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Abstract
With the rapid increase in the quality and quantity of data generated by modern high-throughput
sequencing techniques, there has been a need for innovative methods able to convert this
tremendous amount of data into more accessible forms. Networks have been a corner stone of this
movement, as they are an intuitive way of representing interaction data, yet they offer a full set of
sophisticated statistical tools to analyze the phenomena they model. We propose a novel approach
to reveal and analyze pleiotropic and epistatic effects at the genome-wide scale using a bipartite
network composed of human diseases, phenotypic traits, and several types of predictive elements
(i.e. SNPs, genes, or pathways). We take advantage of publicly available GWAS data, gene and
pathway databases, and more to construct networks different levels of granularity, from common
genetic variants to entire biological pathways. We use the connections between the layers of the
network to approximate the pleiotropy and epistasis effects taking place between the traits and the
predictive elements. The global graph-theory based quantitative methods reveal that the levels of
pleiotropy and epistasis are comparable for all types of predictive element. The results of the
magnified “glaucoma” region of the network demonstrate the existence of well documented
interactions, supported by overlapping genes and biological pathway, and more obscure
associations. As the amount and complexity of genetic data increases, bipartite, and more
generally multipartite networks that combine human diseases and other physical attributes with
layers of genetic information, have the potential to become ubiquitous tools in the study of
complex genetic and phenotypic interactions.
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1. Introduction
Genetic diseases and propensities have been at the center of the biomedical world for
decades. From simple Mendelian diseases that obey the one-gene-one-phenotype paradigm,
to complex genetic disorders, geneticists are working on developing novel methods to
diagnose, treat, cure, and even prevent these diseases. At the center of prevention lie the
information and education of patients on their personal genetic risk landscape. Because of
the sheer number and complexity of genetic interactions within any given organism, and
with its environment, genetic disorders and traits cannot be studied in isolation of one
another or of external factors. The cascading effects of genomic mutations can extend to
entire organisms, and having a global understanding of the ramifications of these mutations,
including all the affected phenotypes and diseases, is becoming crucial. Two phenomena
awlessly illustrate the underlying complexity of genetic variations: pleiotropy, when a single
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mutation affects several traits, and epistasis, when multiple mutations in distant parts of the
genome have synergetic, usually non-linear, effects on a single phenotype. From a system’s
biology perspective, the preferred visualization methods for these interactions are networks
of human diseases and traits. Networks offer an intuitive representation of phenotypic and
genotypic interactions, while at the same time allowing sophisticated quantitative statistical
analysis of their intrinsic properties.

Although the concepts of epistasis and pleiotropy are over a 100 years old, they are widely
under-appreciated due to their perceived rarity. State-of-the-art genome-wide association
studies (GWAS) most often look for individual genes with large impacts on a single
phenotype. The impact of genetic mutation cannot be studied in isolation, even if the attempt
is to bridge the gap between a single gene and a single phenotype. Predictive elements, such
as single nucleotides (SNPs), loci, genes, or entire biological pathways interact at all levels
of granularity. The pervasiveness and strength of biomolecular interactions require a step
back from reductionist biology and an acknowledgement of the importance of biological
networks and pathways.

In this work, we propose to go beyond the gene as a unit of mutation, and use SNPs as a
smaller unit, and biological pathways as a larger unit. We take a bird’s eye view of the effect
of genetic mutations on human phenotypes. It is often arduous to distinguish between certain
types of pleiotropy and epistasis. The effect of a single mutation rippling though a pathway
can be confused with the combined effect of distinct mutations. We therefore decide to study
these phenomena in unison. We propose to use bipartite networks made of both phenotypes
and predictive elements, constructed with GWAS data and other publicly available genetic
databases. These networks allow us to identify the pleiotropic and epistatic interactions at
the system’s level. By studying several types of human phenotype networks (HPNs) based
on predictive elements of different scales, we quantify the fundamental structural differences
of these networks, as well as the amount of pleiotropic and epistatic information they
contain. Finally, we magnify a specific phenotypic region of the HPN: the “glaucoma”
region, which groups the disease and all its first and second neighbors. We offer a close up
view of pleiotropic and epistatic interactions within a specific sub-network.

2. Background
In this section, we offer a cursory overview of the concepts of pleiotropy and epistasis.
Furthermore, we define the fundamental concepts of HPNs, how they are constructed, and
how they differ from one another (Section 2.2);

2.1. Concepts of Pleiotropy and Epistasis
Ludwig Platt and William Bateson first introduced the concepts of pleiotropy and epistasis,
respectively, to explain observed inconsistencies in Mendelian inheritance and in the one-
gene-one-phenotype paradigms.1,2 To adapt with progress with genetics, the definition of
pleiotropy has changed since it was first coined in 1910, and remains somewhat loose. A
thorough history of pleiotropy in the past 100 year can be found in Stearns’ 2010 review.3 It
refers to the general phenomenon in which a single gene dictates two or more seemingly
unrelated phenotypic traits. In some cases, the definition is limited to a single mutation in a
locus that affects multiple traits. It is however widely accepted that there is more than one
type of pleiotropy. Grüneberg4 in 1938 correctly distinguished between two major types he
called “genuine” and “spurious” pleiotropy. Genuine pleiotropy refers to a single locus
responsible for the production of two distinct gene products, whereas spurious involves a
single gene product utilized in two different ways. Furthermore, he distinguished a second
form of spurious pleiotropy in which the single primary product initiates a cascade of events
with different phenotypic consequences. Spurious pleiotropy can be said to perturb the
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biological pathways. Since then, more refined subdivisions have emerged. To help us
navigate the various types of pleiotropy, Hodgking’s survey offers classifications,
descriptions, and examples of seven types of pleiotropy5 (Table 1).

Actual genetic mechanisms of pleiotropy are extremely diverse. Genuine pleiotropy
encapsulates pleiotropy at the mRNA-processing level, multiple or overlapping loci reading
frames, alternative splicing, and multifunctional proteins, to mention only a few. Spurious
pleiotropy covers single loci mutations that produce deviation in the gene product affecting
other genes or regulatory elements located further down the biological pathways. Indeed,
new gene products may promote or repress the expression of other genes. They may initiate
alternate gene-gene and protein-protein interactions and alternate mRNA and microRNA
productions, which may in turn affect seemingly unrelated phenotypes. Pleiotropic genes
offer a unique insight into the complexities of biomolecular interaction networks.

In epistasis, on the other hand, the phenotypic contribution of a gene and its gene products
depends on the specific genotype of a locus at a different genomic position. From the origin
of the word, “standing upon”, we can derive the modern definition of epistasis, or epistatic
gene effects, in which the expression of an allele at one locus masks the expression of an
allele at another locus.6 Epistasis is therefore usually the result of multiple genetic mutations
at different loci. In this age of Genome-Wide Association Studies (GWAS), epistatic studies
can be conducted at the genome level, quantitatively studying the masking and combined
effect of single point mutations (SNPs).

Both epistasis and pleiotropy are exceptions to the one-gene-one-phenotype Mendelian rules
of genetics. They are, however, far from being rare deviations.7 Epistasis and pleiotropy are
ubiquitous inherent properties of biological systems, and they are necessary byproducts of
biomolecular networks.8 Most phenotypes are the result of interactions between thousands
of genes, as well as between genes and their environment. Because of the widespread
connectivity within networks, the effects of a single mutation or variation can spread
through thousands of gene-gene interactions, resulting in multiple phenotypes, or pleiotropy.
The connections through which a variant’s effects propagate define the molecular basis for
epistatic interactions and how they translate into an observed phenotype. Because of their
close relatedness, it is not unreasonable to conclude that a similar set of quantitative tools
can be applied to study both phenomena, sometimes simultaneously. In the present study,
these tools are Bipartite Human Phenotype Networks.

2.2. Human Phenotype Network (HPN)
In recent years there has been a trend toward studying disease through network based
analysis of various systems of connections between diseases. The result is the Human
Disease Network (HDN). The nodes in the HDN represent human genetic disorders and the
edges represent various connections between disorders, such as gene-gene or protein-protein
interactions, to name only a few. The underlying connections of the HDN contribute to the
understanding of the basis of disorders, which in turn leads to a better understanding of
human disease.

One study by Goh, et al.,9 explored the Human Disease Network (HDN), limiting its
analysis to the genes shared by different diseases. Another study by Li et al.10 traced the
SNPs connecting disease traits. In 2009, Silpa Suthram et al.11 found that when diseases
were analyzed by disease-related mRNA expression data in combination with the human
protein interaction network, there were significant genetic similarities between certain
diseases, and some of the correlated diseases shared drug treatments, as well. This could
help us target certain genes for treatment. In 2009, Barrenas et al.12 further studied genetic
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architecture of complex diseases by doing a GWAS, and found that complex disease genes
are less central than the essential and monogenic disease genes in the human interactome.

GWAS identify common genetic variants, such as SNPs, found in the genotype of different
individuals in association with phenotypical traits. Using GWAS data, we extend the HDN
to include not only diseases, but also general phenotypes, encompassing behavioral traits
and physical attributes, such as hair color, and explore large portions of non-coding
variations in the human genome. We call this more complete representation the Human
Phenotype Network.13 We rely on the catalog of published GWAS maintained by the
National Human Genome Research Institute (NHGRI) at the National Institute of Health
(http://www.genome.gov/gwastudies/) as a primary source of phenotypic data. It aggregates
studies that report SNP(s)-to-phenotype(s) and gene(s)-to-phenotype(s) associations. The
NHGR catalog used in this study, downloaded in June 2013, reports 646 phenotypes
associated with 2,000+ genes and 6,000+ SNPs.

Over 90% of risk-associated SNPs (raSNPs) identified by the GWAS fall outside of coding
regions,14 stressing the requirement for a more global assessment of phenotypic
associations. In this work we explore methods of building the HPN that go beyond
previously mentioned gene-centric HDN approaches. An interesting side-effect of all the
methods presented below is that before obtaining a HPN, the algorithm produces a bipartite
network (see Section 3), which is the property that allows us to study the pleiotropic and
epistatic information in the genetic association data. The HPN is obtained by projecting the
bipartite network onto the phenotype space.

The following sections present our methods for building the HPNs based on different
predictive elements. We start at the smallest predictive element, the SNP, then move on to
SNP clusters, to genes, and finally to complete biological pathways. These offer varying
density of the information contained with both the bipartite network and the projected HPN.

2.2.1. Genetic Variations based HPN—For each phenotype in the catalog (Fig. 1, Step
1), we define its risk-associated variome (RAV) as the complete set of its associated raSNPs
(Step 2). To address the low genomic coverage provided by GWAS, we associate each
raSNP with all SNPs found in linkage disequilibrium (ldSNPs) using the HapMap project
data15 (Step 3). SNPs in linkage disequilibrium form clusters of variants that statistically
tend to appear in the same patient.16 The HapMap project aims at building a repository of
describing the common patterns found in human genetic variations (http://
hapmap.ncbi.nlm.nih.gov/). The resulting imputed variome (iRAV) will allow us to establish
connections between diseases/traits that share blocks, i.e. that have overlapping iRAVs (Step
4).

iRAV-based HPN: In a previous study, we presented a model of iRAV-based HPN which
included the phenotype-to-raSNPs association from GWAS, and added the HapMap project
data to build clusters of variants for each phenotype (iRAVs).13 Phenotypes in the iRAV-
HPN are linked when they share overlapping iRAVs. The algorithm (in Figure 1) produces a
bipartite network of phenotypes and iRAVs.

RAV-based HPN: Linking phenotypes that share at least one raSNP, we build the RAV-
PHPN. This approach is similar to that of Li et al.10 The phenotypes are linked based only
on shared risk variants, i.e. overlapping RAVs, not including ldSNPs/iRAVs. This approach
produces a HPN that is less dense than the iRAV-HPN, identifying fewer phenotype
associations. The algorithm is similar to that described in Figure 1, omitting Step 3.

DARABOS et al. Page 4

Pac Symp Biocomput. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.genome.gov/gwastudies/
http://hapmap.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/


2.2.2. Gene-based HPN—Leveraging the gene(s)-to-phenotype(s) associations contained
in the GWAS catalogue, we construct the gene-only based HPN (gHPN). Indeed, the GWAS
catalog reports for each phenotype both the associated and the mapped genes in which the
SNPs fall. This approach is analogous to that of Goh et al.9 To increase the genetic coverage
of each phenotype, we use the Broad Institute’s GeneCruiser (genecruiser.broadinstitute.org)
to identify the gene closest to a SNP, or for which SNPs fall in a known regulatory region. If
this gene is not already associated with the SNPs phenotype, we include it in the study. This
method increases the number of genes by 138, from 2,339 genes to 2,477. The algorithm is
similar to that shown in Figure 1, omitting Step 3, and white star symbols are now genes, not
raSNPs.

2.2.3. Biological Pathways based HPN—Expanding on the gHPN, we build a
pathway-based HPN (pHPN).17 Biological pathways represent elaborate series of cascading
biochemical reactions occurring within the cell, and possibly receiving external signals.18

Pathways govern all major cellular functions, such as cell cycle, cell respiration, and
apoptosis (programmed cell death). Biochemical compounds, (e.g. nucleic acids, proteins,
complexes and small molecules) participating in reactions form a network of biological
processes and are grouped into pathways. KEGG Pathway (kegg.jp) is an open-access
collection of manually curated and peer-reviewed pathway database, containing the
structured information about the elements, enzymes, and genes (via their gene products)
within many known pathways.

Relying on the gene(s)-to-phenotype(s) data used to construct the gHPN, genes were further
linked to enriched pathways using KEGG. By building these associations, we were able to
link phenotypes associated with genes involved in the same pathways in the pHPN. The
algorithm is analogous to that in Figure 1, except that the white star symbols represent
genes, and the grey stars are pathways.

3. Pleiotropy and Epistasis in the Bipartite HPNs
The HPN resulting from either method described in Section 2.2 can be represented as a
mathematical object: a graph.19 In this work, the terms “graph” and “network” are used
interchangeably. Formally, a network is a collection of nodes and edges connecting them.
The degree, k, of a node is the number of edges incident upon the node. The average degree
of the network is the average of all k. The degree distribution function, P(k), of the network
describes the fraction of nodes within the network with degree k. The clustering coefficient
(CC) of a network measures the degree to which nodes tend to form closely knit
communities with a higher than average connectivity.20 The CC of networks found in
nature, in particular social and biological networks, show a higher degree of clustering than
that observed in randomized networks of identical size. The average path length of a
network (APL) represents the average of the minimum number of edges separating any two
vertices. Finally, the network’s diameter is defined as the greatest distance between any pair
of vertices.

In our study, we start by building a bipartite network,21 consisting of two disjoint sets of
nodes. The nodes are connected in such a way that the nodes of one set will have no
connections between them, but can only be connected to nodes of the other set. The use of a
bipartite network is natural when dealing with two different types of data sets (Figure 2b), in
our case phenotypes (e.g. the rectangles) and RAVs, iRAVs, genes, or pathways (e.g. the
circles). This type of network gives us three distinct degree distributions, one for each
projection, and one for the bipartite network. Each degree distribution shows how many
links each node has. Nodes in a projection of a bipartite network are connected if they share
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at least one node in the other group. This gives us the ability to see the interactions within
each set.

The data from the bipartite network can be projected onto either data space (Figure 2a, c). In
both cases, the nodes are connected to one another through a vertex of the other space. By
ignoring the different types of data, all network properties described above remain valid on
the bipartite network (as a single data set network) and on either projection. We illustrate the
iRAV-HPN resulting from the projection onto the phenotype space in Figure 3. In the
context of this study, the qualitative nature of the projected HPN does not contain much
information about the phenotypic pleiotropy and epistasis. Therefore, we only show one
example of projected HPN to give a sense of the complexity of the data and the necessity for
quantitative methods.

4. Characterizing and Quantifying Pleiotropy and Epistasis in the HPNs
Early studies have made use of network theory in studying both pleiotropy and epistasis.
Global statistical properties of networks, such as the “shape” of the degree distribution and
an above average CC place gene expression networks in the small-world20 or scale-free19

family of networks.22 This indicates that most of the nodes (genes) in the network are of a
low degree k. However, a small minority of the vertices are highly connected (hubs). Put in
the context of the present work, a few genes have extensive pleiotropic/epistatic effects, but
most genes only affect/are affected by a small number of phenotypes. The quantitative
structural analyses of the protein interaction networks of model organisms have highlighted
the importance of properties such as the diameter and the APL. Li et al.23 determined that
the diameter was ~ 4 – 5 edges, meaning that each gene in the genomes studied affected on
average four or five proteins. This finding also corroborates the conjecture that pleiotropy
and epistasis are confined to genomic modules, and cannot generally affect any pairs/set of
loci in the genome.24

In this work, we propose to use the information beyond the projected HPN, which is limited
as it does not contain the actual interactions between the phenotypes and the predictive
elements (SNPs, iRAVs, genes, or pathways). Instead, we will analyze the interactions
between the two layers of the bipartite networks. Because of the density and complexity of
the HPNs, the following section presents the results of a quantitative overview of pleiotropy
and epistasis as properties of the entire network. In addition, Section 5 reports the clinical
implications and the specific effects observed in a region of the HPNs centered on the
“glaucoma” vertex and its neighboring phenotypes. The variable degrees of granularity
offered by the different construction methods above result in slightly different definitions of
pleiotropy and epistasis. The SNP level provides the most detailed degree, and it defines the
strictest pleiotropy and epistasis: the same SNP is associated with multiple phenotypes, or a
single phenotype is influenced by multiple SNPs, possibly shadowing each other’s effects.
At the SNP-clusters level, we use the iRAV-HPN. The most common definition of
pleiotropy and epistasis will be used on the gHPN, where the predictive elements are
complete genes. Finally, at the highest level, we will study the pHPN and use biological
pathways to quantify pleiotropy and epistasis. Admittedly, these interpretations of pleiotropy
and epistasis may somewhat stray from the commonly accepted definitions, but they are in
line with the loose nature of the phenomena, where both have sub-types that relate to all
degrees of granularity.

Relying on the data in the bipartite HPNs, we calculate the number of phenotypes connected
to each predictive element. We use the average connectivity of the predictive element as a
proxy for measuring the global pleiotropy (Table 2). We also present the degree distribution
of the of the predictive element subset, showing the effect of pleiotropy at each predictive
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element level (Figure 4). Inversely, the average epistatic effect of predictive elements on
phenotypes can be calculated as the average degree of the phenotype subset in the bipartite
HPN (Table 2). The degree distribution of the phenotype subset conveys the distribution of
epistatic effects that different predictive elements have on the phenotypes (Figure 4).

Both pleiotropy and epistasis distributions are right-skewed with a heavy tail, which denotes
the presence of hubs. The pleiotropy distributions show that most predictive elements only
influence a few phenotypes, however, a small minority of predictive elements influence a
large number (50+) phenotypes. Similarly, the epistasis distribution depicts that most
phenotypes can be associated with only a few predictive elements. However, a small number
of phenotypes rely on the signaling of a large number of predictive elements. Although
somewhat simplistic, these results are, for all models, in line with the findings of
Featherstone et al.22 We acknowledge that the manner in which the average effects are
computed may capture more than just the pleiotropic and epistatic effects. However, these
results, due to the their ubiquity, reflect a biologically plausible property of the system. We
run a full array of quantitative statistical analysis of the different HPNs, including the
average pleiotropic and epistatic effects (Table 2).

As the models increase in granularity, the networks become denser with more edges,
decreasing APL and diameter. This is to be expected: as the network has more connections,
the distance between nodes decreases. The values agree with Li et al.23 findings. The above
average CC and the shape of the degree distributions (not shown here for space reasons) put
the HPNs in the scale-free region of the network topology spectrum. Additionally, we note
that the modularity and number of communities drops with increasing granularity and
network density. The number of isolated nodes provides an insight into how many
phenotypes have no detected genetic connection to any other phenotype. Finally, we see that
the average pleiotropy remains relatively constant until we look at the pHPN, which
biological pathways tend to affect ~ 27 phenotypes in average. Otherwise, predictive
elements do not in general impact more than 1–2 phenotypes. This proves the necessity to
apply a biologically relevant filter to the pHPN in order to extract the “backbone” of the
network, containing the most relevant genetic influences.17 The average epistatic effect is
also reasonably steady, except when ldSNPs are included in the iRAV-HPN. This is due to
the fact that now both raSNPS and ldSNPs are directly associated to the phenotypes.

5. Clinical Implications: the Example of Glaucoma
As previously stated, each HPN differs in terms of the number of edges branching from each
phenotype node. Moving from the gHPN to the pHPN provides a great deal more
information, but the network itself becomes extremely complex and difficult to analyze
visually. The pHPN can help to explain the shared etiology of glaucoma and other diseases
by revealing a substantial number of interactions unseen in the gHPN. Ultimately, studying
predictive elements from a global perspective, using networks, could contribute to novel
discoveries in pleiotropic drug therapies.

The HPNs confirm well-known interactions, such as between glaucoma and blood pressure
(BP). Studies have linked the two for years and drugs used to treat glaucoma, such as beta-
blockers and alpha-adrenergic agonists,25 are known to affect BP. In fact, patients with
cardiovascular problems are advised against taking beta-blockers, a treatment for the high
intraocular pressure (IOP) associated with glaucoma, because of its effect on heart rate and
BP.26 Moreover, many studies have shown that BP and ocular perfusion are important
factors in the pathogenesis of glaucoma. For example, studies have linked increases in blood
pressure to slight increases in IOP. Going further, the “Blue Mountains Eye Study” found
that systemic hypertension was significantly associated with an increased risk of primary
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open-angle glaucoma (POAG), independent of the effect of BP on IOP. Systemic
hypertension was the greatest risk factor for POAG.26 Blood pressure is a first neighbor to
Glaucoma in the pHPN, suggesting the validity of the model. They are linked by the
umbrella pathways in cancer. Diabetes mellitus is another well-documented disease known
to interact with glaucoma.27 Type 1 diabetes is a direct neighbor and Type 2 diabetes is a
second (indirect) neighbor. Type 1 diabetes and glaucoma are linked by the cell cycle and
HTLV-I infection pathways. Type 2 diabetes and glaucoma share common gene: CDKN2B-
AS. In the gHPN, on the other hand, Type 2 diabetes is a first neighbor, but Type 1 diabetes
and blood pressure are only second neighbors to glaucoma. Additionally, the pHPN allows
us to see connections that are not included in the gHPN, which could lead to new advances
in treatments for the linked diseases. For instance, Alzheimers disease is a second neighbor
of glaucoma. Both are neurodegenerative diseases and their similarities have recently begun
to receive significant attention. Inoue et al. maintain that elevated levels of biomarkers for
Alzheimers are more often found in patients with open-angle glaucoma (OAG) than in
patients with cataracts.28 In addition, Alzheimer’s and OAG share pathways such as cell
death mechanisms (apoptosis), reactive oxygen species (ROS) production, mitochondrial
dysfunction and vascular abnormalities.29 Apoptosis of the neural ganglia cells is a major
issue in glaucoma. In the gHPN, the link between Glaucoma and Alzheimers disease is not
readily apparent by looking at the graph – it becomes a third neighbor. Another interesting
link is to the “smoking behavior” phenotype, although this is only readily apparent in the
pHPN where it is a first neighbor to glaucoma. The two share the umbrella pathways in
cancer. Association studies have shown that smoking behavior is correlated with central
corneal thickness in OAG and might also be a risk factor for POAG.30

6. Conclusions & Future Work
The study of genetic diseases is progressing at an unprecedented pace, thanks to modern
high-throughput sequencing technology and to the development of modeling techniques at
the crossroads of bioinformatics and mathematics. Bipartite HPN models are capable of
leveraging the massive amount of GWAS and other readily-accessible genetic data, and
collapsing the information into a single, manageable source. The projection of the HPN
helps analyze phenotypic interactions.13,17 The overall structure of the connections between
the layers of the bipartite HPN, on the other hand, allows us to estimate in a quantitative
manner the pleiotropic and epistatic effect at a global level, for multiple types of predictive
elements. Finally, by magnifying regions of the HPN, we are able to highlight previously
documented phenotypic interactions, supported by genes and biological pathways evidence
as a proof of concept. The bipartite HPNs are flexible, scalable, and intuitive models. HPNs
are potentially useful to study phenotypic links, as well as uncover novel pleiotropy and
epistasis effects at the single variation level, at the gene level, and all the way to the
biological pathway. Future work will involve collapsing the multiple HPNs into an
aggregated model. This step will however require the information to be filtered in a
biologically sensible manner. Further refinements of the model will include the detection of
different types of pleiotropy and epistasis. Finally, we are working on statistical and cross-
validation approaches to validate the E&P significance.
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Fig. 1.
Step-by-step description of the method to obtain the HPN. The circled numbers correspond
to the steps of the method description above.
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Fig. 2.
Bipartite Network schematic. A bipartite network (b) made of 2 data sets the “circles”, and
the “rectangles”. Projections in the “circle” space (a) and in “rectangle” space (c).
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Fig. 3.
iRAV based Human Phenotype Network. In order to increase the readability, we have
filtered out nodes with a degree smaller than 5 (i.e. connected to less than 5 other nodes),
showing only 137 nodes (about 30%) and about 45% of the actual edges. To further
facilitate the readability, we have manually merged a number of clearly redundant nodes.
The nodes and labels sizes are proportional to the original degree of the phenotype (before
filtering). The edge width is proportional to the number of overlapping iRAVs.
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Fig. 4.
Pleiotropy and Epistasis Distributions. The pleiotropy distributions shows the distribution of
the number of phenotypes (PT) for each predictive element, i.e. the distribution of predictive
elements influencing multiple phenotypes (see inset). The epistasis distribution shows the
number of predictive elements for each phenotype, i.e. the distribution of phenotypes ruled
by multiple predictive element (see inset).
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Table 1

A classification of different types of pleiotropy. Adapted form Hodgkin’s study5

Type Situation

Artefactual Adjacent but functionally unrelated genes affected by the same mutation

Secondary Simple primary biochemical disorder leading to complex final phenotype

Adoptive One gene product used for quite different chemical purposes in different tissues

Parsimonious One gene product used for identical chemical purposes in multiple pathways

Opportunistic One gene product playing a secondary role in addition to its main function

Combinatorial One gene product employed in various ways, and with distinct properties, depending on its different protein partners

Unifying One gene, or cluster of adjacent genes, encoding multiple chemical activities that support a common biological function
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Table 2

Quantitative Properties of the different HPNs. (PT : phenotype, GE: predictive element.)

RAV-HPN iRAV-HPN gHPN pHPN

LCC size (%nodes) 295 (45%) 401 (62%) 430 (67%) 396 (61%)

#edges 932 2845 2556 40K

avg. degree / weighted 6.31 / 10.03 14.19 / 37.54 11.88 / 16.85 204.1 / 497.6

APL / diameter 3.7 / 10 2.96 / 8 2.96 / 6 1.48 / 3

avg. CC 0.58 0.59 0.57 0.79

modularity / communities 0.62 / 26 0.55 / 24 0.49 / 10 0.10 / 4

isolate vertices 351 245 216 250

avg. pleiotropy (#PT/#GE) 1.12 1.12 1.58 27.06

avg. epistasis (#GE/#PT) 11.11 285.64 6.07 5.69
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