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Abstract 

We propose a mixture model for text data designed to capture underlying structure in the history of present illness 
section of electronic medical records data. Additionally, we propose a method to induce bias that leads to more 
homogeneous sets of diagnoses for patients in each cluster. We apply our model to a collection of electronic records 
from an emergency department and compare our results to three other relevant models in order to assess 
performance. Results using standard metrics demonstrate that patient clusters from our model are more 
homogeneous when compared to others, and qualitative analyses suggest that our approach leads to interpretable 
patient sub-populations when applied to real data. Finally, we demonstrate an example of our patient clustering 
model to identify adverse drug events. 

Introduction 

Automating the creation of time evolving homogeneous clusters of patients is a powerful approach to the 
meaningful use of electronic medical records. If it is done successfully, the empirical distributions of important 
clinical parameters within each cluster of patients, such as diagnosis, medication and treatment options, can be used 
to address a wide array of important questions for individual and population level healthcare. (i) For any particular 
cluster, one might track outcomes for patients on different therapies, thereby identifying which therapy is most 
effective or has the least side effects. (ii) Time evolving clustering of patients allows adaptation to a potentially 
changing medical landscape.  For example, if a new disease appears with a particular constellation of symptoms, 
over time the model should identify that disease by its symptoms and create a new cluster of patients who have that 
disease. (iii) By tracking incidence rates of each cluster independently, it is possible to identify disease outbreaks. 
(iv) Alternatively, tracking incidence by geographic location rather than through time may identify areas of 
hazardous environmental exposure. (v) The empirical distribution of diagnoses for patients in a particular subgroup 
is itself a differential diagnosis for a new patient belonging to that subgroup. Similar to diagnoses, empirical 
distributions of medications and outcomes lead to a menu of potential therapies and disease prognoses respectively. 

Natural Language Processing:  In any natural language there are a wide array of challenges that make automated 
computer analysis challenging. Ambiguities, synonyms, modifiers and other idiosyncrasies of human text and 
speech make the identification of concepts and the connections between them challenging. In medical text, where 
the author is also the physician responsible for ensuring proper care of many patients, the problem is compounded 
by competing job pressures. This leads to numerous mistakes in spelling and grammar, missing punctuation, and 
high levels of duplication from extensive copy and pasting. 

Natural language processing (NLP) is a suite of methods – involving statistical modeling and artificial intelligence 
together with manually curated “knowledge bases” – that is designed to take messy, complicated text and convert it 
into a series of concepts, possibly embedded in an ontology. There are a number of commercial products designed 
specifically to do this with medical text such as MedLEE (1) and IBM’s Watson.  A similar, publically accessible, 
approach that is heavily reliant on manually curated databases of concepts is MetaMap (2). The general approach to 
NLP involves a multi-step process of data preprocessing, multiple parsing algorithms, regularization and encoding. 
The ultimate goal of NLP in this context is to map the unstructured text in a medical record to a set of pre-defined 
concepts (such as those contained in the UMLS Metathesaurus). The presence or absence of concepts in particular 
records can then be used in various statistical models or machine learning algorithms for specific tasks.  

Wang et al. (3) utilize co-occurrence statistics to identify NLP derived concepts from discharge summaries that 
occur frequently with particular drugs. A similar approach was taken by Haerian et al. (4) to identify 
rhabdomyolysis and agranulocytosis caused by adverse drug events. In order to eliminate possible disease related 
causes of these symptoms, Haerian et al. performed manual curation based on chart reviews to eliminate NLP 
concepts that are more likely related to relevant diseases.  Other uses of NLP include a comparison of clinical trials 
prescreening based on ICD9 code versus NLP concepts (5), a classifier of radiology reports designed to detect the 
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presence or absence of specific radiological features (6) and identification of surgical complications (7). All of these 
approaches utilize custom knowledge bases designed specifically for the study at hand, and success or failure is 
typically assessed based on agreement with a chart review. 

There are a number of purely statistical approaches to working with medical records data.  For example, the use of 
regression/change point models to detect infection disease outbreaks (8, 9). Classification models such as belief 
networks have been used for single or multiple disease diagnosis (10, 11). Dimensionality reduction and mixture 
models can be used for exploratory analysis and visualization to uncover adverse drug effects (12, 13). This work 
generally leaves unanswered the question of what data to use in fitting the proposed statistical models, though in 
some cases, NLP concepts would be appropriate. 

Patient Similarity Metrics:  There are numerous approaches to defining a distance between patients using NLP (14, 
15). These approaches make use of both the concepts and ontologies produced by NLP. Distance between two 
patients is either proportional to the size of the overlap in concepts or a function of the ontological relationships 
between concepts assigned to the two patients. While a distance metric can, in theory, be used for the application we 
discuss in this paper, there is a substantial computational challenge to clustering on very large data sets. Distances 
must be computed for every pair of patients and the resulting matrix of distances must be manipulated. For even 
moderate population sizes this is intractable with standard approaches.   

The use of our approach for clustering patients represents a potential synergy with NLP based similarity metrics.  By 
computing NLP similarity only on patients in the same cluster (as determined by our model), one might only need to 
work with a block diagonal similarity matrix, thereby substantially decreasing the computational complexity of the 
NLP based clustering problem. 

Our approach: In this paper we propose a statistical model that leads to the identification of homogeneous patient 
sub-populations based on text data in the initial history of present illness (HPI) and final diagnosis (DX) of a 
patient's electronic medical record. The model can be used to predict sub-population membership of a new patient 
based solely on HPI data. This not only gives us access to an average virtual HPI for each patient sub-population but 
a differential diagnosis in the form of a ranked list of possible diagnoses extracted from patients belonging to that 
subpopulation. This allows us to quantify the uncertainty of a diagnosis. We hypothesize that estimates of 
uncertainty will allow a system to know when to ask for help, and we expect that feature will be critical for 
successful clinical decision support tools in the future. 

While we are using only a small part of the medical record, this work represents an initial step in the construction of 
an automated statistical model for clustering patients into homogeneous groups. We expect that improvements can 
be made through the inclusion of other information in the record such as medicines, demographics, labs, etc.  In this 
study, we do not make use of natural language processing, nor do we generate models attempting to identify any 
specific disease or patient feature. However we believe that our work is synergistic with these approaches to the 
analysis of EMR data. Specifically, we are applying our model to the unprocessed text, but our model could as 
easily be applied to NLP concepts derived from that text. Additionally, a model of concept correlation could be used 
in future iterations of NLP software to help identify the correct choice of concept given the other concepts in a 
particular medical document. 

Data 

We are working with a database of 55,837 emergency department (ED) visit records collected during the first three 
quarters of 2009. Identifying information such as name, address, phone number, social security number and medical 
record number were removed before data processing. From each record, five fields were extracted: chief complaint 
(CC), initial history of present illness (HPI), diagnosis (DX), disposition and age. From all records, 5,616 were 
discarded due to lack of HPI or DX fields. HPIs consist of lists of words and DXs of lists of as many as 5 diagnoses 
per patient. The total number of terms in the HPI and DX dictionaries is 37,449 (7,148 present in more than 10 
instances) and 8,246 (926), respectively. There are 836 CCs (100), 71 dispositions (40) and ages range from 1 to 103 
years. 

For this study, we will use a subset of the database. We consider 10,204 records (8,808 unique patients) 
corresponding to 11 common chief complaints. These are medical minor, cardiac symptoms, trauma complex, 
abdominal pain male, headache, neuro other, pain other, shortness of breath, laceration minor, infection local and 
seizure. The subset was selected to minimize compute times while maintaining a mixture of specific (seizure, 
headache) and non-specific (medical minor, pain other) chief complaints. We eliminate stop words, numbers and 
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terms occurring less than 10 times. The final subset contains a total of 725 words in the HPI dictionary and 323 
terms in the DX dictionary. 

Model 

The Chinese restaurant process (16) (CRP) formally defines a distribution on the space of partitions of ℕ. For our 
purposes, the random process is described by two rules: (i) the first patient record analyzed always begins in the first 
cluster/component and (ii) the 𝑖-th patient starts a new cluster with probability proportional to parameter 𝛼 or joins a 
current cluster with probability proportional to the number of patients already in it. The recently developed distance 
dependent CRP (17) (ddCRP), modified the second rule so the 𝑖-th patient joins a cluster with probability equal to a 
function of its distance to the other patients in that cluster.  Inclusion of ancillary data in this distance function 
allows the topic model to be influenced by factors external to the documents.  In our case, we can potentially utilize 
DX data to inform clustering of data from the HPI. However, direct application of ddCRP to analyze the plain text in 
the HPI requires that pairwise distances be set a-priori and computed from patient attributes other than HPI, which 
can become intractable for data sets with large numbers of patients.  This is the same challenge faced by NLP patient 
similarity metrics (14, 15). 

Our approach is different in the sense that distances are defined between patients and clusters rather than between 
pairs of patients, i.e. the 𝑖-th patient sits in an occupied cluster with probability proportional to its distance to that 
cluster. This approach allows our model to avoid the computation of distance between every pair of patients but still 
allows the flexibility of the ddCRP to modify cluster membership probabilities based on external attributes. 

Let 𝑥!" be the 𝑚-th word (out of a total of 𝑀!) in the DX for patient 𝑖. For the 𝑘-th cluster, let 
𝑑!" = Discrete(𝑥!"|𝝍!)

!!
!!!  be the distance between patient i and cluster k, where 𝝍𝒌 is a probability vector over 

the space of words in the DX dictionary. We define K to be the number of non-empty patient clusters and 𝑧! ∈ 1…𝐾 
to be the cluster assignment for patient 𝑖.  The prediction rule in the CRP can be written as 

𝑧_𝑖  |𝒛\! ,𝛼 ∝ 𝛼𝛿!∗ + 𝑛!
!

!!!
  𝛿!  , 

where 𝒛\! is the vector of cluster assignments excluding patient 𝑖 and 𝑘∗ is a new cluster.   The assignment 𝑧! for 
patient 𝑖 depends on the concentration parameter 𝛼 and the number of patients 𝑛! in cluster 𝑘. Note as well that 𝑛! 
is a function of the assignments made to cluster 𝑘 through 𝒛\!.  We label this approach vanilla CRP and we will 
compare our proposed method to this one in the results section of the paper.  Alternatively, the prediction rule we 
propose is 

𝑧_𝑖  |𝒛\! ,𝛼,𝑫 ∝ 𝛼𝛿!∗ + 𝑑!"
!

!!!
𝛿!  ,  

where 𝑫 is a matrix of distances 𝑑!" between patients and clusters. 

Conceptually, the CRP occupies components according to popularity, the ddCRP does it instead by looking at pair-
wise similarities or links across observations whereas our modified ddCRP (mddCRP) occupies components with 
observations similar to those already assigned to it. Consequently, while mddCRP saves compute time by avoiding 
computing every pairwise difference between two observations, the distance matrix between patient and clusters 
changes with the assignment vector 𝒛 and so must be updated during inference. It is easy to show that the traditional 
CRP is a special case of both ddCRP and mddCRP. In particular, for mddCRP it is enough to make 𝑑!" = 𝑛! and for 
ddCRP we define the distance between any two observations to be 1. 

Each patient record is composed of two lists of words, 𝒘! and 𝒙!, defined to be the list of words in the HPI and the 
DX respectively for patient 𝑖. Both word vectors are assumed to be drawn from discrete distributions as follows 

𝑧! ∼ mddCRP 𝛼,𝑫 , 𝑥!" ∼ Discrete 𝝍! , 𝝍! ∼ Dirichlet 𝛾𝟏! , 
 

 𝑤!" ∼ Discrete 𝜽! ,     𝜽! ∼ Dirichlet 𝛽𝟏! , 

where 𝒙! and 𝒘! have sizes 𝑀! and 𝑁!, respectively. The matrices of observed data are denoted by 𝑾 = {𝑤!} and 
𝑿 = {𝑥!}. Each patient cluster has two parameters 𝝍 and 𝜽, seen as word proportions from two different dictionaries 
of sizes 𝑀 and 𝑁. For cluster 𝑘, 𝝍! and 𝜽! are interpreted as average virtual DX and HPI, respectively. The model 
is controlled by hyperparameters 𝛽, 𝛾 and 𝛼 that specify the concentration of words in the modeling variable, 
distance attribute and the expected number of components, respectively. 
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Inference is performed with Markov chain Monte Carlo by iteratively sampling from the conditional posterior of the 
parameters of interest namely, 𝑧!, 𝝍!, 𝜽!, 𝛽, 𝛾 and 𝛼. The first three parameters are sampled using Gibbs sampling 
whereas the last three use slice sampling with uniform bounded priors. In order to make predictions, we need to 
compute the conditional distribution of a new patient 𝒘∗ (test set) given all training data. When diagnosis 
information is not available for test data, which is often the case, predictions are entirely based on the likelihood and 
posterior of HPIs as we assume the distribution over diagnoses to be flat in order to avoid favoring any component 
of the model. We have made inference and prediction procedures available together with processed data and Matlab 
source code as supplementary material at http://www.duke.edu/~rh137/mrecs.html. 

Other techniques for grouping patients:  We will compare the performance of our mddCRP model to three other 
clustering approaches.  The first will be the use of vanilla CRP (vCRP) in which we fit a standard CRP model to a 
single document − HPI concatenated with DX − for each patient.  The biggest drawback to this approach is that the 
average number of observed terms from HPI is much larger than that from the DX. This makes the model prone to 
produce components dominated by HPI features.  The second “model” consists of clustering based entirely on chief 
complaint (naive).  This is a very appealing straw man as it represents the ability of the triage nurse to diagnose the 
patient based solely on his/her brief initial interaction with the patient.  For some chief complaints the consistency of 
final diagnosis is quite high.  Additionally, there appear to be instances in which the nurse quite reasonably records 
that he/she doesn't know how to group the patient such as for the CC “medical minor”.  Finally, in order to try to 
take advantage of the relative accuracy of CC in some cases, we compare to a ddCRP model, which is fit 
independently to each of the different chief complaints. As we show in the next section, this model fails to collect 
some subsets of patients, which should be grouped because they present with different chief complaints. 

A more direct approach to the task at hand is to treat it as a supervised problem in which components will be biased 
towards individual diagnosis discrimination. There are a number of models designed for this purpose (18, 19), 
however their use would require significant natural language processing of the records in order to remove synonyms.  
Additionally, such approaches are inflexible in the face of new types of diagnoses or new synonyms for diagnoses. 

Results 

We fit vCRP, ddCRP and mddCRP using a 2-fold cross validation scheme. For all models we used uniform bounded 
priors for 𝛼, 𝛽 and 𝛾 with bounds (10!!, 10), (10!!, 10) and (10!!, 10), respectively. We verified empirically that 
further expanding these bounds did not produce noticeable changes in inference. Results are obtained after 
summarizing MCMC runs of the models. Each run consists of 300 posterior samples collected after 500 burin-in 
iterations. For naive no sampling is required as its components are obtained deterministically from chief complaint 
information. Traces of 𝛼, 𝛽 and 𝛾 and marginal likelihoods were used for monitoring convergence. After inference 
we discard components containing less than 0.2% of the total number of observations. These spurious components 
are usually formed by outliers thus we regard them as not representative of the underlying structure of the data set. 
The mean number of resulting components for Naive, vCRP, ddCRP and mddCRP is 11, 16, 26, 17, respectively. 

Technical assessment of homogeneity of patient clusters 

Clustering of HPI data:  One approach to quantifying the overall predictive power of a model is by means of its 
perplexity.  This is a widely used performance metric from the natural language processing community (20) that is 
intended to quantify the goodness of fit of the model in held out samples.  Let 𝒘!

∗ ∈𝑾∗ to be the  𝑁!∗ words in the 
HPI for an observation from test set 𝑾∗. Define 𝑝 𝒘!

∗ ℳ  to be the predictive distribution given a particular model, 
ℳ, that is being evaluated. 

𝑾∗ ℳ = 𝑒! !"#! 𝒘!
∗ ℳ / !!

∗
!! , 

Better models will in general assign larger probabilities, on average, to words in the HPI of test cases leading to 
lower perplexities.  This is interpreted as the model being less confused in average by test cases. We computed 
perplexities for every posterior sample collected during inference for vCRP, ddCRP and mddCRP. Since Naive is 
deterministic, its perplexity is a single number: 35.4. Figure 1(a) shows perplexity boxplots computed for the 
posterior samples obtained during the 2-fold inference. We see clearly that mddCRP outperforms all the models 
being evaluated.  This implies that our approach to incorporating diagnosis data has led to better clustering of HPI 
data even when compared to models that focus heavily on HPI data only. 

Overlap in DX data:  Let 𝐴! be the set of all diagnoses for any patients associated with cluster 𝑘.  We compute the 
overlap of component 𝑘 with component 𝑗 as 𝐴! ∩ 𝐴! /|𝐴!| where |𝐴| is the number of elements in the set 𝐴. This 
represents the amount of agreement of diagnoses between any two components of the model where 1 indicates that 
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𝐴! ⊆ 𝐴! and 0 indicates that there is no overlap in the set of diagnoses. Although we expect overlap, we prefer that 
those overlaps be small, as that indicates that the patient groupings are more homogeneous.  Figure 1(b) shows 
overlap boxplots for all components. We see that mddCRP has in average the lowest overlap of the four models. As 
one might expect, vCRP produces overlaps spanning the whole [0,1] interval due to HPI terms dominating 
component formation in the model. The coverage we see for ddCRP is explained by its inability to merge 
components from different chief complaints, yet in average shows less overlap than Naive. Outliers (crosses) with 
100% overlap are caused by small components with a small pool of diagnoses that are subsets of larger components. 
Naive does not show such extreme overlaps, however 8 out of 11 components in Naive have more than 60% overlap 
with the component labeled as “medical minor”. Our model not only produces the smallest coverage but most of its 
components have less than 50% overlap indicating again that mddCRP has produced patient groups that are more 
homogeneous than those produced by the other approaches. 

Figure 1.  Performance measures and component comparison. (a) HPI perplexities, the reference is 35.4 (Naive). (b) 
DX based component overlap. Mean differences between mddCRP and the other models in (a, b) are significant at 
the 1% confidence level. (c) Age distribution for seizure components (14 and 15). (d) Admission rates for 
components of mddCRP computed for train/test data. Disposition information was not used to train the model. 

Taken together, these two assessments of model performance demonstrate that mddCRP leads to a higher level of 
confidence in patient clustering as well as patient clusters with more homogeneous lists of diagnoses. 

Qualitative analysis of patient clusters 

We now focus on the results obtained from mddCRP. Table 1 shows the most frequent terms observed in each of the 
17 components produced by mddCRP along with the percentage of observations assigned to each. One of the key 
features of our model is the ability to group synonymous terms without the need of prior knowledge about how 
diagnoses are related.  Equivalent DXs such as chf/congestive heart failure (component 5), rabies vaccination/rabies 
vaccine (component 17), seizure febrile/febrile seizure (component 14) are collected in the same cluster without the 
need of a knowledge base of synonyms. 

Table 1. Top HPI/DX terms from the mddCRP components. Sizes are proportions of total observations relative to 
the training set. First (grey) and second (white) lines in each cell correspond to HPI and DX terms, respectively. 

Cluster Size HPI and Diagnosis terms 
1 10.90%  pain, chest, sob, prior, denies, problem, worsens, diaphoresis, radiating, nausea, onset, past  

 chest pain, unstable angina, shortness breath, palpitations, chest pain acute  
2 10.50%  pain, abdominal, nausea, vomiting, denies, diarrhea, last, prior, past, problem, fever, abd  

 abdominal pain, nausea vomiting, constipation, pancreatitis acute, diarrhea  
3 9.60%  headache, pain, prior, nausea, denies, headaches, neck, past, problem, vision, head, last  

 headache, migraine, hypertension, viral syndrome, nausea, dizziness, vomiting  
4 8.50%  brought, immunizations, utd, fever, parents, mother, prior, cough, diarrhea, problem, pain, 

mom  
 fever, uri acute, vomiting, cough, abdominal pain, constipation, viral syndrome, viral uri  

5 7.30%  sob, pain, cough, chest, denies, past, last, prior, breath, fever, problem, shortness  
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Figure 1: Performance measures and component comparison. (a) HPI perplexities, the reference is 35.4
(Naive). (b) DX based component overlap. Mean differences between mddCRP and the other models in
(a,b) are significant at the 1% confidence level. (c) Age distribution for seizure components (14 and 15). (d)
Admission rates for components of mddCRP computed for train/test data. Disposition information was not
used to train the model.

for monitoring convergence. After inference we discard components containing less than 0.2% of the total
number of observations. These spurious components are usually formed by outliers thus we regard them as
not representative of the underlying structure of the data set. The mean number of resulting components
for Naive, vCRP, ddCRP and mddCRP is 11, 16, 26, 17, respectively.

Clustering of HPI data. One approach to quantifying the overall predictive power of a model is by means
of its perplexity. This is a widely used performance metric from the natural language processing community11,
defined as (W!|M) = {exp−

∑
i log p(w

!
i |M)/

∑
i N

!
i }, where w

!
i ∈ W! is an observation from test set W!,

N!
i is the size of w!

i , p(w
!
i |M) is the predictive distribution and M represents the model being evaluated.

Better models will in general assign larger probabilities to test cases hence lower perplexities, which can be
interpreted as the model being less confused in average by test cases. Perplexities are computed for every
posterior sample collected during inference for vCRP, ddCRP and mddCRP. Since Naive is deterministic,
its perplexity is a single number: 35.4. Figure 1(a) shows perplexity boxplots computed for the posterior
samples obtained during the 2-fold inference. We see clearly that mddCRP outperforms all the models being
evaluated including the references.

Overlap in DX data. Let Ai be the set of all diagnoses for any patients belonging to component i. We
compute the overlap of component i with component j as |Ai∩Aj |/|Ai| where |A| is the number of elements
in the set A. This represents the amount of agreement of diagnoses between any two components of the model
where 1 indicates that Ai ⊂ Aj and 0 indicates that there is no overlap in the set of diagnoses. Although
we expect overlap, we prefer that those overlaps be small as that will indicate that the patient groupings
are more homogeneous. Figure 1(b) shows overlap boxplots for all components. We see that mddCRP has
in average the lowest overlap of the four models. As one might expect, vCRP produces overlaps spanning
the whole [0, 1] interval due to HPI terms dominating component formation in the model. The coverage
we see for ddCRP is explained by its inability to merge components from different chief complaints, yet in
average shows less overlap than Naive. Outliers (crosses) with 100% overlap are caused by small components
with a small pool of diagnoses that are subsets of larger components. Naive does not show such extreme
overlaps, however 8 out of 11 components in Naive have more than 60% overlap with the component labeled
as medical minor. Our model not only produces the smallest coverage but most of its components have less
than 50% overlap indicating that mddCRP has produced patient groups that are more homogeneous than
those produced by the other approaches.

Component analysis for mddRCP. We now focus on the results obtained from mddCRP. Table 1
shows the most frequent terms in a subset of the 17 components produced by mddCRP along with the
percentage of observations assigned to it (the full table is available in supplementary material). One of the
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 shortness breath, copd, pneumonia bacterial, chf, dyspnea, congestive heart failure  
6 6.50%  pain, car, last, tetanus, mvc, loc, driver, utd, restrained, ems, neck, back  

 mva, motor vehicle accident, pneumothorax closed traumatic, gunshot wound, headache  
7 5.70%  laceration, utd, last, tetanus, head, loc, trauma, pain, brought, right, immunizations, hit  

 laceration finger, laceration face, laceration scalp, laceration forehead  
8 5.70%  pain, weakness, denies, numbness, headache, prior, symptoms, vision, past, last, left, right  

 headache, tia, numbness, cva acute, paresthesia, hypertension, dizziness, syncope, vertigo  
9 4.90%  pain, cough, throat, fever, sore, denies, mild, productive, symptoms, headache, chills, sick  

 pharyngitis acute, viral syndrome, uri acute, cough, headache, fever, sinusitis acute  
10 4.80%  pain, chest, denies, sob, prior, palpitations, past, felt, ems, feeling, last, episodes  

 palpitations, chest pain, syncope, anxiety, atrial fibrillation rapid ventricular rate  
11 4.40%  pain, swelling, prior, denies, problem, fever, left, fevers, right, leg, wound, redness  

 cellulitis leg, cellulitis, wound check follow exam, wound infection surgical  
12 4.00%  pain, back, denies, left, right, past, leg, numbness, prior, last, lower, trauma  

 back pain, low back pain, leg pain, sciatica, knee pain, neck pain, fall accidental  
13 3.90%  pain, denies, prior, chest, problem, sob, fevers, past, chills, abd, vomiting, nausea  

 abdominal pain, uti, chest pain, headache, dehydration, constipation, back pain  
14 3.30%  seizure, brought, mom, immunizations, utd, parents, prior, ems, seizures, last, mother, head  

 seizure grand mal, seizure, febrile seizure, seizure febrile, epilepsy, fever, headache  
15 3.30%  seizure, ems, past, episodes, denies, pain, seizures, prior, multiple, last, head, episode  

 seizure grand mal, seizure, headache, syncope, altered mental status, alcohol withdrawal  
16 3.20%  pain, fall, head, loc, fell, prior, denies, back, problem, utd, last, neck  

 fall accidental, syncope, head injury unspecified, concussion  
17 0.60%  dog, shot, exposure, well, complaints, last, utd, symptom, primary, control, bite, denies  

 rabies vaccination, rabies vaccine, rabies exposure, wound check follow exam, uri acute  
 

In addition to grouping synonyms, the model is capable of splitting components that at first glance seem 
homogeneous. While patients in both components 3 and 8 are given the diagnosis “headache” more than any other 
diagnosis, these two can be seen to have vastly different healthcare implications and outcomes.  Component 3 is 
generally not life threatening, consisting of patients with migraines or sinus headaches while component 8 appears to 
be dominated by patients with hypertensive headaches or who are suspected of having a stroke.  This is supported by 
the admission rates associated with the two components, shown in Figure 1(d).  Even though admission rates are not 
explicitly included in the model, only around 10% of component 3 patients are admitted compared to approximately 
35% of those falling in component 8. 

The two seizure components (14 and 15) also seem to have different etiologies. From the top HPI terms, we see that 
14 is loaded with terms that suggest younger patients. This fits with the diagnosis “febrile seizure” which is known 
to be more common in children.  As shown in Figure 1(c) even though age is not incorporated in the model, there is 
a marked difference in the ages of patients assigned to the two components. 

Pharmacovigilance 

One commonly written about application of medical records analysis is the identification of adverse drug events.  In 
order to assess the relevance of patient clusters, we reran our model on a larger patient cohort. We examined 
medication lists for each patient and tested for increased use of particular medications in each cluster (Chi-squared 
test, Bonferroni correction for multiple testing).  The results of this analysis represent another confirmation of the 
relative purity of our patient clusters. 
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The drugs over-represented in an “allergic reaction” cluster include drugs often used to treat allergies or allergic 
symptoms such as Benadryl, Vitamin E, Hydroxyzine and Advil as well as drugs with well-known risks of allergic 
reaction such as Effexor XR, Celebrex and Estradiol.  Similar results hold for the “eye pain” cluster, which included 
Cosopt and Sotalol (treatment for glaucoma), Prednisone (anti-inflammatory eye drop) and Erythromycin (antibiotic 
eye drop) as well as Zyprexa – a medicine for schizophrenia, which is known to cause eye pain in some patients. 

The “sickle cell crisis” topic is particularly interesting, as examination of the associated medications offers insight 
into numerous aspects of the disease. The list included 5 different synonyms for folic acid, numerous strong pain 
medications, birth control (standard practice suggests that this is contraindicated), numerous anti-depressants, and 
Casodex.  Casodex is an anti-androgen that is approved for use in the treatment of prostate cancer, but there is one 
case study in the literature (21) involving two patients that suggests it may prevent priapism in men with sickle cell 
anemia.  All sickle cell patients on Casodex in our study were men.  Incidentally, an Internet search for priapism and 
Casodex results in numerous international drug stores advertising this off label use of the drug and offering it 
without prescription. 

Conclusion 

We have presented a mixture model for exploratory analysis of ED visit data. We showed that our model has 
improved HPI perplexity and DX overlap when compared to related models and that it is possible to build a mixture 
model for patient data with meaningful components on relatively large patient populations. This is important 
because with constantly increasing data volume and evolving vocabulary, the computational cost of methods based 
on inter-patient distance is prohibitive.   

We have shown compelling evidence that the text in the HPI section of the medical record contains significant 
information about patient health that can be modeled without significant preprocessing.  However, there is obviously 
a tremendous amount of information that we have not utilized.  Based only on the examples we have shown, it is 
clear that the incorporation of age, medications and admission rates will lead directly to more homogeneous patient 
clusters. Beyond this, there is almost certainly a vast amount of data available in both the current and historical 
medical records of patients. By collecting similar patients into sub-populations with methods that have been 
extended to incorporate this data, we will be able to identify features of those subpopulations, such as diagnosis and 
prognosis, that can help inform healthcare decisions on both an individual and a population level.  
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