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Abstract 

The biomedical literature presents a uniquely challenging text mining problem. Sentences are long and complex, the 
subject matter is highly specialized with a distinct vocabulary, and producing annotated training data for this 
domain is time consuming and expensive. In this environment, unsupervised text mining methods that do not rely on 
annotated training data are valuable. Here we investigate the use of random indexing, an automated method for 
producing vector-space semantic representations of words from large, unlabeled corpora, to address the problem of 
term normalization in sentences describing drugs and genes. We show that random indexing produces similarity 
scores that capture some of the structure of PHARE, a manually curated ontology of pharmacogenomics concepts. 
We further show that random indexing can be used to identify likely word candidates for inclusion in the ontology, 
and can help localize these new labels among classes and roles within the ontology.  

 

Introduction 

Biomedical text mining algorithms typically require normalization: mapping the diversity of natural language to a 
smaller set of canonical concepts or “features”. This feature reduction process is critical for prediction, since the risk 
of overfitting to a particular training set goes up as the number of features increases.  

In many biomedical applications, terms are normalized using a manually-constructed ontology. For example, the 
PHARE (PHArmacogenomic RElationship) ontology normalizes pharmacogenomic relationships observed in text 
(Figure 1) [1]. PHARE includes rules for recognizing relationships in sentences; it extracts pharmacogenomic 
relations with 80% precision. Coulet et al used PHARE to extract and normalize over 40,000 relationships among 
drugs, genes and phenotypes [2]. Later work used PHARE-normalized gene-drug relations to predict drug-drug 
interactions [3].  

Ontology-based normalization works well for many purposes. However, as the volume of the scientific literature 
grows, and especially as biomedical text mining enters new domains like clinical text, patient forums on the Internet, 
and the patent literature, it becomes increasingly costly to construct domain-specific ontologies like PHARE. At the 
same time, unsupervised algorithms that can assess word and phrase similarity automatically based on usage 
patterns in large corpora become increasingly attractive. In particular, there has been much recent interest in the use 
of automated natural language processing methods to learn the structure of biomedical ontologies [4]. 

Here we compare the structure of PHARE to the structure predicted using a popular method for unsupervised word 
similarity assessment called random indexing. We show that the word pair similarities predicted by random indexing 
correlate significantly with the words’ relative positions within PHARE. We further examine the degree to which 
random indexing could be expected to “reproduce” PHARE; that is, to assign PHARE’s word labels to the 
appropriate concepts and roles within the ontology. Although random indexing, at least as it was applied here, is not 
sufficient to fully reproduce the PHARE ontology, we conclude that it shows promise for identifying candidate 
terms for inclusion in future versions of the ontology. Future work will also explore the intriguing possibility that 
applications where normalization is critical, such as biomedical sentence alignment, might benefit from the use of 
distributional methods rather than rules-based approaches like domain-specific ontologies.  

 

Background 

The PHARE ontology 

The (PHARE) ontology was created in 2010 by Adrien Coulet and colleagues at Stanford University. The 
researchers extracted approximately 40,000 raw relationships (verbs and nominalized verbs) among 3007 drugs, 41 
genes and 4202 phenotypes from biomedical sentences and identified the 200 most frequent relationship types from 
within this set. They then manually merged similar relationship types into conceptual “roles” and organized these 
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roles in a hierarchy [1]. They repeated this process for the nouns most often modified by drug and gene entities, such 
as “expression” and “polymorphism”, creating a hierarchy of modifier “concepts”. Finally, they defined a set of 
rules for application of the roles and concepts to drug, gene, and phenotype terms found in real English sentences. In 
particular, they limited the application of certain roles and concepts to certain classes of entities. (“Polymorphism”, 
for example, was only permitted to modify gene names, not drug or phenotype names.) The English words that map 
to each concept and role are called “labels”. The final version of PHARE consists of (a) a hierarchy of roles, (b) a 
hierarchy of concepts, and (c) a set of labels associated with each role or concept. 

Recently, we investigated the degree to which pharmacogenomic relationships of interest described in PubMed 
sentences conformed to the grammatical structures PHARE is able to recognize. We found that although PHARE is 
excellent at extracting relationships of that form (nearly 100% sensitivity), its recall on interesting 
pharmacogenomic relationships as a whole is quite low. Of 72 sentences describing an inhibitory relationship 
between itraconazole and CYP3A4, for example, PHARE was able to extract only 2 relations. We have estimated 
PHARE’s overall recall at approximately 30%, though this number has high variance depending on the specific 
nature of the drug-gene relationship involved. We concluded that to extract all useful pharmacogenomic 
relationships from Medline sentences, we would need to account for greater variability in sentence structure and 
phrasing than PHARE currently supports. As a first step in expanding PHARE’s coverage, we decided to 
experiment with automated techniques for identifying other potential labels and their likely locations within 
PHARE. 

Random indexing 

Vector space models of semantics have gained prominence in the text mining community as a way to teach 
computers the “meaning” of words and phrases. They represent each word as a vector that is constructed based on 
how the word is used in context; there are endless variations for how best to determine and construct these context 
vectors, each of which captures a slightly different aspect of word meaning [5, 6]. This work dates back to the 
1990s, when some of the earliest methods – Latent Semantic Analysis (LSA) [7] and Hyperspace Analogue to 
Language (HAL) [8] – were invented. One popular approach that has emerged more recently is random indexing, 
which builds similar vector space representations to LSA and HAL, but is more computationally efficient [9].  

In random indexing, each word in a corpus is assigned a random, sparse  “elemental” vector. The “dimension” of 
this vector is its length, and the “seed length” is how many of the terms in the vector are nonzero; typical values for 
dimension and seed length are 100-1000 and 5-20. An elemental vector is built by initializing all of its elements to 
zero and then randomly assigning s/2 “+1” elements and s/2 “-1” elements, where s is the seed length. After the 
elemental vectors are assigned, a “context vector” is built for a particular target word by adding together the 
elemental vectors from words that occur within some pre-specified radius (“window width”) of the target word. It is 
important at this stage to distinguish the elemental from the context vectors: elemental vectors are randomly 
assigned, and context vectors are built for each word using the elemental vectors of the other words that surround it. 
It is the context vectors that will be used to compare word meanings.  

Figure 1: An example of relation normalization using PHARE. Here two sentences that look very different on the 
surface are mapped to the same normalized “fact”. 
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The process for building the context vectors is simple: one moves through the corpus with a bin of width 2w+1, 
where w is the window width, and adds elemental vectors for all words within the bin to the context vector for the 
word in the middle. These added elemental vectors may additionally be weighted according to some predefined 
metric, such as their corresponding words’ overall frequencies in the corpus. Finally, the context vectors are 
normalized to unit length. To evaluate the similarity of two words, one calculates the cosine similarity of the context 
vectors corresponding to those two words. The cosine similarity is a unitless metric between -1 and 1; more similar 
words have cosine similarities closer to 1.  

Encoding word order 

Different variants of random indexing encode word order for surrounding terms in context vectors in different ways. 
The most basic version ignores it completely; elemental vectors for all words within the bin are added directly to the 
context vector for the word in the middle. More elaborate versions use convolution [10] or permutations [11] to 
encode word order.  

 

Methods 

Data set construction 

We extracted all sentences from Medline 2012 that mentioned a drug and a gene and were between 4 and 50 words 
in length (approximately 95% of all sentences in Medline fell within this range). Drug and gene mentions were 
established using simple string matching and lexicons of drug and gene terms from PharmGKB [12]. We included 
only single-word drug and gene names for simplicity. We manually removed several common words that were 
accidentally included in the lexicons and were not actually drugs or genes (such as “enzymes”, “glycine”, and 
“vaccines” for drugs; “dehydrogenase”, “protease”, and “murine” for genes). The final lexicons included 1470 
unique drug strings and 37,922 unique gene strings. Our final corpus consisted of 494,804 sentences. 

The Semantic Vectors package 

We used the Java-based Semantic Vectors package [13] to construct vector representations of all words occurring at 
least three times in our corpus. Semantic Vectors is a convenient implementation of random indexing based on 
Apache Lucene. We varied the window size, vector dimension and seed length to evaluate how much these 
parameters affected our representations, and to find the combination that created the optimal vectors for our task. 
We also evaluated the means by which word order was encoded: “basic” vectors did not encode word order, “drxn” 
vectors encoded only the direction associated with a context word (before or after the target word), and “perm” 
vectors used permutations to encode the relative position of each context word relative to the target word. The 
degree of semantic similarity between two [unit-normalized] vectors was calculated using cosine similarity as 
described above. 

Calculating concordance with the PHARE ontology 

We wanted to see how well similarity scores for word pairs calculated using random indexing corresponded to those 
words’ semantic relatedness within PHARE. Because we could not calculate the semantic relatedness of PHARE’s 
concepts and roles directly using random indexing (since they are not English words), we instead calculated pairwise 
similarity scores between all concept labels, and independently, all role labels, in PHARE. We also wanted to 
determine whether a particular formulation of the semantic vectors we generated (such as a particular window width, 
dimension, or seed length) optimized the vectors’ concordance with the structure of the PHARE ontology. We tested 
all combinations of the following: window widths 1, 3, and 5, vector dimensions 50, 100, 150, 300, 500, and 1000, 
word order encodings “basic”, “drxn”, and “perm”, and seed lengths 4, 10, and 20. 

We hypothesized that high similarity scores would correspond to close ontological relationships, meaning larger 
numbers of common ontological parents. For each label pair, we measured (a) the cosine similarity of its two labels’ 
context vectors and (b) the number of common ontological parents for the labels in that pair (traversing the ontology 
upward until we reached the root node). We then repeated these measurements for all concept label pairs and, 
separately, all role label pairs in the ontology. We used the Kendall-Tau nonparametric correlation coefficient, 
specifically the implementation in R’s “stats” package, to test the correlation between cosine similarity and number 
of common ontological parents separately for both concepts and roles. Unfortunately, the algorithm for calculating 
the Kendall-Tau coefficient is O(n2); because the number of data points in our experiments was so large and the 
number of ties so high, and because we performed many different trials with different parameter values for our 
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semantic vectors, calculating the full Kendall-Tau coefficient for each trial took too long. We therefore used 1000-
point bootstrap samples of our data and repeated the calculation of the Kendall-Tau coefficient 100 times for each 
sample; here we report the medians of those results. For all subsequent analyses, we used the best performing 
vectors, the specific formulation of which differed for roles and concepts. 

Reassigning labels within the ontology 

Next, we evaluated how well random indexing could localize labels within the ontology. We removed each concept 
or role label from the ontology, one at a time. (Call the removed label L, and call its corresponding context vector 
VL.) We then evaluated VL’s (a) mean and (b) maximum cosine similarity with the vectors for the remaining labels 
from each ontological group (a concept, if L was a label for a concept, or a role, if L was a label for a role). We 
ranked the groups according to their label vectors’ similarity with VL to ascertain which concepts or roles L was 
most likely to belong to. The result was a ranked list of candidate concepts or roles for each L. Ideally, the correct 
concept/role assignment for each label would rise to the top of its ranked list of candidates.  

There are 228 concepts and 77 roles in the PHARE ontology. However, if a role was the passive-voice version of 
another role (“isInducedBy”, rather than “induced”) it was excluded from our analysis and its labels added to the 
active form version of the role. We therefore evaluated our performance on 54 of the 77 original roles. 

Identifying new word candidates for inclusion in PHARE 

Finally, we wanted to see if our semantic vectors could be used to efficiently augment the PHARE ontology. 
PHARE only incudes a few hundred of the most common role and concept labels found in Medline; since its 
precision is only 80%, there are likely other reasonable labels that it missed. We wanted to see which other words 
might logically be added as labels to each concept and role. As a preliminary investigation of this possibility, we 
compared the vectors for each non-ontology term to all known label vectors from the ontology. For each concept or 
role label within the ontology, we found the top non-ontology term whose semantic vector best matched its own. 
This led to a ranked list of possible ontology candidates, ordered by their similarity to a current label in the 
ontology. For role labels, we restricted our list to verbs or nominalized verbs. For concept labels, we restricted our 
list to nouns (nominalized verbs, like “identification”, were also acceptable here). We then manually reviewed the 
lists for the most likely “ontology augmentation candidates”. 

 

Results 

Figure 2 shows the results of our initial experiments to ascertain which type of semantic vector, generated by 
random indexing, best captured the structure of the PHARE ontology. As described in the Methods, we evaluated a 
variety of different vector types (window widths, dimensions, word order encodings and seed lengths) to see which 
led to the highest Kendall-Tau correlation between X = cosine similarity of label vectors and Y = number of 
common parents for those labels within the ontology. No matter what type of semantic vector we constructed, the 
correlation between X and Y was significant at the 95% confidence level; the best performing vectors had median 
correlations of 0.108 (p = 0.00121; concepts) and 0.165 (p < 0.0001; roles). Interestingly, the window widths 
associated with the best-performing vectors differed between concept and role labels. Concept labels correlated most 
highly with ontology position when a window width of 5 was used, while role labels were just the opposite; the 
correlation was highest with a window width of 1. Intuitively, this makes sense; concepts are nouns and roles are 
verbs, so one might speculate that most of the information about verbs is contained within the words immediately 
preceding and following them, while nouns’ meaning depends on the more general “theme” of the sentence. 

Figure 2. Bar plots of correlations between number of common parents in ontology and distributional similarity 
scores for (left) concepts and (right) roles. Each bar represents a different type of semantic vector. Orange bars 
represent vectors with width 1, gray width 3, and blue width 5. 
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Table 1. Examples of high-ranking pairs of concept labels from drug-gene sentences, ordered by cosine similarity. 

Concept Label 1 Concept Label 2 Cosine Similarity Score 
inhibition suppression 0.983 
downregulation upregulation 0.982 
incidence prevalence 0.981 
assessment evaluation 0.977 
pharmacokinetics disposition 0.974 
association interaction 0.973 
inactivation inhibition 0.973 
tolerability safety 0.972 

 

Table 2. Examples of high-ranking pairs of role labels from drug-gene sentences, ordered by cosine similarity. 

Role Label 1 Role Label 2 Cosine Similarity Score 
investigate examine 0.999 
assess evaluate 0.999 
suggest indicate 0.997 
alter affect 0.996 
modulation inhibition 0.992 
suppress stimulate 0.990 
inhibit prevent 0.988 
catalyzed catalysed 0.986 

 
Some examples of highly similar concept and role labels, where similarity was assessed using the cosine similarity 
of the respective words’ vectors, are shown in Tables 1 (concepts) and 2 (roles). The semantic relatedness of most of 
these word pairs is obvious. However, we do notice one peculiarity of the random indexing approach, which is that 
antonyms are not separated; in fact, antonyms have a high similarity score. This makes sense when one considers the 
nature of random indexing’s context vector assembly process; there is no context where “downregulation” occurs in 
which “upregulation” could not also occur. However, it does raise a red flag in terms of random indexing’s ability to 
reproduce the structure of the PHARE ontology; in the “role” portion of the ontology, for example, “induces” and 
“inhibits” live on separate branches. Random indexing could potentially localize them only to within the same 
parent branch, “regulates”.  

Our results for the “label reassignment” portion of our assessment are shown in Figure 3. The graphs display four 
lines: “specific-avg” and “specific-best” contain the number of correct concept/role assignments for labels that 
occurred within the top k items on their ranked lists (where k is the “Ranked List Position” value on the horizontal 
axis). The avg/best designation refers to the way in which the concept/role assignments were ranked; in the “avg” 
case, we calculated the test label’s similarity to all labels within a concept/role and took the mean of those values as 
our match score for that concept/role. In the “best” case, we took the maximum of those values. Practically 
speaking, this means that if a test label was highly similar to only one member label of a concept/role, that 
concept/role would be ranked highly in the “best” case but not in the “avg” case. 

The “specific” vs. “parents” designation in Figure 3 refers to what we counted as a “hit”. In the “specific” case, a 
concept/role label was considered correctly classified by position k only if its most specific matching concept/role 
appeared on the ranked list by that point. In the “parents” case, the most specific concept/role or one of its parent 
concepts/roles in the ontology could appear. We simply wanted to see whether some of our missed assignments 
were the result of the test label’s being assigned to a more general super-class of the correct concept/role, which 
would be less of a problem than if it were assigned to an entirely incorrect part of the hierarchy.  

Of the 602 concept labels we examined, 104 (17.3%) were correctly classified (i.e. the correct role was first on the 
ranked list) when the “best” method was used to assign the matches, and 17 (2.8%) were correctly classified when 
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the “avg” method was used. This seems to indicate that often a label will be distributionally similar to some, but not 
all, other labels within its concept/role. Of the 319 role labels we examined, 94 (29.5%) were correctly classified 
when the “best” method was used and 25 (7.8%) were correctly classified when the “avg” method was used. If we 
relax our restriction on the concept/role assignment such that a parent of a given concept/role is also acceptable, 443 
(73.6%) of concept labels are assigned correctly for “best” and 20 (3.3%) for “avg”, and 194 (60.8%) of role labels 
are assigned correctly for “best” and 31 (9.7%) for “avg”. 

In addition, performance increases if we consider assignments beyond rank position #1. Considering only the “best” 
assignment methods, since those seem to outperform “avg” at every turn, 234 (73.4%) of correct role labels and 420 
(69.8%) of correct concept labels occur in the top 20% of the labels’ ranked lists. 

The final part of our analysis sought to identify those terms, not currently part of the ontology, that would make 
good candidates for inclusion as labels, and to localize those new labels within the ontology. Tables 3 and 4 show 
the best candidates, evaluated in terms of the criteria described in the Methods. Some of these terms, such as 
“tumors” and “combinations” in Table 4, were minor variants of other words that were already present in the 
ontology. In the case of both “tumors” and “combinations”, their respective singular forms (“tumor”, 
“combination”) were already present as labels within the concepts assigned to them using random indexing. 
Findings like this boosted our confidence in random indexing considerably. Many of our findings from Tables 3 and 
4 are already under review for possible inclusion in future versions of PHARE. However, so as not to over-sell this 
method to the reader, we have also included some errors in Tables 3 and 4. “Capillary” was the highest-similarity 
word to “gel”, for example, probably due to their common proximity to the relatively uncommon word 
“electrophoresis”, but “gel”’s corresponding concept in the ontology is “TopicalFormulation”. Similarly, because 
“treated” is often used to describe chemical treatment of cell cultures in our corpus, it matched closely with 
“pretreated”, while in PHARE “treated” is only permitted to describe a drug’s treatment of a disease. A similar 
problem occurs for “incubation” and “treatment”. 

It is interesting to note that training semantic vectors on domain-specific corpora like our ~500,000 drug-gene 
sentences seems to yield an increase in the specificity with which word senses are represented. For example, a 
context vector for the word “given” trained on text from the Wall Street Journal probably would not share much 
similarity with one for the verb “administered”. However, because of the specific contextual cues found in drug-
gene sentences, “given”’s closest vector neighbor is indeed “administered”. This is because, in drug-gene sentences, 
to “give” something (a rat, a human) a drug is to administer that drug. There are not many other contexts within 
these sentences in which “given” is used. The same argument is probably also true for “cascade” and “pathway” 
(Table 4) and “uptake” and “transport” (Table 3).  

 

Figure 3. Correct concepts/roles found, by position in the ranked list. Separate graphs are shown for (left) roles and 
(right) concepts. The total number of concepts included here was 228 and the total number of roles was 54. 
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Table 3. Top 15 ontology augmentation candidates for roles. Errors are denoted by a gray background. 

Candidate Label Matching Role 
Label 

Cosine Similarity Role  
(Active Form) 

Candidate Label’s 
Occurrences in Corpus 

suppression inhibition 0.985 inhibits 2809 
ascertain determine 0.972 demonstrates 145 
abrogated abolished 0.960 suppresses 517 
impact influence 0.940 influences 1292 
infused injected 0.935 administers 911 
given administered 0.928 administers 5345 
uptake transport 0.926 transports 4813 
formed generated 0.881 produces 1128 
utilizing using 0.871 uses 325 
display exhibit 0.866 has 378 
underwent received 0.839 accepts 897 
verified confirmed 0.835 demonstrates 148 
documented established 0.794 demonstrates 567 
devised developed 0.755 produces 48 
maintain sustain 0.749 demonstrates 417 
pretreated treated 0.971 treats 1621 
incubation treatment 0.923 treats 2527 

 

Table 4. Top 15 ontology augmentation candidates for concepts. We include one example of a concept associated 
with the given concept label; there could have been more than one in the ontology, since labels are not unique for 
concepts. Errors are denoted by a gray background. 

Candidate Label Matching 
Concept Label 

Cosine 
Similarity 

Concept Candidate Label’s 
Occurrences in Corpus 

participation involvement 0.984 GeneProductFunction 246 
enhancement augmentation 0.97 Overexpression 1349 
tumors neoplasms 0.96 Cancer 3430  
utility usefulness 0.958 DrugEfficacy 371 
combinations coadministration 0.952 DrugTreatment 962 
estimation measurement 0.952 GeneAnalysis 221 
superfusion perfusion 0.949 DrugTreatment 150 
identification detection 0.943 PhenotypeAnalysis 575 
comparable similar 0.935 DrugAnalog 1472 
assembly formation 0.913 Synthesis 270 
cascade pathway 0.907 GenePathway 434 
protocol regimen 0.862 DrugTreatment 776 
perturbation modification 0.856 ChemicalModification 78  
chronic acute 0.822 DiseaseSeverity 8493 
reactivation recurrence 0.802 DiseaseRelapse 204 
capillary gel 0.621 TopicalFormulation 529 
summary conclusion 0.988 DrugEffect 494 
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Discussion 

Distributional semantics methods, specifically vector space representations of word and phrase meanings, have 
gained popularity in recent years as a scalable alternative to rules-based approaches to term and sentence 
normalization [4, 6, 14]. Here, in an attempt to evaluate the degree to which these techniques could augment or even 
replace our lab’s current ontology-based approach to pharmacogenomics sentence normalization, we examined how 
closely semantic word vectors generated using random indexing captured the overall conceptual hierarchy of the 
manually-generated PHARE ontology. We discovered that word pairs’ semantic vectors became increasingly similar 
as the words shared more common parents within the ontology. We also discovered that words could be assigned to 
reasonable concepts and roles within the ontology if we scored them based on their maximum similarity with other 
word labels within a given concept or role. We expanded this approach to assign some new word candidates that are 
not currently in the ontology to their most likely ontological locations.  

Correlation strength and its interpretation 

The relatively weak correlation between the proximity of word labels within the PHARE ontology and their vector 
space similarities is a strong indication that there is more information in the ontology than can be captured purely by 
looking at how words are used in context. For example, several of the ontological concepts and roles contained 
labels that were common terms, like “find”, that gained additional specificity by the rules PHARE provides on how 
they are to be applied to real biomedical sentences. Our investigations here take none of these “word sense” factors 
into account, aside from our selection of a training corpus in which the word senses in question are limited. To our 
semantic vectors, “established” (as in “established methods”) is the same as “established” (as in “established a new 
technique for”). This is a major limitation of the distributional approach used here; ambiguities like this were one 
reason PHARE was created.  

However, it is interesting to consider the degree to which these imperfections matter for real biomedical 
applications. For example, consider the two dependency parses shown in Figure 3. (A dependency parse is one 
technique for representing the deep grammatical structure of a sentence.) These parses are for the two example 
sentences shown in the normalization example in Figure 1. Noted biomedical relation extraction algorithms like 
RelEx [15] already use dependency parses in their analysis, but they apply manually-generated rules to them to 
extract relations of interest. (PHARE was also inspired by Coulet et al’s observation of common structural “motifs” 
in dependency-parsed biomedical sentences.) We immediately notice that the sentences in this figure are structurally 
similar, and that we might conceive of aligning the two dependency graphs and using vector space representations of 
word meanings to compare the quality of these alignments. This assessment of the sentences’ similarity would 
perform a task akin to normalization. In this case, even if “arthritis” and “tolerability” somehow ended up with 
similar distributional representations, it wouldn’t matter for the purposes of assigning the alignment score because 
they exist in different grammatical “places” within the two graphs. Alignment-based approaches like this are already 
common in the computer science literature; for example, in automatic essay grading [16] and entailment recognition 
[17]. So, practically speaking, even a weak distributional “signal” might be enough for some interesting 
applications. 

Figure 4. Dependency parses for the two example sentences shown in Figure 1. Because the structure of these 
sentences is so similar, one could conceive of using distributional semantics methods to establish an alignment 
between them, thus performing a task akin to normalization without the use of an ontology. 
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Additional limitations of our approach 

Our approach suffers from a few additional limitations that are worth mentioning. First, our corpus consisted of 
individual Medline sentences containing drug and gene names; we did not consider additional contextual cues from 
the rest of the abstracts. We did this in the interest of building semantic vectors that were as domain specific as 
possible; however, the lack of additional domain cues probably hurt us, especially with respect to concept 
assignments (which, as we observed, preferred wider bin widths).  

Second, as briefly alluded to earlier and as lamented frequently in the distributional semantics literature, our 
techniques did not capture the opposing nature of antonyms. As far as we know, there is no way to reliably 
distinguish antonyms using distributional means. 

In addition, our evaluation of word similarities, and our assignment of word labels to concepts and roles within the 
PHARE ontology, ignored much of the ontology’s deeper structure. For example, some concepts are only permitted 
to modify phenotypes, while others are only permitted to modify genes. We ignored this structure and compared the 
labels from these different concepts directly. This was done in the interest of quick exploration and simplicity, but 
restricting our comparisons to labels from specific concepts/roles could very well have improved our performance 
reassigning labels to PHARE. However, since the point of our study was to see how much the structure of PHARE 
could be captured without human intervention, we did not choose to restrict our analysis in this way. 

And finally, label assignments within PHARE are unique for roles but not concepts. This meant that a given label 
could have more than one concept associated with it, and it probably explains the huge increase in performance we 
experienced when we included parent concepts in our analysis in Figure 2. 

 
Conclusion 

Random indexing produces vector representations of words that correlate significantly with these words’ positions 
within a biomedical ontology. Although these representations do not capture all of the information contained in the 
ontology, they have several advantages. First, they are quick and easy to produce, and can easily be adapted to 
different corpora (Medline, other biomedical text, or specialized subsets of Medline such as the drug-gene sentences 
we examined here). Second, they seem to capture much of the semantic meaning of individual words, at least as 
those words are represented within the PHARE ontology, and they can be used to quickly and easily “bootstrap” 
connections to other words in the corpus that could be suitable for inclusion in the ontology. They can also provide a 
rough sense of where those words should be located within the ontology. And finally, and most importantly, 
construction and evaluation of these vectors requires no manual rule-making or annotation; the vectors are learned in 
an unsupervised manner from unlabeled text corpora. Although our explorations here are preliminary and much 
work remains to be done to fully establish the role of distributional semantics methods within biomedical text 
mining, increasing interest in this field within the biomedical community could lead to exciting new applications in 
the areas of named entity recognition, concept normalization, and specialized ontology building within 
bioinformatics.  
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