 ambiguous abbreviations with annotated samples (15), which were used in this 
study. Each acronym and abbreviation set consists of 500 annotated samples. Individual samples typically include 
several sentences that surround the primary sentence that contains the target acronym or abbreviation. For our 
experiments, we extracted the 500 sentences containing the targeted acronyms and abbreviations. Therefore, a total 
of 25,000 sentences (50 acronyms/abbreviations * 500 sentences) were used in this study. These 50 acronyms and 
abbreviations have a total of 267 senses, with an average of approximately five senses per acronym or abbreviation. 
Therefore, this set is both larger in size and more complex with respect to the number of senses than the NLM-WSD 
data set used to evaluate the BSC-WSD algorithm previously (9). 

 

Features 

BoW features based on sentences were utilized, because a BoW feature has been an effective and simple statistical 
feature (10-11) for sense disambiguation tasks as compared with other types of features such as semantic type 
information or part-of-speech tags. As a basic BoW feature, all occurring unique terms were considered at the 
sentence level. Pre-processing of free text features was identical across experiments, and accomplished using the 
indexing component Lucene (30), an open source search engine used to derive statistical features from each 
sentence. This was regarded as one feature set. As an alternative, words in the left word window preceding the target 
abbreviation and words in the right word window after the target abbreviation were considered as different features. 
This was done because the left window was shown to offer more utility for classification as compared with the right 
window in previous research (15). For example, when “CVP” is the target ambiguous term, the first and second 
appearance of the term “line” are considered as different features, considering the orientation/direction in the 
sentence below (the left window is shown in italics, and the right window in boldface).  

“CV line was placed and his initial CVP rate was in the range of 4, and internal line 
has also been placed by anesthesiology.” 

We encoded this feature using a novel permutation-based variant of the BSC-WSD algorithm that we will describe 
subsequently. We also evaluated additional features such as the section header information (a total of 1,510 unique 
section headers titles. Examples include “Chief Complaint”, “History Of The Present Illness”, “Impression/Plan”, 
and “Laboratory Results”) for local contextual information within in the clinical documents. In addition, we 
extracted Unified Medical Language System (UMLS) (16) Concept Unique Identifiers (CUIs) and semantic type 
information for these sentences. CUIs and semantic types were extracted from the sentence components surrounding 
the acronym/abbreviation in question using MetaMap (31) (version 2011) including all concepts extracted with a 
high confidence score (A cut-off score of 900 or 1000).  
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Algorithm 

For the baseline, three fully supervised classification algorithms were evaluated. The performance of Majority Sense 
(taking the most frequently occurring sense in the training component of each pre-defined 10-fold cross validation 
set), NB, and SVM algorithms were utilized as implemented in the ZeroR, NaiveBayes, and LibSVM classes 
respectively in the open source Weka software package (32). These were then compared with variants of BSC-
WSD, including a novel adaptation to encode orientation. In the case of the SVM, we used the C-SVC type and 
linear kernels with optimized parameters (cost and epsilon). 

The BSC-WSD algorithm was implemented based on methods and classes provided by the Semantic Vectors 
software package (33–36). The algorithm is based on the Binary Spatter Code (BSC) (21), developed by Pentti 
Kanerva, which uses hyperdimensional binary vectors (dimension >= 10,000 bits) to represent both terms (or 
concepts) and the nature of the relationships between them. The algorithm proceeds as follows.  

First, elemental vector representations are created for each ambiguous term and unique sense. We will refer to these 
elemental vectors as E(term) and E(sense), respectively. For example, for the sentence above we would anticipate 
generating the elemental vectors E(CVP) (representing the ambiguous term) and E(CVP|Central Venous Pressure) 
(representing the context-specific sense). Elemental vectors in the BSC are hyperdimensional binary vectors, 
initialized at random with a 50% chance of either a zero or one occurring at each dimension. The dimensionality of 
the space makes it highly probable that any two randomly constructed vectors will be orthogonal, or close-to-
orthogonal, to one another (with orthogonal defined as Hamming distance =  !"#$%&"'%

!
  - for a detailed statistical 

analysis see (8,37)). This property makes the model robust, as it is highly unlikely that any two elemental vectors 
will be confused with one another, despite their being distorted during the training process. In order to ensure 
consistency across experiments, we employed a deterministic variant of this approach in which the random number 
generator is seeded with a hash function derived from the term in question, which is described in more detail in (38). 

Given a context for training, the elemental vector for the ambiguous term and sense in this context are combined 
with one another to generate a bound product. We will refer to this binding operation using the symbol ⊗ . With the 
BSC, binding is accomplished using pairwise exclusive OR (XOR), which is its own inverse. However, to maintain 
consistency with other hyperdimensional computing approaches we will use the symbol    to refer to the inverse of 
binding. The bound product representing the ambiguous term and its specific sense is added to the semantic vectors 
of the other terms that co-occur with the ambiguous term in this context (for example, other terms in the same 
sentence). These are initially zero, but acquire information as training proceeds. With the BSC, addition of binary 
vectors is accomplished by counting the number of 1’s and 0’s added in each dimension, and assigning a 1 to the 
superposed product, if the number of 1’s is greater. In the case that the number of 1’s and 0’s are tied, 1 or 0 is 
randomly assigned. When this has occurred for all contexts, ambiguous terms, and senses, training is complete.  

When a new context is encountered, the semantic vectors for the terms in this context are added together, and the 
inverse of the binding product is applied to this cumulative context vector. As shown with the symbolic 
representation below, we would anticipate the result of this operation approximating the vector representing the 
context-appropriate sense of the term concerned. In symbols, the key operations of the BSC-WSD are as follows: 

Training: for every other term in the training context 

  𝑆 𝑡𝑒𝑟𝑚   += 𝐸 𝑠𝑒𝑛𝑠𝑒   ⨂  𝐸(𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠  𝑡𝑒𝑟𝑚)   

 

Testing: for a newly encountered context  

  𝑆(𝑐𝑜𝑛𝑡𝑒𝑥𝑡) = 𝑆(𝑡𝑒𝑟𝑚!)!
!!!   

  𝑆 𝑐𝑜𝑛𝑡𝑒𝑥𝑡   ⊘   𝑆(𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠  𝑡𝑒𝑟𝑚) ≈ 𝐸 𝑠𝑒𝑛𝑠𝑒    

The vector product  S(context)S(ambiguous term)  is compared with the vectors representing each sense of the 
term concerned, and the sense with the most similar vector representation to this product is selected.  

BSC-WSD with 32,768 dimensions was applied with three different settings (orientation, log weighting and distance 
weighting). In some experiments, we modified the basic BSC-WSD algorithm to encode the direction of a term 
relative to the target term using permutation of the bound product during training, and reversing this permutation 
during testing (Orientation-based BSC-WSD in Table 1). The permutations utilized involved shifting every block of 
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64 bits one position to the right (P+1) or left (P-1). For terms to the left of the target term during training,
S(term)+ = P−1{E(sense)⊗E(ambiguous term)} and during testing S(context)+ = P+1{S(term)} . For simple 
discrimination from the left orientation, the orientation of terms on the right was encoded by exclusion and no 
permutation was required. 

We tested two other settings of the BSC-WSD algorithm. One differentiation involved weighting words in 
accordance with their statistical distributions across the corpus and distance from the target word (Weighted and D-
Weighted BSC-WSD in Table 1). The other involved changing the mapping method used in the testing phase (One-
to-one or One-to-all mapping of BSC-WSD in Table 1). In the first case, words the semantic context vectors 
constructed during the test phase are weighted in accordance with their local and global frequencies using the log-
entropy weighting metric (39), and additions to the semantic term vectors of surrounding terms are weighted using 
the local “log” component of this metric during the training phase. Entropy-based BSC-WSD offers more weight to 
words with high local frequencies (the local “log” component), and less to words with high global frequencies (the 
global “entropy” component). In addition, additions during both phases are weighted depending on the distance 
between the term concerned and the target word. In other words, the closest word to the target acronym/abbreviation 
has a highest weight within a single context. 

The log-entropy weighting for individual term was calculated as follows: 

𝐺𝑙𝑜𝑏𝑎𝑙  𝑤𝑒𝑖𝑔ℎ𝑡   𝑖 = 1 +
𝑝!"𝑙𝑜𝑔! 𝑝!"

𝑙𝑜𝑔!𝑛!

  𝑤ℎ𝑒𝑟𝑒, 

𝑝!" =   
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  𝑜𝑓  𝑡𝑒𝑟𝑚  𝑖  𝑖𝑛  𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡  𝑗

𝐺𝑙𝑜𝑏𝑎𝑙  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  𝑜𝑓  𝑡𝑒𝑟𝑚  𝑖
 

𝐿𝑜𝑐𝑎𝑙  𝑤𝑒𝑖𝑔ℎ𝑡   𝑖, 𝑗 = 𝑙𝑜𝑔  (1 + 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  𝑜𝑓  𝑡𝑒𝑟𝑚  𝑖  𝑖𝑛  𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡  𝑗) 

𝐿𝑜𝑔  𝑒𝑛𝑡𝑟𝑜𝑝𝑦   𝑖, 𝑗 =   𝐺𝑙𝑜𝑏𝑎𝑙  𝑤𝑒𝑖𝑔ℎ𝑡   𝑖   ×  𝐿𝑜𝑐𝑎𝑙  𝑤𝑒𝑖𝑔ℎ𝑡  (𝑖, 𝑗) 

 

The distance weighting was calculated as follows: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 =   𝐿𝑜𝑔  𝑒𝑛𝑡𝑟𝑜𝑝𝑦   𝑖, 𝑗 ∗
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑓𝑟𝑜𝑚  𝑡𝑒𝑟𝑚  𝑖  𝑡𝑜  𝑡𝑎𝑟𝑔𝑒𝑡  𝑡𝑒𝑟𝑚  𝑖𝑛  𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡  𝑗
 

 

Another setting involved the sense-mapping method. The BSC-WSD algorithm is restricted to finding a sense within 
senses of the particular abbreviation only (One-to-one mapping of BSC-WSD in Table 1) in the test phase. In other 
words, the BSC-WSD algorithm can limit the scope of senses for categorization to those that are relevant to the 
individual target term, or use a single set of vectors containing all of the senses of all of the ambiguous terms in the 
set for convenient search. In the latter case, randomly occurring overlap between elemental vectors results in a small 
probability that the vectors representing the senses of other target terms will be retrieved instead of the vector 
representing the relevant sense of the target term. We would anticipate this noise leading to a small drop in 
performance, in exchange for the convenience of maintaining a common search space that addresses all ambiguous 
terms. When BSC-WSD deals with the senses of all ambiguous terms simultaneously, it can be considered as a one-
to-all mapping method. On the other hand, if BSC-WSD constrains its scope to the senses of one target abbreviation, 
the classification task corresponds to the approach taken with other commonly applied methods of supervised ML, 
as it functions as a one-to-one mapping method. In practice, with the BSC-WSD the difference between these 
approaches is minimal, as one-to-one mapping is accomplished by restricting the search space in the test phase to 
those senses related to the term in question by incorporating a single “if” statement (if the term is stored with the 
sense vector concerned) without changing the training process. However, the one-to-one approach provides the 
grounds for a fair comparison with our baseline methods, as only the senses of the term in question are considered as 
possibilities for classification. 
For the system evaluation, accuracy is reported in 10-fold cross-validation settings. Accuracy can be calculated as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑  𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ∗ 100

𝑡𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑠𝑎𝑚𝑝𝑙𝑒𝑠
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Table 1. Best performance of baseline algorithms in comparison with different BSC-WSD settings 

 
 
Word 

Baseline BSC-WSD 

Majority 
Sense  NB 

SVM 
(cost=1 & 

epsilon=0.5) 

Oriented & 
Weighted 

(one-to-one) 

Oriented & 
D-Weighted 
(one-to-one) 

 Oriented & 
Weighted 

(one-to-all) 

Oriented & 
D-Weighted 
(one-to-all) 

AB  69.00 96.20 96.80 95.80 96.40 95.80 96.40 
AC  17.80 90.40 92.00 94.40 94.60 94.40 94.20 
ASA  80.80 94.40 97.40 96.20 95.40 95.20 93.80 
AV 74.80 95.00 97.40 96.60 98.00 96.60 98.00 
AVR  76.20 95.60 94.80 94.40 95.80 94.40 95.00 
BAL  91.40 95.60 95.80 93.00 93.20 92.40 92.40 
BK  68.60 98.20 97.00 98.40 99.00 98.40 99.00 
C&S  86.80 98.00 99.20 98.80 99.00 98.00 98.60 
C3  42.00 95.00 94.80 97.60 97.00 97.60 96.80 
C4  52.20 94.80 93.80 96.60 95.60 96.00 95.60 
CA  78.20 95.40 95.80 90.00 93.80 89.80 93.20 
CDI  24.80 95.40 97.40 95.40 97.00 95.40 96.60 
CEA  88.80 95.60 95.40 93.60 95.00 93.60 94.60 
CTA  79.20 96.20 96.60 97.80 97.00 96.80 96.20 
CVA  55.60 96.80 97.80 97.20 95.80 96.60 95.20 
CVP  87.20 97.20 94.80 95.40 94.80 95.40 94.20 
CVS  91.40 89.00 90.00 91.00 91.40 90.40 90.20 
DC  56.40 88.20 92.20 89.40 91.60 89.00 90.60 
DIP  92.40 97.20 98.00 96.80 97.40 96.60 97.20 
DM  57.20 94.80 95.60 95.40 96.00 95.40 95.40 
DT  67.20 90.60 93.20 93.80 93.60 93.00 93.00 
ER  89.60 98.60 98.60 95.40 97.80 95.20 97.60 
FISH  89.80 99.60 98.40 99.20 99.20 99.20 99.20 
IM  92.20 97.80 98.40 99.20 99.20 99.20 99.00 
IR  78.80 97.60 96.60 98.20 98.60 98.20 98.40 
IT  45.00 88.00 87.80 88.20 91.80 87.80 91.20 
IVF  61.60 95.00 91.80 94.60 95.00 94.40 94.20 
LE  69.00 95.20 93.60 93.20 93.00 93.20 92.40 
MP  35.80 68.20 66.40 65.80 68.80 65.40 68.60 
MR  62.80 94.60 91.40 94.80 95.40 94.60 95.40 
MSSA  83.60 95.40 94.80 94.80 94.80 94.80 94.80 
NAD  75.40 94.40 93.20 93.20 95.00 90.40 90.60 
OP  61.60 94.60 95.40 95.40 95.80 68.20 90.40 
OTC  93.80 91.60 96.80 96.40 97.20 95.60 95.60 
PA  42.40 93.00 93.40 89.00 94.40 89.00 94.20 
PAC 55.00 92.60 93.00 93.60 95.40 93.60 95.20 
PCP  58.80 89.80 89.40 86.40 91.20 86.40   91.00 
PDA  72.20 91.60 88.40 90.00 92.20 90.00 91.60 
PE  81.60 93.40 99.20 98.40 98.40 98.20 98.40 
PR  50.40 96.40 96.40 95.00 96.00 94.80 95.80 
RA  78.80 90.40 90.40 88.80 90.20 88.00 89.60 
RT  67.20 91.60 93.80 92.40 93.20 92.20 92.20 
SA  74.60   95.40 94.80 93.80 95.40 93.40 94.80 
SBP  83.40 95.80 96.00 96.00 95.80 95.80 95.20 
SMA  70.60 90.20 88.40 85.60 88.60 85.60 88.60 
T1  35.00 91.40 90.00 93.00 94.40 93.00 94.40 
T2  45.40 89.80 88.20 84.80 90.40 84.80 90.40 
T3  53.60 93.40 91.40 92.40 91.40 92.00 91.00 
T4  84.80 96.60 95.20 95.20 95.60 95.00 95.20 
VBG  59.80 94.20 95.40 95.60 96.00 93.80 94.20 
Average 67.81 93.72 93.85 93.52 94.55 92.65 93.91 
* Oriented: Orientation-based BSC-WSD 
* Weighted: Entropy-based BSC-WSD 
* D-Weighted: Entropy-based BSC-WSD with distance weighting  
* One-to-one: one-to-one mapping method of BSC-WSD 
* One-to-all: one-to-all mapping method of BSC-WSD 
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Result  

When considering BoW features only without orientation, SVM classifiers (with optimized parameter cost as 1 and 
epsilon as 0.5) offer the best performance with an average accuracy of 93.85%, as compared with NB classifiers’ 
average accuracy of 93.72% across all 50 acronyms and abbreviations. NB classifiers show better sense 
disambiguation than Majority Sense classifiers, which have an average accuracy of 67.81%. The entropy-based 
BSC-WSD algorithm with distance weighing with sentence-level BoW features has an average accuracy of 92.56% 
(one-to-one mapping) and 91.61% (one-to-all mapping), although in 13 of 50 abbreviations (10 cases for one-to-one 
BSC-WSD and 3 cases for one-to-all BSC-WSD) it shows the best accuracy over all classifiers when considering 
BoW features exclusively. 

With regard to orientation/direction of BoW, the average accuracy of SVM classifiers (with optimized parameter 
cost as 1 and epsilon as 0.3) and NB classifiers slightly decreased in performance to 93.54% and 92.79%, 
respectively. Table 1 represents the performance of the novel permutation-based variant of the BSC-WSD algorithm 
that takes into account the orientation/direction, and at times the distance of the BoW features relative to the target 
term. The best average accuracy is 94.55% using entropy-based distance weighting and one-to-one mapping with the 
BSC-WSD algorithm. In the case of entropy-based distance weighting and one-to-all mapping, the BSC-WSD 
algorithm has an accuracy of 93.91%. The BSC-WSD algorithm with one-to-one mapping shows 31 of the best 
individual performances among 50 sets over all classifiers. In case of the BSC-WSD algorithm with one-to-all 
mapping, it shows 9 of the best individual performances.  

The results of the BSC-WSD algorithm (oriented, entropy-based distance weighting and one-to-one mapping) 
exceed the best performance of the SVM and NB algorithms. According to the Wilcoxon signed-rank test between 
the best results from SVM and NB algorithms (without orientation and with optimized parameter cost as 1 and 
epsilon as 0.5) and individual results from the oriented and weighted one-to-one mapping BSC-WSD algorithm, 
these improvements are statistically significant (p = 0.008 between BSC-WSD and SVM, p = 0.003 between BSC-
WSD and NB). 23 of the 50 abbreviation sets show the best performance with this BSC-WSD algorithm over all 
classifiers. There is no statistically significant difference between the one-to-all BSC-WSD algorithm (oriented, 
entropy-based with distance weighting) and the best SVM algorithm (without orientation and with optimized 
parameter cost as 1 and epsilon as 0.5), though the performance of BSC-WSD is still superior with this mapping. 

Different settings of the BSC-WSD algorithm present independent improvements of performance. The performance 
with orientation-based, log entropy-based, and log entropy-based with distance weighting BSC-WSD were 
improved by 1.06%, 1.60%, and 1.70% respectively as compared with the basic BSC-WSD algorithm (which had an 
average accuracy of 90.86%).  

 

Discussion and limitation 

This paper demonstrates the application of the supervised BSC-WSD algorithms to disambiguate 50 abbreviations in 
clinical texts with various settings. By taking into account the orientation/direction of BoW features relative to the 
target term, our novel permutation-based variant of the BSC-WSD algorithm shows significantly better performance 
than SVM and NB algorithms. Furthermore, the one-to-many mapping-based BSC-WSD algorithm can 
disambiguate 50 acronyms and abbreviations with reasonably high accuracy. This offers an advantage over common 
supervised ML algorithms, where an independent classifier must be trained for each term.  

Several other features were applied in an attempt to improve performance. However, performance was not improved 
in the disambiguation task. Mapped CUIs information and semantic information utilizing MetaMap resulted in a 
slight deterioration of the overall performance of BoW features. These phenomena may be explained by the fact that 
these features are originally based on BoW features. Adding additional information did not appear to add valuable 
information. Another possible explanation is that limited clinical term coverage (2), inconsistences and ambiguous 
concepts within the UMLS (5,40) negatively affected the overall performance. Combining BoW features with 
section header information from clinical texts also did not improve the performance. Different expressions of word 
form or inconsistent levels of hierarchy for section header information may introduce additional noise into the 
disambiguation process. Therefore, we are investigating the use of controlled terminologies of section headers such 
as SecTag (41).  

As we considered as a context the sentence containing the acronym concerned, the presence of clinical texts 
containing many fragmented sentences may be a potential limitation (42) in our study. Clinical “sentences” are often 
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ungrammatical and some of them lack periods. Moreover, formatting of note style may be different depending on 
the preference of each individual author. For example, one physician may prefer to enter a space between a section 
header and the remaining context, while another may tend to use tabulation to distinguish them. These incomplete 
sentence structures and different styles of writing cause difficulties for detection of consistent sentence boundaries, 
and these inconsistent sentence boundaries may damage the extraction of minimal contextual information for one 
sentence. However, this limitation would affect all algorithms tested. 

Finally, there is a trade-off with respect to one parameter, the dimensionality used for the BSC-WSD algorithm. 
Performance remained strong at lower dimensionality also, with performance improvements over NB and SVM 
retained with vectors of 4,096 bits (the average accuracy of 94%). This reduction in dimensionality improves 
computational efficiency, as the average time for training scales at a rate that is linear to the dimensionality of the 
vectors (approximately 84 seconds per fold at 32K at 8 seconds per fold at 4K in our experiments).  

 

Conclusion 

This paper presents the application of the BSC-WSD algorithm to disambiguate acronyms and abbreviations in the 
clinical domain. The BSC-WSD algorithm without any parameter optimization shows competitive performance with 
common supervised ML algorithms. This is consistent with previous evaluations using a smaller test set derived 
from the biomedical literature. In addition, we developed a novel permutation-based variant of the algorithm that 
considers the orientation/direction and distance of BoW features with respect to the target term, further improving 
the performance of the algorithm. The best performance significantly outperforms the best performance obtained 
with the SVM and NB algorithms. Furthermore, the BSC-WSD algorithm creates one model for all 50 abbreviations 
to deal with sense disambiguation, presenting a convenient alternative to other supervised ML algorithms. While 
overall accuracy was similar across algorithms, we note that the performance across examples of the baseline 
algorithms was more strongly correlated with the performance of the majority sense approach (r=0.43 and 0.44 for 
NB and SVM respectively, as compared with r=0.33 (one-to-one mapping) and 0.31 (one-to-all mapping) for BSC-
WSD). This suggests that the BSC-WSD approach may offer an advantage when the training examples for each 
sense are evenly distributed. The BSC-WSD algorithm is conceptually very different from the baseline approaches. 
Rather than defining a classifier for each ambiguous term, the information required to disambiguate all of the 
ambiguous terms encountered is dispersed across a set of semantic vectors representing other terms in the corpus. 
When a new context is encountered, a vector similar to the elemental vector used to encode the relevant sense is 
extracted from the superposition of the semantic vectors for the terms in this context. The fact that this approach 
appears to perform effectively in a manner that is complementary to established approaches suggests it represents a 
promising new avenue for WSD research. 
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