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Abstract 

Self-service database portals may improve access to institutional data resources for clinical research or quality 

improvement, but questions remain about the validity of this approach. We tested the accuracy of data extracted 

from a clinical data repository using a self-service portal by comparing three approaches to measuring medication 

use among patients with coronary disease: (1) automated extraction using a portal, (2) extraction by an experienced 

data architect, and (3) manual chart abstraction. Outcomes included medications and diagnoses (e.g., myocardial 

infarction, heart failure). Charts were manually reviewed for 200 patients. Using matched criteria, self-service query 

identified 7327 of 7358 patients identified by the data analyst. For patients in both cohorts, agreement rates ranged 

from 0.99 for demographic data to 0.94 for laboratory data. Based on chart review, the self-service portal and the 

analyst had similar sensitivities and specificities for comorbid diagnoses and statin use.    

 

Background 

Over the last decade, electronic health record systems and their associated data repositories at large medical centers 

have evolved to meet institutional requirements for public reporting and quality improvement (QI). The secondary 

use of data captured electronically during routine clinical care has produced substantial benefits in efficiency1, 2. 

Furthermore, strong interest exists to capitalize on clinical data repositories for translational research and trial 

recruitment. As these data resources have matured, demand for access from clinicians has increased dramatically 

and in many cases has outstripped the availability of data analysts to fill requests. Self-service access has emerged as 

a solution to this bottleneck: according to a 2010 survey of Clinical and Translational Science Award informatics 

directors, the number of organizations providing self-service access to their integrated data repository (IDR) doubled 

between 2008 and 2010, and providing self-service access was a top priority for future enhancements3. 

 

Previously, for data extraction from the IDR at our institution, clinicians with research questions or QI personnel 

submitted data requests to analysts with data modeling expertise. These technical experts wrote custom structured 

query language (SQL) queries according to clinical specifications for each request. Recently, the Duke University 

Health System developed a self-service research portal, the Duke Enterprise Data Unified Content Explorer 

(DEDUCE), that enables clinicians and QI personnel to query the IDR directly with institutional review board 

approval4.   

 

This self-service tool and others like it add a layer to data extraction that has yet to be validated. Although self-

service portals hold promise, secondary use of clinical data for research, reporting, or QI is predicated on the data 

corresponding to an accepted reference standard—in other words, their accuracy.  

 

To assess the validity of our self-service portal, DEDUCE, we defined a cohort using the portal and matched them to 

a cohort defined by custom SQL query; target outcomes were then extracted from the data repository using 

DEDUCE and SQL query, and these were compared to manual chart review. We hypothesized that if use of a self-

service portal were equivalent to SQL query by a data analyst, data exported from DEDUCE would be identical to 

data exported by SQL query, and both sets of data would reflect data abstracted from manual chart reviews.  
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Methods 

Data sources  

The data source for electronic extraction was the Duke Medicine enterprise data warehouse (EDW), which contains 

the records of all 4 million Duke University Health System patients, with more than 20 million encounters per year 

from three hospitals and 116 ambulatory clinics. The EDW is a dimensionally modeled, standards-based store of 

structured data organized into high-level subject areas managed by a central data governance committee. Available 

data include demographics, encounters, clinical orders, lab results, medications, diagnoses, and procedures. A 

formal extract, transform, and load procedure integrates data from source systems on a nightly basis to ensure 

consistency and quality and to minimize redundancy. 

 

Access to the EDW is possible through SQL query or the DEDUCE portal. Analysts execute SQL queries using a 

variety of commercial and freeware SQL clients, as well as the SAS software package (SAS Institute, Inc., Cary, 

NC). DEDUCE directly accesses the EDW, and cohorts are built using a web-based ASP.NET and C# application 

that provides a graphical interface for querying a subset of subject areas.  Details and screenshots of this portal have 

been published previously4. 

 

Study population 

The content area for this study was lipid management in an ambulatory setting by cardiology specialists. We 

included in the analysis any patient 18 years of age or older with coronary artery disease who had at least two visits 

with a Duke Cardiology provider during the 13-month period from 6/1/2009 to 6/30/2010. We defined patients with 

coronary artery disease using the International Classification of Diseases, Ninth Edition, Clinical Modification 

(ICD-9-CM) codes 410-412 (any suffix), 414 (any suffix), V45.81, or V45.82 coded at any encounter prior to the 

start of the study period or in the first 6 months of the study period (through 12/1/2009). Outcome variables included 

date of birth, gender, race, low-density lipoprotein cholesterol (LDL-C) measurement, statin use, and comorbid 

diagnoses of previous myocardial infarction (MI), hyperlipidemia, diabetes mellitus, heart failure, chronic kidney 

disease, end-stage renal disease, cerebrovascular disease, and liver disease. Comorbid diagnoses were defined by the 

ICD-9-CM codes listed in Table 1. 

 

Table 1. Comorbid diagnoses by ICD-9-CM classification. 

Comorbidity ICD-9-CM Code 

Previous Myocardial Infarction 410.xx 

Hyperlipidemia 272.xx 

Diabetes Mellitus 250.xx, V58.67 

Heart Failure 398.91, 402.x1, 404.x1, 404.x3, 428.xx  

Chronic Kidney Disease 403.xx, 404.xx, 585.xx 

End-Stage Renal Disease 585.6 

Cerebrovascular Disease 430.xx-438.xx 

Liver Disease 570.xx-573.xx 

 

Self-service portal versus custom SQL query 

Patient cohorts were identified and target outcomes extracted from the EDW in two ways: by study personnel using 

DEDUCE and by a data analyst using SQL code.  All DEDUCE queries were executed by one of the clinical 

authors, who had undergone 3 hours of training required of all new users of the data portal, as well as about 1 year 

of experience using DEDUCE.  Data elements extracted were EDW-specific patient identifiers; date of ambulatory 

cardiology encounters; dates and results of LDL-C, high-density lipoprotein cholesterol (HDL-C), and total 

cholesterol measurements; medication data associated with all encounters during the study period; and ICD-9-CM 

diagnoses corresponding to targeted comorbidities. The SQL queries were executed by a data analyst with over 10 

years of experience with DUHS data resources.  Inclusion criteria for the patient cohorts were developed in 

collaboration between the authors and data analyst before all queries were made. 

 

We used patient identifiers to compare outcome variables between datasets on a patient-by-patient level. For each 

patient in each dataset, statin use was a binary variable defined as positive if a statin medication was associated with 

any ambulatory encounter during the study period. Each comorbid condition was a binary variable defined as 
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positive if the patient had ever had an encounter coded with one of the ICD-9-CM codes listed in Table 1. LDL-C, 

HDL-C, and total cholesterol were defined by the lowest value of each laboratory test if any value was available. A 

second variable was defined as positive if the patient’s lowest LDL-C measurement during the study period was < 

100 mg/dL. 

 

Manual chart abstraction 

To evaluate provider handling of lipids in the outpatient setting, charts were reviewed for a randomly selected, 

stratified subset of patients defined by the custom SQL query. A total of 200 patients were randomly selected for 

review: 100 patients identified in the SQL dataset as not taking a statin, 50 patients taking a statin with a 

documented statin allergy, and 50 patients taking a statin with no statin allergy. All charts were reviewed by the first 

author, who abstracted cardiology notes during the study period, documenting comorbidities and statin prescription 

based on the problem list, medication list, and plan. All variables were defined using a data dictionary developed 

before review.  For three of the comorbid diagnosis variables—diabetes mellitus, chronic kidney disease, and 

hyperlipidemia—further review was performed, and variables were classified as positive if patients met laboratory-

defined criteria for disease (hemoglobin A1c > 6.5%, estimated glomerular filtration rate < 60 mL/min/1.73 m2, or 

LDL-C > 100 mg/dL, respectively) regardless of whether the condition was documented in a provider note.  

 

The first author was blinded to the results of DEDUCE and SQL queries at the time of chart abstraction.  Charts 

were reviewed using a web application that was the primary clinical information system for providers at the time of 

this study. This application provided views into a repository of discharge summaries, physician documentation, 

orders, allergies, procedure histories, laboratory results, and radiology reports as well as scanned notes from other 

information systems not yet integrated.  

 

Statistical analysis 

For patients with coronary artery disease identified in both cohorts, agreement between DEDUCE and SQL query 

were measured using simple proportion agreement and Cohen’s kappa for binary variables to account for chance 

agreement. Two-by-two tables were constructed to assess agreement between both SQL and DEDUCE data and 

manual chart review for the subset of 200 charts. All statistical analyses were carried out using JMP 10.0 (SAS 

Institute, Inc., Cary, NC). Ethical approval was obtained from the Duke University Institutional Review Board 

(PRO27093). 

 

Results 

Sample description 

The DEDUCE query portal defined a cohort of 7327 patients who met the study criteria. SQL query identified 7324 

of the 7327 individuals identified by the DEDUCE query portal as well as 34 additional patients. The additional 

patients identified by SQL query were all attributed to a provider who has a dual appointment in Cardiology and 

Pulmonary-Critical Care (see Discussion below). Patient characteristics of both cohorts are defined in Table 2. 

 

Table 2. Characteristics of cohort. 

Characteristic  DEDUCE Access SQL Access 

Mean Age, y  67.2 (95% CI, 66.9-67.5) 66.9 (95% CI, 66.6-67.2) 

Female, n   2637 (36%; 95% CI, 35%-37%) 2656 (36%; 95% CI, 35%-37%) 

Race, n    

White  5522 (75%; 95% CI, 74%-76%) 5541 (75%; 95% CI, 74%-76%) 

Black  1388 (19%; 95% CI, 18%-20%) 1398 (19%; 95% CI, 18%-20%) 

American Indian  236 (3.2%; 95% CI, 2.8%-3.7%) 236 (3.2%; 95% CI, 2.8%-3.7%) 

Asian  75 (1.0%; 95% CI, 0.8%-1.3%) 77 (1.1%; 95% CI, 0.8%-1.3%) 

Other  106 (1.5%; 95% CI, 1.2%-1.8%) 106 (1.4%; 95% CI, 1.2%-1.8%) 

Mean LDL-C, mg/dL 81.5 (95% CI, 80.8-82.2) 85.3 (95% CI, 84.5-86.1) 

Total, n 7327 7358 

Agreement between DEDUCE and SQL query 

For patients identified in both cohorts, the proportion of agreement between DEDUCE and SQL query was highest 

for gender, race, and date of birth (Table 3). Rates of agreement for all variables were 0.94 or greater, with lowest 
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agreement for date and value of the lowest LDL-C measurement. Rates of agreement on whether the patient was at 

goal with respect to LDL-C and had received statin therapy during the study period were 0.99 and 0.98, respectively.   

 

Table 3. Agreement between DEDUCE and SQL query. 

Outcome Variable Kappa Proportion  

Agreement  

Date of Birth  0.999 

Gender  0.999 

Race  0.999 

Previous Myocardial Infarction 0.97 0.99 

Hyperlipidemia 0.88 0.97 

Diabetes Mellitus 0.96 0.98 

Heart Failure 0.94 0.97 

Chronic Kidney Disease 0.91 0.97 

Cerebrovascular Disease 0.94 0.98 

End-Stage Renal Disease 0.93 0.99 

Liver Disease 0.94 0.99 

Low LDL-C   0.94 

Low HDL-C  0.94 

Low Total Cholesterol  0.94 

Statin Use 0.93 0.98 

LDL-C < 100 mg/dL 0.98 0.99 

            Kappa was calculated for agreement between binary variables only. 

 

Comparison with chart abstraction 

A total of 254 charts were reviewed. If the patient did not have coronary artery disease by chart review, the chart 

was not reviewed further, with the result that 200 charts underwent structured abstraction. DEDUCE and SQL query 

had similar sensitivity and specificity with respect to chart review (Table 4). Classification accuracy was greatest for 

statin prescription, diabetes, and end-stage renal disease. Ability to detect disease with ICD-9-CM codes either by 

DEDUCE or by the data analyst was lowest for previous MI, chronic kidney disease, and liver disease, with 

sensitivities of 0.59, 0.59, and 0.50, respectively. Specificities were lowest for hyperlipidemia and heart failure with 

0.53 and 0.58, respectively.  

 

Table 4. Sensitivity and specificity of different access modes. 

 DEDUCE SQL Query 

Variable 
Sensitivity 

(95%CI) 

Specificity 

(95%CI) 
Kappa 

Sensitivity 

(95%CI) 

Specificity 

(95%CI) 
Kappa 

Previous Myocardial 

Infarction 

0.59 (0.46-0.71) 0.87(0.80-0.92) 0.47 0.62 (0.49-0.74) 0.87 (0.80-0.92) 0.50 

Hyperlipidemia 0.93 (0.88-0.96) 0.53 (0.29-0.75) 0.42 0.95 (0.90-0.98) 0.47 (0.25-0.71) 0.43 

Diabetes Mellitus 0.86 (0.77-0.91) 0.94 (0.86-0.97) 0.79 0.89 (0.81-0.94) 0.94 (0.86-0.97) 0.83 

Heart Failure 0.88 (0.78-0.94) 0.58 (0.48-0.66) 0.42 0.91 (0.82-0.96) 0.55 (0.46-0.64) 0.41 

Chronic Kidney 

Disease 

0.59 (0.48-0.69) 0.93 (0.87-0.97) 0.52 0.60 (0.50-0.70) 0.90 (0.82-0.95) 0.51 

Cerebrovascular 

Disease 

0.74 (0.55-0.87) 0.73 (0.65-0.79) 0.31 0.74 (0.55-0.87) 0.71 (0.63-0.78) 0.29 

End-Stage Renal 

Disease 

1.00 (0.52-1.00) 0.98 (0.94-0.99) 0.79 1.00 (0.52-1.00) 0.98 (0.94-0.99) 0.75 

Liver Disease 0.50 (0.26-0.74) 0.97 (0.93-0.99) 0.50 0.50 (0.26-0.74) 0.96 (0.92-0.98) 0.46 

Statin Use 0.98 (0.92-1.00) 1.00 (0.95-1.00) 0.98 0.87 (0.79-0.93) 1.00 (0.95-1.00) 0.85 

Discussion 

The purpose of this study was to assess the validity of a self-service portal for secondary use of electronic health 

data. We hypothesized that if our self-service data portal was equivalent to current methods of data extraction, then 

data exported from the EDW with DEDUCE would match data exported by a data analyst using SQL query, and 
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both would have similar sensitivity and specificity with respect to manual chart review. Furthermore, we suspected 

that certain claims-based definitions of disease were more accurate than others.  

 

Self-service portal versus custom SQL query 

Comparisons of data extracted from the EDW using DEDUCE versus SQL query showed a high rate of agreement 

at a patient level. Static data elements such as date of birth, gender, and race were most similar between the two 

methods of data access. Comorbid diagnoses were defined by exporting ICD-9-CM codes using both access methods 

and then classifying patients in a binary way. Although levels of agreement were lower than for demographic data, 

these results showed high levels of agreement. The lowest levels of agreement were for individual LDL-C 

measurements, but even these variables achieved greater than 90% agreement. Overall, these results suggest that 

static variables are most accurate, individual data elements have greater than 90% accuracy, and composite outcome 

variables improve their accuracy. 

 

Differences between the self-service and SQL datasets could have several different causes. Although we sought to 

match selection criteria used in the DEDUCE and SQL queries as much as possible, interpretation of criteria is 

subjective, and search strategies could differ. As an example, DEDUCE used a table listing “senior provider 

specialty” to define visits with a cardiologist, while the data analyst used a local fact table of cardiology providers 

that the analyst could reference in constructing SQL queries. This table included one provider with a dual 

appointment in Cardiology and Pulmonary-Critical Care medicine, resulting in inclusion of a small number of extra 

patients in the SQL cohort. Other discrepancies between DEDUCE and SQL query results could be because 

DEDUCE queries a subset of the EDW; in certain cases, such as for patients with no entered date of birth, the SQL 

query could access those patients while DEDUCE could not. Lastly, the SQL and DEDUCE queries were made at 

different times, and so some discrepancies between the SQL and DEDUCE queries could be due to updates to the 

EDW between each query. 

 

Self-service portal and SQL query versus manual chart review 

The DEDUCE and SQL queries had similar sensitivity and specificity with respect to manual chart review. Among 

the comorbidities that we assessed, classification accuracy of our ICD-9-CM map varied by condition; several had 

both high sensitivity and specificity (e.g., diabetes and end-stage renal disease). On the other hand, some of our 

ICD-9-CM definitions of comorbidity had high sensitivity but low specificity, meaning that a history of ICD-9-CM 

code was good for detecting cases of the disease but also included many individuals who did not truly have the 

condition. Low specificity is consistent with inclusion of too many individual ICD codes in our definition, caused by 

coding conditions for an encounter when in fact they were ruled out or chronic conditions that wax and wane (e.g., 

heart failure in a cohort of patients with known coronary artery disease).  

 

Other claims-based definitions of disease had high specificity but low sensitivity, reflecting poorer case detection 

but better distinction between healthy and sick individuals. Low sensitivity could be due to an overly inclusive 

definition of disease on chart review, an overly narrow selection of ICD-9-CM codes for definition of the disease, or 

a condition that was often noted in the problem list or plan but not coded (e.g., history of MI). In our case, our 

definition of liver disease on chart review included patients with a history of elevated transaminases, although our 

ICD-9-CM definition of disease did not include code 790.4, “Nonspecific elevation of levels of transaminase or 

lactic acid dehydrogenase [LDH].” Also, our chart review definition of chronic kidney disease included all patients 

who had had an estimated glomerular filtration rate of <60 mL/min/1.73 m2 for more than 3 months not in the 

setting of an acute rise in creatinine. Based on the low sensitivity of this diagnosis, it would appear that physicians 

do not always recognize this as chronic kidney disease or at least do not code it as such. 

 

The differences between the manual chart review and electronic data highlight the fact that many current clinical 

workflows are not optimized to collect electronic health data in a way that can be reused for QI or research. 

Consequently, data are often not entered in coded format by the clinician, clinicians sometimes fail to use the 

information systems that feed the clinical data repository, coding errors arise from misunderstandings of codes by 

clinicians or coders, or data are available to the clinician that are not part of the clinical data repository. 

 

Defining disease states with administrative data 
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Regardless of access modality, it remains difficult to judge the classification accuracy of claims-based definitions of 

disease on natural populations of patients. Without a reference set, manual review is the only way to distinguish 

cases from non-cases, which limits accurate estimation of specificity, and there is no way to define true positives a 

priori, which limits estimation of sensitivity. Resources are needed to better define standard electronic definitions of 

disease. Recently, the emergence of IDRs has made this research much easier, but problems remain, and these can 

often be subtle5, 6. Also, text analytic methods are on the horizon, which could obviate the need for coded data, but 

these methods face the challenge of balancing between accuracy and computation times when scaled up for 

enterprise-wide data warehouses7, 8.  

 

Limitations 

Limitations of this study include a small sample size for chart review and the use of a single reviewer. Errors in 

coding arise when codes are applied incorrectly, conditions are suspected initially and then ruled out, or when some 

codes represent etiologies of disease rather than sequelae. Also, the results of this study are system-specific and not 

generalizable to other systems. Lastly, our study used only a single SQL query and a single DEDUCE query.  

 

Conclusion 

Measuring the accuracy of electronically captured data is a crucial first step in secondary use of the data for QI or 

clinical research. We know of no other studies to date comparing self-service data access by clinicians versus SQL 

query by data analysts. Our findings suggest that self-service portals provide a valid form of access to IDRs. Data 

extracted using the DEDUCE portal showed high agreement with data extracted by SQL query, and datasets 

produced using both access methods showed similar sensitivity and specificity with respect to manual chart review. 

Our findings also confirm that difficulties surround the use of ICD-9-CM codes for definition of disease states, 

regardless of the means used to access an IDR. Further research is needed to define standards for defining disease 

states using clinical variables and linked encounters available in IDRs. 
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