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ABSTRACT A model is presented for the interference of GTP
hydrolysis in the mechanism of microtubule assembly. This model
is suggested by previous results showing that both GTP and GDP
are present at microtubule ends because of GTP hydrolysis and
that tubulin does not bind to a GDP-bound end. The analytical
theory developed here is aimed at calculation of the steady-state
subunit flux at one end of the polymer. The GTP/GDP features
just mentioned result in a nonlinear plot of the flux versus tubulin
concentration. Microtubules are predicted to exhibit a different
kinetic behavior below and above the critical concentration, which
can be considered as a transition between two regimes.

There is evidence (1) that GTP-tubulin (called T, below) forms
a steady-state cap at and near an end of a microtubule, though
in the deep interior the subunits of the polymer are all GDP-
tubulin (called D, below). Until recently, it was thought that an
added T hydrolyzes very quickly to D at the very tip of a mi-
crotubule so that the entire polymer would consist of, for prac-
tical purposes, D units only. In the newer view (1, 2), a given
T unit that adds to the tip might be buried in the microtubule
end but would eventually become D, if it did not first leave
again. In steady-state growth (or even steady shortening), there
would then be a certain statistical population of still-surviving
T near the end of the microtubule-the GTP cap.

The steady-state kinetic theory of microtubule and actin
polymerization (3, 4) therefore needs modification, at least for
microtubules-and probably also for actin (5, 6). An attempt at
this was made in ref. 4, where an "uncorrelated approximation"
was used in the treatment of a single independent helix. In this
paper, we give an exact analytical treatment of the problem that
avoids the uncorrelated approximation but has to be limited to
the special case (see Fig. 1) K = 0, aiD = 0, except near c =
0 (c is the concentration of free T). Because the experimental
values of K and alD are both probably small, this treatment is
probably fairly realistic. An interesting result is that the theory
predicts a significant discontinuity in slope for the steady-state
subunit flux as a function of c, at the critical concentration (where
flux = 0).

THE MODEL
The explicit model we use here was introduced in appendix 3
of ref. 4, following Carlier (2). If we assume that a microtubule
is, say, a five-start helix, then as an approximation we consider
the five helices to be independent (4). As a consequence, the
model and its rate constants relate to the kinetics of a single
helix (a "polymer," below). We consider a single end only.
The types of transitions included in the model for, say, the

a end of the polymer are shown in Fig. la, where T refers to

a tubulin dimer (a "subunit") with GTP bound, D refers to a
subunit with GDP bound, and the concentration of T in so-
lution is c. All rate constants are first order except a,, which
is second 6rder. T can attach to (a1c) or detach from (aj) a
polymer end (position n = 1 of the numbered subunits on a
helix). These are the only reversible transitions in the model.

Actually, the on-off rate constants in Fig. la are not used as
written there but rather are subdivided as shown in Fig. 1 b
and c. The attachment (on) constant for a T from solution is a1T
onto a polymer T at n = 1 and is alD onto a polymer D at n =
1 (Fig. lb). We generally assume that, according to experi-
mental results (7), a1D = 0. The detachment (off) constants for
T or D at n = 1 are assumed to depend on the state (T or D)
of the neighbor at n = 2, as shown in Fig. 1c.
GTP hydrolysis accompanying polymerization is a single

turnover reaction taking place on interior (n , 2) subunits of
the polymer (1) with rate constant K, which is relatively small.
The resulting GDP is not exchangeable and the deep interior
of the polymer is all D (8, 9). In contrast, at position n = 1, GTP
can be hydrolyzed with rate constant K', and subsequent ex-
change of GTP for GDP can take place with rate constant K" (2,
7). Consequently, the sequences alrc, K', an or a2D and K',
K" both complete a cycle of GTP hydrolysis at the polymer end.
The reverse reactions of K, K', K", a2D, and a2T are neglected
here. Exchange of GTP for GDP on a free subunit in solution
is assumed to be fast.

In the analytical discussion given below, which is aimed pri-
marily at the calculation of the subunit flux J,, we take both
a1D = 0 and K = 0 at the outset. As a second-stage approximate
correction, we can then introduce a small K > 0. However, the
relatively simple analysis that we are able to use here cannot
be retained if alD > 0. To treat K> 0 and aiD > 0 exactly,
Monte Carlo calculations are needed (10).

In view of the above comments, a few words about the spe-
cial consequences of the condition alD = 0 may be in order.
In this case T from solution can attach only to an end T not to
an end D (Fig. lb). When c is very small (c << ca), the polymer
loses subunits steadily (J. < 0). Hence, D subunits are being
brought to the "surface" (n = 1) continually. Because T cannot
attach to D (alD = 0), the only way T can occur at the end (n
= 1) is via the K" exchange reaction (when c -- 0). Thus, elon-
gating sites capable of attaching T depend on the K" reaction
at small c. If K' itself is relatively small, the increase ofJ. with
c will be very small. That is, there will be a long, almost flat,
induction regime in the negative part of the Ja(c) curve at small
c before significant T occurs at the polymer end and finally al-
lows Ja, to increase to J. = 0 at c = ca. At this point, a discon-
tinuity in the slope of Ja occurs because of the fact that, since
a1D = 0, alT dominates the slope of Ja when Ia > 0 whereas
a small K" dominates it whenJa < 0. Because the negative branch
of Ja(c) makes a much delayed increase toward Ja = 0, C = Ca,
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FIG. 1. (a) Classes of.transitions and rate-constant notation~included in the model considered in this paper. (b) Subdivision of "on" transitions,
according to occupant of positions = 1. (c) Subdivision of the two kinds of "off" transitions, according to occupant of position n = 2.

when it does increase it must do so steeply. This steep slope is
much larger than the modest slope in the > 0 branch.,
The two regimes or branches are like two phases in a phase

transition (strictly, a second-order phase transition). Of course
the present system is a steady-state system not an equilibrium
system. Qualitatively the primary reason why the two regimes
are so different is that the lower regime is dominated by a steady
stream of Ds moving to the polymer end or tip from the poly-
mer interior whereas the upper regime is dominated by a steady
stream of Ts coming to the polymer end from the surrounding
solution. There is some resemblance here to a river mouth or

estuary (the polymer end) that is influenced primarily by the
river at low tide but by the ocean at high tide.

THEORY: UPPER BRANCH, J. > 0

As already mentioned, we start with aID =0, K = 0 and modify
later for a nonzero but small K. In the growing branch ofJa(c)-
i.e., Ja > 0-T from solution adds repeatedly to polymer T at
n = 1, interspersed with departures of D or T from the n =

1 position. There is a long string of pure T starting with n =

2, 3, ... (the GTP cap). With K = 0, none of these can change
to D, the cap never reaches a steady size, and there is no way
for position n = 2 to be a D. Therefore, P2 = 1. The string grows
at a steady rate Ia, to be determined. The end- of the polymer
has only two states, shown in Fig. 2 with the transition rate
constants. Adding or losing a T in state 1 still leaves the system
in state 1. From Fig. 2, we have, at steady state:

pIK' = (1 pl)(a2T + K")

or

a2r + K"

Pi=

q2T + K' + K"

This expression is independent of c. The net rate of adding sub-
units at c is then

Ia = plalTc pla-lT - (1 - p)a2T = A + Bc, [2]

where

-(air + c')a-iT- a(XK'
ar + K' + K"

B = (a2r + K")alT
a2T + K' + K"

[3]

Thus, Ja is a straight line with slope B and (hypothetical). in-
tercept A. The value of the critical concentration c", from this
branch is found by putting Ja = 0:

(a2T + K)a-lT + a2TK'
Ca A/B =

(ar2T + K")alT

Of course Eq. 2 is strictly applicable only when ,, > 0-that
is, when c > ca. However, this same value of ca is also found
from the lower branch Ia < 0 (see below).
The steady-state rate of hydrolysis of GTP is simply lA =

K'pl, a constant.
Introduction of K> 0. When K is small, but not zero, spe-

cifically 0< K <<Ja, the values of the first few p. after p, (i.e.,
P2, p3, . . .) will be very close to unity. Thus, a D will only rarely
reach n = 1 from n = 2. Hence, our derivation of Ia in Eq. 2
will be perturbed very little by a small K. Because of this, we
can use Ia to make a very simple approximate calculation of the
mean numberN of GTP molecules (i.e., T subunits) in the GTP
cap (n = 2, 3, . . .) at the a end at steady state. WithK > 0, the
cap will reach a steady size N at steady state. The rate of T en-
tering the cap is La and the mean rate of T leaving the cap (be-
coming D) is K N. These quantities -must be equal at steady
state. Hence N -= Ia/K, where Ia is given by Eq. 2. Like
N is linear in c. The smaller K, the larger N. This calculation
is not accurate near c = ca, where N is relatively small.

If a subunit enters the cap (as a T) at time t = 0, the prob-
ability that it remains a T at a later time is e-Kt (as in radioactive
decay). The relation between t and the position n reached by
this. subunit in the interior of the polymer is t = (n - 2)/la.
Hence,

Pn = exp[-K(ln- 2)/lal.
State 2 State 1

02T + K"
D N.T
T x' T
T T

1-pi Pi

FIG. 2. The two states and transitions that need to be considered
when J. > 0 and K = 0, alD = 0-

[5]
There is an exponential decrease of pn with n; the fall-off is slower
with smaller K

THEORY: LOWER. BRANCH, Jo <0
Here again we start with al0 = 0, K = 0 and make a correction
later for K> 0. There is net steady shortening of the polymer
in this case. The interior (n large) is all D and these Ds tend to
be brought steadily to the surface (n = 1). However, because
of the K' and alT transitions, it is still possible to build up a pure
cap of Ts in positions n. = 2, 3, .... The cap is pure T, up to
the boundary of interior Ds, because alD = 0 and K= 0. Fig.
3 shows the possible transitions and rate constants and also in-

/at2T /at20
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FIG. 3. Examples withN = 0 andN = 3 (number ofT subunits in
cap-i.e., at positions n = 2, 3, ...) of polymer states and possible tran-
sitions when J. < 0 and K = 0, aID = 0.

troduces the possible states of the polymer end: DN and TN,
with N = 0, 1, 2, .... In this notation, D or T refers to the state
of the end subunit (n = 1) whereas N specifies the number of
Ts in the cap. Thus, in Fig. 3 a and b, we have N = 0 and N
= 3, respectively. Note that the two off rate constants are dif-
ferent for N = 0 than they are for any N > O.

Because all states of the polymer end can be classified as in
Fig. 3 (both a1D = 0 and K = 0 are necessary for this), it is
possible to use the kinetic scheme interconnecting the states
shown in Fig. 4. The constant a2D does not appear in Fig. 4
because this transition in state DO leaves the polymer in state
DO. As we now show, the steady-state properties of the poly-
mer are easy to deduce from Fig. 4.

The steady-state probabilities of the states in Fig. 4 are de-
noted PDN and PTN, with N = 0, 1, .... The sum of all these
is unity (normalization). The linear algebraic equations deter-
mining these probabilities are

dpDo/dt = 0 = (K' + aLD)PTo - KPDO
dpno/dt = 0 = KtPDO + a2TPD1

+ a-ITP'fl -(K' + a-!D.+ aTc)pro, [6]
etc., in the sequence D1, T1, D2, T2, etc. The DO equation is
special but the equations for the other states follow a repeating
pattern. By working with the successive TN equations, using in
each case the DN and DN + 1 equations for eliminations, one
finds the simple relations

PTN=bPrN-1 (N= 1, 2,...) [7]
and also (from the DN equations)

PD = apDo

PDN =dPTN (N = 1, 2,.)X [8]

DO = TO
x' +Cr~

I- - - - -IT I 1RTC

Dl Ti

II- - - - a2; a-IT I IjeITC

D2 - T2
:

:
where

a = K1/(K' + alD)
(a2T + ie)aTc

azrK' + a-lTazr + a-lTK"
d = K'/(a2T + K).

[9]

[101

[11]
If we now use Eqs. 7 and 8 to express all the other PDN and PTN
in terms of PDO, then the normalization relation leads to

(1 - b)
PDO- 1 + a - b + abd

and then
abN(l - b)

PTN = 1 + a - b + abd

adbN(l - b)
PDN = 1 + a - b + abd

(N= O, 1, 2, ...)

(N= 1,2, ...).

[12]

[13]

[14]

The probability of a cap of size N is p'rN + PDN.
Other quantities of interest are now easy to derive. The

probability p, that position n = 1 is a T is (see Fig. 3)
a

Pi = PTO +Prl +P.M 1- 1+ a - b + abd

Similarly, for higher n,

Pn = PT.n-1 + PTn + PT.n+l +
+ PDn-l-+ PDn + PDan+l + * *

abn-l(I + d)
1+a-b~~abd (n 2,3,..)1 + a - b + abd n=2,

The mean number of Ts in the cap (n = 2, 3, ...)is

ab(l + d)
P2+P33+ (1+ a-b + abd)(1 -b)

[15]

[16]

[17a]

This can also be found from PTN + PDN (above). We emphasize
that this expression for N refers to a polymer with K = 0 (no T
--D in the polymer interior). If actually K> 0, the above value
of N is exaggerated. An approximate correction to N for K >
0 is given in the next subsection.
From PIN + PDN it is also easy to find the variance in N, which

can be expressed in.the form
N2- N2 1-b2 + a + ab2d

R2 ab(l + d) [17b]
The probabilities PTT,.PTD, PDT, and PDD are also of impor-

tance. The subscripts here refer to the states of the subunits in
positions n = 1, 2. These four probabilities add to unity. From
Fig. 3, we see that

PDD = PDO, PTD = Pno
abd

PDT = PD1 + PD2 + 1 + a - b + abd

ab
PTT = PT1 + P]'2 +. 1 + a- b + abd'

Note that

[18]

[19]

[20]

FIG. 4. Kinetic diagram for states of the polymer when J. <0 and
K = 0, a1D = 0.

Pl = PTD + PTT, P2 = PDT + PrTT [21]
Incidentally, in the uncorrelated approximation we would have

Proc. Nad. Acad. Sci. USA 80 (1983)
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PTT = P1P2. It is easy to verify from Eqs. 15, 16, and 20 that
this relationship does not hold here.
The net mean subunit flux J. is given by

Ja = a-Tcpl a2DPDD - a2TPDT
- a-1DpTD - a-lTPTT- [22]

The various terms are easy to understand from the subscripts.
Actually, the pi, PDT, and PTT terms in Eq. 22 cancel. This is
because the total transition "traffic" across each of the- lines I,
II, . . . in Fig. 4 must be zero at steady state to provide-a steady
cap. The sum of this traffic over I, II, ... is expressed by the
terms that cancel. Thus

la(C) = -a2DPDD - alDpTD

= -a2DPDO -a_1DPTO
= -(a2D + aa-ID)(l - b)

1 + a - b + abd
[23]

The rate of hydrolysis of GTP is simply lh = K'pl, with Pi
given by Eq. 15.

Introduction of K> 0. Before turning to the main topic of
this subsection, we digress to considerja(c) at very small c (i.e.,
to the linear term in c) for arbitrary K and a1D. This is a gen-
eralization of Eq. 25, where K = 0, a1D = 0. To obtain the lin-
ear term inJ(c), it suffices to consider only the four states shown
in Fig. 5 and transitions between them. These are the states in
which T has not penetrated beyond n = 1 and n = 2. (Actually
the same method can be extended numerically to provide the
C2, c3, ... terms in Ja if we allow T to penetrate to n = 3, 4,
....) The normalized steady-state probabilities of the four states
in Fig. 5 can be found as usual by solving the linear algebraic
rate equations that follow from the figure. ThenJ. is found from
the on-off transitions in Fig. 5 plus the a2D transition out of
state DD (which does not change the state). Omitting details,
the result is

C G [28]

Note that b is proportional to c (Eq. 10). At c = 0, b = 0. and
the initial value of Ja (negative) is

=O) -(a2D + aa-lD)

At very small c (or b), Ia is linear in c (or b):

Ja(c) = J(0) - Ja(O)ab(1 + d) +1+a

[24]

[25]

Because Ja(O) is negative, the initial slope dJla/dc-at c = 0 is
always positive. Because a is proportional to K", the initial slope
approaches zero if K" -O0. One can show that both dJa/dC and
d2Ja/dC2 are positive in 0 - c ' ca.

At the other limit in Eq. 23, b -- 1 andJa(c) -* 0. If we put
b = 1 and c = ca in Eq. 10, the resulting expression for ca is
the same as in Eq. 4. Thus, the two branches of Ia join atJa =
0, C = Ca, though generally with a discontinuity in slope. In-
cidentally, we are now justified in writing b= C/Ca. As c -* ca
(and b -* 1), all of the pn (n - 2) -* 1 and N -+ 1/(1 - b) -*
X (see Eqs. 16 and 17). That is, the T cap becomes infinitely
large (in the absence of. interior hydrolysis, K = 0). The vari-
ance in N also becomes infinitely large: the right-hand side of
Eq. 17b approaches unity. The slope of the negative branch of
Ja(c) near c = ca is easily seen from Eq. 23 (using b = C/Ca) to
be

(d4aM a2D + aa-1D [26]
'dc hC=C, caa(1 + d)

The slope of the positive branch of Ja is B in Eq. 3. Because
a K", at c = ca the negative branch slope X-*0 if K" -* 0.
Recall that, at c = 0, the slope--+ 0 if K" -O 0. Thus, as dis-
cussed above, there is a virtual phase transition at c = ca if K"
is small (with aiD = 0, K = 0).

Using the relation B = aIT/(1 + d), we find that the ratio
of the two slopes at c = ca is

slope (negative branch) a2D + aai1D
slope (positive branch) aaiTca

K'a2D + a1-Da2D + K"a 1D [27]
K aiTca

This ratio -X oas K"-A 0. We emphasize again that this result,
Eq. 27, holds only for aiD = 0, K = 0.

where Ja(O) is. the same as in Eq. 24 and
C = K"(K' + K" + afr)(a2DK' + a2DaID + a_1DK + KE)

+ KK"[a-1D(K' + K" + a2o) + KE]

E = K' + K" + a_1D
F = a2TK' + a2Ta-I + alTK'

+ K(K' + K" + a2T + a-lT + K)

G = (K' + aLD)(K + K' + a2D).

This reduces to Eq. 25 if K = 0, aID = 0. Note that K does not
appear in the a1Dc term and that C -* 0 if K" -* 0, thus elim-
inating the arTc term. A significant initial slope in Ja(c) can oc-
cur only if there is an appreciable value of K" (alTc term) or of
a1D (alDc term) or both. These are the transitions that make it
possible for T from solution to attach to the polymer end when
c is very small.
The above result (Eq. 28) is exact. We turn now to an ap-

proximate correction of N, the mean number of Ts in the cap,
in Eq. 17a when K is small but not zero (aiD = 0 still). When
K # 0. the derivation of Eqs. 12-23 is no longer valid: Figs. 3
and 4 no longer accommodate all possible states of the polymer
because the cap is no longer pure T. However, when K is small
we take the following approximate approach. When K = 0, a
T that enters the cap (Fig. 3b) must eventually come back out
of the cap-i.e., reach position n = 1 again-because the poly-
mer is shortening. When K> 0 but small, we assume that the
average stochastic history of a T that enters and eventually leaves
the cap is the same as when K = 0 except for the fact that the
T may "decay" to a D via the K reaction during its lifetime in
the cap. It is not difficult to correct N if we make this simpli-

D
T

x" T
T

/D\D
K a2T ~c//a~

D arDC+ x T
D - D
*D
0 -D+X' D00

FIG. 5. Sufficient kinetic diagram to obtain exact properties ofmodel
near c = 0, including arbitrary K and aID-

CeR Biology: Hill and Carher



7238 Cell Biology: Hill and Carlier

2

-1 aID = 0An~~~~~~~~~" 10/S-1 X 0
20~~~K=

-2

oe~-3:7

_4 aI

5_

FIG. 6. J., as a function of c for numerical example introduced in text. The solid curves are exact, for a1D = 0, K = 0. The lower dashed lines
show, in two cases, the effect of a1D = 2 near c = 0. These are also exact. The upperdashed lines, forthesametwo cases, are approximate (uncorrelated
approximation).

fying assumption. The correction becomes very substantial in-
deed when c -- ca because in this case the cap becomes very

large (N -X as c ca). As a consequence, a T entering the

cap will generally change to D relatively early in its very long
lifetime in the cap. Hence, when c ca most of the uncor-

rected pure T cap will in fact have decajed to D, thus making
the number of Ts in the corrected cap, Norr, much smaller than

Ncorr (alTCa/ K) [29]

NUMERICAL EXAMPLE

We illustrate; the above theoretical results with a specific but
rather arbitrary numerical example. All of theJa(c) calculations
in Fig. 6 are for the case K = 0, though a small-K [e.g., 0.25
min1, as found experimentally (1)], would presumably hardly
affect these curves except near c = Ca when Ki' is very small
(10).
To begin with, we take alD = 0. The other rate constants

that we use are K' = 1.5 sol, alT = 2.5 AM-1 sol, alT = a-ID
= 6so, and a2T = a2D = 3s-1. These rate constants are plau-
sible values from data in the literature and relate to a single
helix of the microtubule. The value of Kic is varied. When K"
= 0, ca= 3 ,uM (Eq. 4).
The lower branch (Ja < 0) solid curves in Fig. 6 have been

calculated from Eq. 23, for several values of K" (and a1D = 0
in all cases). Their intersection at c = 1.2 p.M is an accidental
degeneracy. For example, if we take a2D # a2T, the multiple
intersection is broken up. The upper branch solid curves (straight
lines) follow from Eq. 2. There is a discontinuity in slope at c

t Details of the derivation of Eq. 29 are available from T. L. H.

= Ca UJ, = 0), though this is small when K" = 10 sfl. Note how
the initial slope of Ja(c) increases with Kic. When K!' - 0 (e.g.,
K" = 0.01 s'1), the transition from lower branch to upper branch
becomes very sharp.

In the upper branch at, say, 1'a = 1 s5 (any I"), N (number
of Ts in the cap)= J.a/K = 240, if we take K = 0.25 min-'. This
is the number of Ts in one helix; there would be 1,200 in the
microtubule if it is a five-start helix. To illustrate Eq. 29 for
No at c = ca, we use the K' = 2 sl case in Fig. 6. Then ca
=2.76 AM and N _41.
The solid curves in Fig. 6 are for a1D = 0. The dashed lines

illustrate the effect of a1D> 0. For these lines, we have taken
aiD =- 2 AM1s' and K = 0.1 or 10 s . The lower branch
lines (near c = 0) are from Eq. 28 and are exact. Note that a1D
has a larger effect on the initial slope of Ja(c) when Ki' is small.
The correspondingupper branch lines have been-calculated us-
ing the uncorrelated approximation (4). They are probably quite
accurate. Monte Carlo calculations would be needed to verify
this and to fill in the missing parts of the dashed curves.

Related experiments will be reported on in a subsequent pa-
per (11).
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