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Abstract

Interhomolog recombination plays a critical role in promoting proper meiotic chromosome segregation but a mechanistic
understanding of this process is far from complete. In vegetative cells, Rad51 is a highly conserved recombinase that
exhibits a preference for repairing double strand breaks (DSBs) using sister chromatids, in contrast to the conserved,
meiosis-specific recombinase, Dmc1, which preferentially repairs programmed DSBs using homologs. Despite the different
preferences for repair templates, both Rad51 and Dmc1 are required for interhomolog recombination during meiosis. This
paradox has recently been explained by the finding that Rad51 protein, but not its strand exchange activity, promotes
Dmc1 function in budding yeast. Rad51 activity is inhibited in dmc1D mutants, where the failure to repair meiotic DSBs
triggers the meiotic recombination checkpoint, resulting in prophase arrest. The question remains whether inhibition of
Rad51 activity is important during wild-type meiosis, or whether inactivation of Rad51 occurs only as a result of the absence
of DMC1 or checkpoint activation. This work shows that strains in which mechanisms that down-regulate Rad51 activity are
removed exhibit reduced numbers of interhomolog crossovers and noncrossovers. A hypomorphic mutant, dmc1-T159A,
makes less stable presynaptic filaments but is still able to mediate strand exchange and interact with accessory factors.
Combining dmc1-T159A with up-regulated Rad51 activity reduces interhomolog recombination and spore viability, while
increasing intersister joint molecule formation. These results support the idea that down-regulation of Rad51 activity is
important during meiosis to prevent Rad51 from competing with Dmc1 for repair of meiotic DSBs.
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Introduction

Meiotic recombination is a highly conserved process that is

critical for the accurate segregation of homologous chromosomes

to opposite poles at the first meiotic division. Crossovers between

non-sister chromatids, in combination with sister chromatid

cohesion, physically connect homologous chromosomes, thereby

allowing them to align properly at Metaphase I [1]. In the absence

of crossovers, homologs segregate randomly to generate chromo-

somally imbalanced gametes, resulting in infertility or birth defects

[2].

Meiotic recombination is initiated by the introduction of

programmed double-strand breaks (DSBs) catalyzed by a meio-

sis-specific, evolutionarily conserved, topoisomerase-like protein,

Spo11 [3]. Resection of the 59 ends of the breaks results in 39 single

stranded tails. In many organisms, including yeast and mammals,

these single stranded ends are bound by two conserved RecA-like

recombinases, Rad51 and Dmc1, to form nucleoprotein filaments

that mediate strand invasion of homologous DNA duplexes [4,5].

Rad51 is present in both vegetative and meiotic cells, while Dmc1

is meiosis-specific. Subsequent processing of the resulting recom-

bination intermediates results in the formation of either crossover

or non-crossover chromosomes [6].

Rad54 and Rdh54/Tid1 are key accessory factors that

physically interact with Rad51 and Dmc1 [7–10]. These paralogs

are members of the Swi/Snf chromatin remodeling family of

proteins and affect multiple steps of recombination, including

stabilization of the Rad51 filament, the promotion of strand

invasion, and the removal of recombinases after strand invasion to

allow extension of the 39 ends by DNA synthesis [11]. Rdh54 is

also important in meiosis for removing Dmc1 from double

stranded DNA that has not experienced DSBs [12]. There can be

crosstalk between Rad54/Rdh54 and Rad51/Dmc1 (meaning, for

example, that Rad54 may function with both Rad51 and Dmc1),

as rad54D rdh54D double mutants have more severe meiotic

phenotypes than either rad54D or rdh54D alone [13,14]. However,

recent biochemical studies using recombinant Dmc1, Rad51,

Rad54 and Rdh54 proteins have demonstrated that Dmc1-Rdh54
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and Rad51–Rad54 work as functionally distinct pairs for strand

invasion in vitro [15].

In each meiosis, there are ,160 DSBs generated by Spo11 [16].

The majority of these breaks are repaired by interhomolog

interactions either as crossovers (COs) or noncrossovers (NCOs),

while the remainder are presumably repaired using sister

chromatids as templates [17,18]. In yeast, physical analyses of

joint molecule recombination intermediates have indicated a bias

of approximately 4:1 for interhomolog versus intersister recombi-

nation events [19]. This bias for interhomolog recombination is

unique to meiosis: in vegetative cells, Rad51 acts to repair DNA

damage preferentially using sister chromatids [20,21].

Axial elements are generated when sister chromatids condense

through the formation of loops tethered at their bases by meiosis-

specific proteins [22]. In yeast, these proteins include Hop1, Red1

and Mek1 [23–25]. Diploids containing deletions of these genes

exhibit reduced interhomolog recombination and increased levels

of intersister recombination, demonstrating the importance of

axial element components in promoting interhomolog recombi-

nation [26–31]. While Hop1 and Red1 are structural chromo-

somal components of axial elements, Mek1 is a serine/threonine

protein kinase [32].

Prior to DSB formation, sequences within the loops of DNA

created during axial element formation are recruited to the axes to

form ‘‘tethered loop axis complexes’’ [33,34]. Breaks are then

created on the axes where Red1, Hop1 and Mek1 are present.

This is important because DSBs result in the localized activation of

Mek1 kinase activity via checkpoint kinase Mec1 phosphorylation

of Hop1 [32,35,36]. It has been proposed that one end of each

break remains tethered to the sister chromatid while the other end

forms a ‘‘tentacle’’ that searches for the homologous chromosome.

Mek1 facilitates interhomolog interactions in part by antagonizing

sister chromatid cohesion mediated by meiosis-specific cohesin

complexes [27].

Although both rad51D and dmc1D reduce interhomolog

recombination, additional phenotypes of rad51D and dmc1D
mutants are different, suggesting they play discrete roles in meiotic

recombination [19,37–39,40]. RAD51 is required to efficiently

recruit Dmc1 to DSBs [37,41]. In budding yeast, strains in which

Dmc1 is the only recombinase (i.e. rad51D mutants) do not show

interhomolog bias, indicating that the presence of the Rad51

protein is necessary to promote Dmc1 strand invasion of homologs

[19,38,42]. This idea was confirmed by studies using a mutant of

RAD51 that is specifically defective in strand exchange. This

mutant, rad51-II3A, exhibits a wild-type ratio of interhomolog:in-

tersister joint molecules, indicating that the presence of inactive

Rad51 protein is sufficient for Dmc1 to mediate the bulk of

meiotic recombination [43].

DSBs in dmc1D mutants are not repaired and become

hyperresected in the SK1 strain background where the phenotype

is most severe [44]. These breaks trigger the meiotic recombina-

tion checkpoint and cells arrest prior to the Meiosis I division [45].

Rad51 foci persist in dmc1D diploids, indicating the recombinase is

present at DSBs but is not able to repair them [37,40]. Inactivation

of an analog-sensitive version of Mek1, called Mek1-as, after DSBs

have formed in dmc1D cells allows Rad51-dependent repair of the

breaks using sister chromatids [32,46]. Therefore Mek1 phos-

phorylation of protein substrates is essential to inhibit Rad51

activity in the absence of DMC1.

A key step in downregulating Rad51 activity in dmc1D diploids is

the inhibition of Rad51–Rad54 complex formation. There are two

independent, meiosis-specific mechanisms by which formation of

this complex can be suppressed. First, a meiosis-specific protein

called Hed1 binds to Rad51 and excludes Rad54 [47,48]. Ectopic

expression of HED1 in vegetative cells makes cells sensitive to

DNA-damaging agents, indicating that the presence of Hed1 is

sufficient to impair DNA repair by Rad51 [48]. Second, Rad54 is

an in vivo target of Mek1. Phosphorylation of threonine 132 on

Rad54 reduces the affinity of Rad54 for Rad51 in vitro, as the

negative charge conferred by phosphorylation makes Rad51–

Rad54 complex formation more difficult [49]. Consistent with this

idea, substitution of aspartic acid, a negatively charged, phospho-

mimetic amino acid, for Rad54 threonine 132 increases sensitivity

to DNA damaging agents in vegetative cells, while substitution

with either alanine or lysine does not. Conditions that allow

formation Rad51–Rad54 complexes in meiosis, such as over-

expression of RAD51 or RAD54, deletion of HED1 or mutation of

RAD54-T132 to alanine, result in partial suppression of the dmc1D
interhomolog recombination and spore viability defects [48–51].

Rad51-mediated interhomolog recombination in these strains

requires Mek1, indicating there are additional Mek1 substrates

that direct filaments containing Rad51–Rad54 to homologs [49].

Much of the work looking at Rad51 regulation has occurred in

the dmc1D strains, as it simplifies the analysis to have only one

recombinase present. However, the fact that hed1D and/or

RAD54-T132A have little to no effect on spore viability in the

presence of wild-type DMC1 raises the question of whether down-

regulation of Rad51 activity is part of normal meiosis [48,49].

Several proposals have been made that suggest inhibition of

Rad51 activity is specific to dmc1D: (1) Hed1 only inactivates

Rad51 when DMC1 is absent, (2) Mek1 regulation of Rad54

occurs only under checkpoint induced conditions and (3) the

accumulation of single stranded DNA from the failure of DSB

repair in dmc1D mutants causes hyperactivation of Mek1, resulting

in a global inhibition of recombination [27,48,52]. This work

addresses the question of whether down-regulation of Rad51 is

important in wild-type meiosis by examining recombination in

situations where Rad51 is activated but where Dmc1 is still

functional and meiotic checkpoint arrest does not occur. We

demonstrate that under certain conditions, Rad51, if not down-

regulated, is capable of competing with Dmc1 during meiosis for

Author Summary

Sexual reproduction involves the generation of chromo-
somally balanced gametes through the specialized cell
division of meiosis. A critical component of meiosis is the
physical connection of homologous chromosomes
through a combination of recombination and sister
chromatid cohesion that is necessary for proper chromo-
some segregation at the first meiotic division. Meiotic
recombination is initiated by the introduction of pro-
grammed double strand breaks (DSBs) that are processed
and bound by RecA-like proteins called recombinases. In
vegetative cells, the Rad51 recombinase preferentially
mediates strand invasion of sister chromatids, while in
meiotic cells, the meiosis-specific Dmc1 recombinase
preferentially invades homologs. How Rad51 and Dmc1
activities are coordinated to generate interhomolog
recombinants is a key question in meiosis. This work
demonstrates that down-regulation of Rad51 activity is
important when interhomolog recombination is occurring
to prevent Rad51 from competing with Dmc1 for repair of
meiotic DSBs. Premature activation of Rad51 results in
increased intersister recombination and chromosome
missegregation, producing inviable gametes. The evolu-
tionary conservation of both Rad51 and Dmc1 suggests
that down-regulation of Rad51 during meiosis may be
important in metazoans as well as yeast.

Rad51 Is Down-Regulated during Yeast Meiosis
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DSB repair in yeast. We propose that down-regulation of Rad51

activity is therefore important to promote Dmc1-dependent

interhomolog recombination.

Results

Mutation of a Conserved Amino Acid Creates a
Hypomorphic dmc1 Mutant

The use of dmc1D to study Rad51 inhibition has raised the

possibility that it is the absence of DMC1 or a pathological

situation created by checkpoint arrest that is responsible for the

down-regulation of Rad51 activity. One way to circumvent this

problem is to create a mutant of DMC1 that is still able to function

in interhomolog recombination and therefore does not arrest, but

is less efficient than wild type. If Rad51 and Dmc1 can compete

for repair of DSBs, then combining up-regulated Rad51 with a

hypomorphic version of DMC1 may result in reduced interhomo-

log recombination and spore viability.

A hypomorphic DMC1 allele was generated by mutation of

threonine 159 to alanine. This threonine is highly conserved in

both the Dmc1 and Rad51 protein families [53] (A. Neiman,

personal communication). T159 is located two amino acids away

from a conserved glutamate that is required for hydrolysis of ATP.

In addition, T159 is equivalent to T164 in human Dmc1, which is

located immediately adjacent to an asparagine (N163) that is

important for monomer-monomer contacts [53]. We therefore

hypothesized that the T159A mutation might make oligomeriza-

tion of Dmc1 less efficient. Dmc1 interacts with itself in the two-

hybrid system [7]. The T159A mutation was introduced into

DMC1 fused to either the Gal4 DNA binding domain (GBD) or

the Gal4 activation domain (GAD), the plasmids were transformed

into a strain containing a GAL1-lacZ reporter construct and

protein-protein interactions were assessed by b-galactosidase

assays. Consistent with published results, interaction between the

two wild-type alleles of DMC1 resulted in .100 units of b-

galactosidase activity, while the control containing GBD-DMC1

and GAD alone, exhibited background levels of activity [7]

(Table 1). Plasmid combinations containing DMC1/dmc1-T159A

exhibited only ,30% the levels of wild-type b-galacotosidase

activity, while no interaction was detected in cells containing both

GBD-dmc1-T159A and GAD-dmc1-T159A. These results support

the idea that the substitution of threonine 159 for alanine affects

Dmc1 oligomerization.

To determine whether any biochemical properties are affected

by the T159A mutation, His6-tagged Dmc1 and Dmc1-T159A

were purified from bacteria using a new procedure developed in

the Sung laboratory [54]. Both wild-type and mutant proteins

gave equivalent yields of good purity, indicating that the T159A

mutation does not destabilize the protein (Figure 1A). To look at

filament stability, an RPA competition assay was used [55]. This

assay involves preloading Dmc1 onto single stranded (ss) DNA that

is attached to magnetic beads through a biotin-streptavidin

connection, adding RPA, a single-stranded DNA binding protein

complex, and monitoring the amount of Dmc1 that is retained on

the beads. If Dmc1 is stably bound to the ssDNA, then it will not

be competed off by RPA. The experiment was performed under

three different Ca2+ conditions. High Ca2+ (1 mM) has previously

been shown to stabilize Dmc1 filaments [56]. The bulk of both the

Dmc1 and Dmc1-T159A proteins remained associated with the

ssDNA/beads under high Ca2+ conditions (Figure 1B). When the

Ca2+ concentration was lowered to either 10 or 25 mM, RPA was

able to compete off the Dmc1-T159A protein more readily than

wild type, indicating that filaments made from the mutant protein

are less stable (Figure 1B). To test whether this filament instability

affects Dmc1-T159A activity, strand exchange reactions were

performed. In the strand exchange reaction, one strand of a piece

of duplex DNA is radioactively labeled and the duplex DNA is

then incubated with an unlabeled single strand of DNA along with

the recombinase (Figure 1C, panel i). Exchange of the unlabeled

strand for the radioactive strand in the duplex is then detected by

slower migration on polyacrylamide gels. Consistent with a lack of

stable filament formation, only background levels of product were

observed for Dmc1-T159A in strand exchange reactions at 10 mM

Ca2+ (Figure 1C, panel ii). This defect is due to unstable filaments

and not to a defect in catalytic function, as a wild-type level of

strand exchange activity for Dmc1-T159A is restored at 1 mM

Ca2+, where the filaments are stabilized.

Dmc1 exhibits physical interactions with Rad54 and Rdh54

both in vitro and in vivo [7,15,57]. Pull-down experiments show that

Dmc1-T159A interacts as well as wild-type Dmc1 with both

Rad54 and Rdh54 (Figure 1D). Homologous pairing activity can

be assayed by examining D-loop formation, where a radioactively

labeled single strand of DNA is annealed to a complementary

sequence within a circular plasmid, thereby displacing the

sequence of like polarity (Figure 1E, panel i). The ability of

Dmc1 to form D-loops is stimulated by Rdh54 [15]. For Rad51,

RDH54 mutants specifically defective in interactions with the

recombinase are unable to stimulate Rad51’s homologous pairing

activity [58]. Therefore, the observation that Rdh54 stimulates D-

loop formation mediated by Dmc1-T159A indicates that Rdh54 is

associated with the Dmc1-T159A presynaptic filament in a

functionally competent manner (Figure 1E, panel ii). A reduced

amount of D-loop product formed by Dmc1-T159A compared to

Dmc1, both with and without Rdh54, is observed because D-loop

formation is a more stringent measure of homologous pairing than

the strand exchange assay in Figure 1C. We conclude that Dmc1-

T159A is able to mediate homologous pairing but is less efficacious

than wild type, presumably due to less efficient filament formation.

Table 1. Two-hybrid interactions between DMC1 and dmc1-T159A.

Y190/plasmids Relevant genotype b-gal unitsa

pMDE422/pACTII GBD-DMC1/GAD 0.02+/20.01

pMDE422/pMDE467 GBD-DMC1/GAD-DMC1 104.00+/223.00

pMDE422/pMDE467-T159A GBD-DMC1/GAD-dmc1-T159A 28.00+/29.00

pMDE422-T159A/pMDE467 GBD-dmc1-T159A/GAD-DMC1 31.00+/26.00

pMDE422-T159A/pMDE467-T159A GBD-dmc1-T159A/GAD-dmc1-T159A 0.03+/20.01

aTwo duplicate samples were assayed for three independent transformants. The values for each transformant were then averaged and the standard deviation
calculated. b-galactosidase activity is indicated in Miller units [89].
doi:10.1371/journal.pgen.1004005.t001

Rad51 Is Down-Regulated during Yeast Meiosis
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To examine whether the less stable filaments observed for

Dmc1-T159A in vitro result in phenotypes in vivo, strains

homozygous for dmc1-T159A were compared to wild type in two

different strain backgrounds (SK1 and S288c/YJM789). dmc1-

T159A rescues the sporulation defect of dmc1D in both

backgrounds (Figure 2A and D). Furthermore, the spores

produced by dmc1-T159A diploids have near wild-type levels of

viability (Figure 2B and E). Meiotic progression is delayed , two

hours in the dmc1-T159A mutant (Figure 3A and S1A). DSBs arise

with similar timing as wild type but accumulate to higher levels

and persist longer, consistent with the idea that Dmc1-T159A is

less efficient at DNA repair compared to Dmc1 (Figure 3B and C).

To test whether dmc1-T159A is defective in recombination,

interhomolog crossovers were monitored by physical analyses

using the HIS4/LEU2 hotspot. The HIS4/LEU2 hotspot is

comprised of a DSB site flanked by restriction site polymorphisms

that allow the detection of recombinant products using Southern

blots [59]. In the wild-type diploid, crossovers were first detected at

6 hours (Figure 3B and C). Consistent with the meiotic progression

data, crossovers in the dmc1-T159A diploid were reproducibly

Figure 1. Biochemical characterization of recombinant Dmc1-T159A protein. A. For Dmc1 and Dmc1-T159A, 2.5 mg of each protein were
analyzed by SDS-polyacrylimide gel electrophoresis (PAGE) and Coomassie staining. B. The stability of Dmc1 filaments on bead-immobilized ssDNA
was assessed by exposing the filaments to RPA and measuring the amount of Dmc1 retained on the beads (n = 3, +/2 standard error). Proteins were
monitored by SDS-PAGE and Coomassie staining. The experiments were performed with different Ca2+ concentrations as indicated. Rfa2, the 30 kDa
subunit of RPA is indicated. The histogram shows the percent of Dmc1 protein that remained associated with the beads after challenge by RPA as
determined by band desitometry. C. (i) Schematic of the strand exchange recombination assay. (ii) Strand exchange activity of Dmc1 and Dmc1-
T159A was monitored using 2, 4, or 8 mM protein in the presence of either 10 mM or 1 mM Ca2+. The histogram indicates the percent of radioactively
labeled oligonucleotide that was incorporated into the slower migrating product by strand exchange (n = 3, +/2 standard error). At 1 mM Ca2+, the
inhibition of strand exchange seen at elevated concentrations of wild-type Dmc1 is likely due to coating of the dsDNA substrate by the recombinase,
thereby blocking access of the ssDNA filament. D. Dmc1 and Dmc1-T159A interactions with Rad54 and Rdh54 were assayed by pull-down
experiments. S-tagged Rad54 or Rdh54 (2 mg each) was incubated with 1.2 mg Dmc1 or Dmc1-T159A. The S-tagged protein was captured on S-
protein agarose resin, which was washed and the protein eluted with SDS. S = supernatant after collecting the beads, W = supernatant obtained from
washing the beads, E = eluate from beads. The ‘‘-’’ indicates that no tagged protein was added to the reaction. E. (i) Schematic of the D-loop
recombination assay. (ii) Homologous DNA pairing activity of Dmc1 and Dmc1-T159A was assessed by a D-loop formation assay (n = 3, +/2 standard
error). 0.5 or 1.0 mM of Dmc1 or Dmc1-T159A was combined with 0, 150, or 250 nM of Rdh54. The histogram shows the percent of radioactive ssDNA
that is incorporated into the slower migrating D-loop product via homologous pairing.
doi:10.1371/journal.pgen.1004005.g001
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delayed by about two hours. Crossover levels are similar or only

slightly reduced compared to wild type (Figure 3B and C; S1B and

C).

The analysis of a single hotspot suggests that the Dmc1-T159A

recombinase, although less efficient, is still able to produce nearly

as many crossovers as wild-type. This idea was confirmed using a

more global approach, whole genome sequencing, to examine all

of the recombination events in individual tetrads. The dmc1-T159A

mutation was introduced into two haploid strains (S288c and

YJM789) that differ by 0.6% in their nucleotide sequences [17,18].

All four spores from six dmc1-T159A tetrads were sequenced and

then a software program called ReCombine was used to determine

the numbers of COs and NCOs throughout the genome [60].

Because only four-spore viable tetrads were used for sequencing, a

slight selection bias for meioses with higher numbers of COs

theoretically may exist. However an actual bias has only previously

been demonstrated when the sporulation frequency was particu-

larly poor (,0.4% 4-spore asci) ([17], see zip1 mutant), which is

not the case here. (All sequences from this paper can be accessed

at http://www.ncbi.nlm.nih.gov/bioproject/?term = PRJNA2178

86). In addition, the ReCombine data files are available from the

Dryad Digital Repository: http://doi.org/10.5061/dryad.8gh60).

The dmc1-T159A diploid exhibits 93% and 77% the wild-type

levels of COs and NCOs, respectively (Table 2). The decrease in

COs is not statistically significant, while the decrease in NCOs is.

Crossover homeostasis occurs when the CO number is maintained

at the expense of NCOs [61]. While the specific decrease in NCOs

is suggestive that crossover homeostasis is occurring, one needs to

look at the coefficient of variation (CV) and the correlation

coefficient (CC) to determine whether CO homeostasis is intact.

We are precluded from getting an accurate assessment of CV and

CC because the sample size is too small.

Crossovers are distributed throughout the genome by a process

called interference, in which a crossover in one region lowers the

probability of a crossover in an adjacent region [62]. Genome-

wide data can be used to calculate interference by measuring inter-

CO distances to calculate a value called c. A lack of interference

results in a value of c= 1, while c values .1 indicate positive

interference [17]. The c values for the wild-type and dmc1-T159A

diploids are basically identical, indicating that the crossovers

generated using the hypomorphic recombinase are distributed

properly (Table 2). The dmc1-T159A mutant therefore provides a

good tool for testing whether up-regulated Rad51 can compete

with weakened Dmc1 in vivo.

Elimination of Meiosis-Specific Constraints on Rad51–
Rad54 Complex Formation Decreases Interhomolog
Recombination in the Presence of dmc1-T159A

Combining hed1D and RAD54-T132A together, thereby remov-

ing the meiosis-specific constraints on Rad51–Rad54 interaction,

has no deleterious effect on spore viability, suggesting that COs are

not affected or only modestly affected (Figure 2B) [49]. Time

course analysis confirms this prediction, with COs formed at the

HIS4/LEU2 hotspot at levels only 30% reduced from wild type

(Figure 3B and C). There is, however, a delay in meiotic

progression and CO formation in hed1D RAD54-T132A diploids,

suggesting that allowing Rad51 and Rad54 to interact does affect

meiotic recombination even in the presence of DMC1 (Figure 3A).

One explanation for the failure to see a strong CO defect in the

hed1D RAD54-T132A diploid is that Dmc1 is a more efficient

recombinase than Rad51 for interhomolog recombination. If true,

then hed1D and/or RAD54-T132A may exhibit mutant phenotypes

when combined with the less efficient dmc1-T159A. In SK1 strains,

spore viability is similar for the dmc1-T159A and dmc1-T159A

hed1D diploids, while a stronger decrease in spore viability was

observed for dmc1-T159A RAD54-T132A (Figure 2B). Deletion of

HED1 in the dmc1-T159A diploid results in a modest decrease in

COs, similar to what has previously been observed for hed1D alone

[48] (Figure 3B and C). hed1D removes only one impediment to

Rad51–Rad54 interaction, as Rad54 T132 phosphorylation by

Mek1 is still occurring. Combining both hed1D and RAD54-T132A

with dmc1-T159A results in a further decrease in spore viability

(Figure 2B). The difference in spore viability between the triple

mutant and either dmc1-T159A hed1D or dmc1-T159A RAD54-

T132A is significant (x2 analysis; p,0.0001), confirming the

proposed functional redundancy between HED1 and Rad54 T132

phosphorylation in the downregulation of Rad51 activity.

Furthermore, the number of tetrads with four viable spores is

decreased in the triple mutant with a corresponding increase in

tetrads with either two or zero viable spores, a pattern indicative of

Meiosis I chromosome non-disjunction (Figure 2C) [63]. This

result suggests that up-regulating Rad51 activity does not interfere

with repair (which would lead to broken chromosomes and a

different spore viability pattern), but instead alters repair in such a

way that interhomolog crossovers are decreased. In fact, COs are

substantially reduced in the triple mutant compared to the other

three strains (Figure 3B and C; S1B and C). Although the dmc1-

T159A hed1D RAD54-T132A diploid sporulates well, addition of

RAD54-T132A results in a further delay in meiotic progression

than is observed for either dmc1-T159A or dmc1-T159A hed1D
(Figure 3A and S1A).

In contrast to the SK1 background, the dmc1-T159A hed1D
combination in the S288c/YJM789 background exhibits a

synergistic decrease in spore viability compared to either dmc1-

T159A or hed1D alone (Figure 2E). As with the SK1 diploid, the

distribution of viable spores in the dmc1-T159A hed1D tetrads

indicates that spore lethality is likely due to Meiosis I nondisjunc-

tion (Figure 2F). dmc1-T159A hed1D RAD54-T132A in the

sequencing background reduced spore viability even further,

making it difficult to obtain four viable spores for sequencing

Figure 2. Characterization of various meiotic phenotypes in diploids containing dmc1-T159A. A. Sporulation in SK1 diploids: Wild-type
(NH716), dmc1D (NH792), hed1D (NH1065), hed1D RAD54-T132A (NH1065::pHN104(S/N)2, dmc1-T159A (NH792::pNH301-T159A2), dmc1-T159A hed1D
(NH942::pNH301-T159A2), dmc1-T159A RAD54-T132A (NH2231) and dmc1-T159A hed1D RAD54-T132A (NH2184) cells were transferred to Spo medium
on plates for two days at 30uC and the percent sporulation was determined by phase contrast microscopy. 200 cells from at least four independent
colonies were examined. Error bars represent the standard error. B. Spore viability in SK1 strains was assayed by tetrad dissection from at least four
independent colonies. Numbers in parentheses indicate the number of tetrads dissected. * indicates that the spore viability is statistically significantly
different from wild type by x2 analysis. The p values are dmc1-T159A (,0.001); dmc1-T159A hed1D (,0.006); dmc1-T159A RAD54-T132A (,0.0001);
dmc1-T159A hed1D RAD54-T132A (,0.0001) C. The distribution of viable spores in tetrads from the asci dissected for Panel B. D. Sporulation in S288c/
YJM789 diploids: Wild-type (NH1053), dmc1D (NH2030), hed1D (NH2038), dmc1-T159A (NH2142), dmc1-T159A hed1D (NH2145), and dmc1-T159A
hed1D RAD54-T132A (NH2146) cells were assayed for sporulation after four days on Spo plates at 30uC. E. Spore viability was assayed by dissection of
at least 3 independent colonies. * indicates that the spore viability is statistically significantly different from wild type by x2 analysis. The p values are
hed1D (,0.001); dmc1-T159A (,0.02); dmc1-T159A hed1D (,0.0001); dmc1-T159A hed1D RAD54-T132A (,0.0001). F. The distribution of viable spores
in tetrads from the asci dissected for Panel E.
doi:10.1371/journal.pgen.1004005.g002
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(Figure 2E). Therefore, we were unable to analyze the triple

mutant using the sequencing assay. Sequence analysis of the

genomes from the spores of eight dmc1-T159A hed1D tetrads shows

statistically significant reductions in both COs and NCOs to 68%

and 48% of the wild-type levels, respectively (Table 2). The c value

for dmc1-T159A hed1D is identical to wild type, however, indicating

Figure 3. Meiotic progression and crossover formation in various dmc1-T159A SK1 strains. Wild-type, hed1D RAD54-T132A, dmc1-T159A,
dmc1-T159A hed1D and dmc1-T159A hed1D RAD54-T132A diploids were transferred to Spo medium at 30uC at 0 hr and samples were taken at two
hour intervals. Color coding is the same as in Figure 2. A. Meiotic progression was measured by staining the nuclei with DAPI and counting the
fraction of bi-nucleate (MI) and tetranucleate (MII) cells. B. Crossovers and DSBs at the HIS4/LEU2 hotspot. The DNA was digested with XhoI and
probed as described in [64]. P1 and P2 represent the parental fragments and CO1 and CO2 represent the two products of reciprocal recombination.
Numbers above each lane indicate the hours after transfer to Spo medium. C. Quantitation of the crossover and DSBs bands shown in Panel B. A
replicate of this experiment is shown in Figure S1.
doi:10.1371/journal.pgen.1004005.g003
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that interference is normal. Chromosomes without any crossovers

are defined as E0 chromosomes. In 26 wild-type tetrads analyzed

by Chen et al. (2008) and the six additional tetrads included here,

no E0 chromosomes were observed. In contrast, eight E0

chromosomes were observed in the eight tetrads sequenced for

dmc1-T159A hed1D (Table 2).

The delay in meiotic progression observed for dmc1-T159A

indicates that the checkpoint may still be activated by the

inefficient recombinase, even though a pathological arrest is not

occurring. To test whether hed1D alone affects recombination, the

genomes from six hed1D tetrads were sequenced. In this strain,

DMC1 is wild-type so the meiotic recombination checkpoint

should not be triggered.

A small, but statistically significant reduction in spore viability

was observed in the hed1D sequencing diploid, indicating this

genetic background is more sensitive to the absence of HED1 than

SK1 or BR strains (Figure 2E). The average numbers of COs and

NCOs were reduced, exhibiting 78% and 57% of the wild-type

levels, respectively (Table 2). These reductions are statistically

significant. This reduction is likely due to a change in repair and

not because fewer breaks are being initiated, as hed1D does not

affect DSB formation [48]. Interference is functioning, as indicated

by the c value. Two E0 chromosomes were observed for the six

hed1D tetrads. This number is less than the 8 E0 chromosomes

exhibited by dmc1-T159A hed1D. While this difference is intriguing,

the sample size is currently too small to definitively say whether

this difference is meaningful or not.

Up-Regulation of Rad51 Activity in the dmc1-T159A
Background Increases Intersister Recombination

The dmc1-T159A hed1D RAD54-T132A SK1 diploid exhibits

decreased COs and spore viability with increased Meiosis I

nondisjunction. One explanation for these results is that allowing

Rad51–Rad54 complex formation in the presence of a less

efficient Dmc1 results in more intersister repair. This idea was

directly tested by examining formation of interhomolog and

intersister joint molecules by two-dimensional gel analysis using

the HIS4/LEU2 hotspot. To prevent joint molecules from coming

apart by branch migration, the DNA was crosslinked with

psoralen prior to extraction [64]. After digestion with XhoI, the

DNA was separated in one dimension by mass and in the second

dimension by mass and shape. Probing a Southern blot of the

DNA then reveals three spots that represent one interhomolog

joint molecule (JM) intermediate flanked by the two intersister JM

intermediates. Because DSB repair occurs at different rates in the

different mutant diploids, this analysis was carried out in strains

deleted for the middle meiotic gene transcription factor, NDT80.

ndt80D diploids arrest in pachytene with unresolved double

Holliday junctions, thereby allowing JMs to accumulate [65–68].

Cells were arrested after incubation in Spo medium for nine hours

and the samples processed. In the ndt80D diploid, an ,4:1 ratio of

interhomolog: intersister joint molecules was observed, consistent

with the literature [19] (Figure 4). The IH:IS ratio was reduced

approximately two-fold by the combination of hed1D and RAD54-

T132A. Therefore removing the meiosis-specific barriers to

Rad51–Rad54 interaction does increase intersister recombination,

although not to the extent that an effect on spore viability is

observed. A wild-type ratio was observed for the dmc1-T159A

strain, demonstrating that this mutant affects the rate of

recombination without affecting interhomolog bias (Figure 4).

The two-fold reduction in interhomolog bias in the dmc1-T159A

hed1D diploid is similar to that observed for hed1D RAD54-T132A

but is accompanied by a mild spore viability defect (Figure 2B;

Figure 4). These data support the interpretation that the reduction

of interhomolog events observed by genomic sequencing in the

absence of hed1D is due to more DSBs being repaired using sister

chromatids as templates. Finally the interhomolog:intersister JM

ratio was reduced even further (eight fold) in the dmc1-T159A

hed1D RAD54-T132A diploid, consistent with the more severe

phenotypes observed for this strain (Figure 4).

Discussion

Given that Rad51 strand exchange activity is not required for

interhomolog recombination, the question arises as to whether

having Rad51 active when interhomolog recombination is

occurring is deleterious to the cell due to Rad51’s preference for

repairing DSBs using sister chromatids [14,20,21,43]. In yeast,

Rad51 is prevented from repairing DSBs in dmc1D mutants both

by Hed1 and Mek1 phosphorylation of Rad54 [46,69] [47–49].

However the lack of obvious phenotypes observed for hed1D
RAD54-T132A diploids has raised questions about whether down-

regulation of Rad51 activity occurs normally during meiosis or

whether it only occurs after triggering of the meiotic recombina-

tion checkpoint. One argument supporting the idea that Rad51

Table 2. Various phenotypes obtained from sequencing tetrads from various strains derived from the S288c/YJM789 background.

Strain name NH1053 NH2038 NH2142 NH2145

Relevant genotype Wild type dmc1-T159A hed1D dmc1-T159A hed1D

# tetrads sequenced 6 6 6 8

Average # COs/Tetrad 106.5+/28.5a 90.8+/212.6 p = 0.122 75.8+/213.4 p = 0.001b 67.4+/211.5 p,0.0001

Average # NCOs/tetrad 41.3+/27.8a 25.3+/26.1 p = 0.001 22.5+/26.3 p,0.0001b 14.6+/25.3 p,0.0001

Average # total IH events/
tetrad

147.8+/210.1 116.2+/216.1 98.3+/217.3 82.0+/215.4

# E0 chr. 0 2 2 8

CO/NCO ratio 2.6 3.6 p = 0.051 3.4 p = 0.029c 4.6 p,0.0001

c valued 2 2 p = 1.0 2.1 p = 1.0e 1.9 p = 0.9

aValues indicate the standard deviation.
bmulticomparison Tukey test showing P values relative to wild type.
cZ test of proportions.
dThe c value is a measure of chromosome interference [17].
eBootstrapping analysis, applied as described in Ref. [93].
doi:10.1371/journal.pgen.1004005.t002
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strand exchange activity is inhibited normally during meiosis is

that phosphorylation of Rad54 T132 by Mek1 occurs during wild-

type meiosis [70]. Furthermore cytological studies using wild-type

cells show that Hed1 focus formation on chromosome is

dependent upon RAD51 (but not DMC1) and that 98% of

Rad51 foci co-localize with Hed1 [48]. While these studies

demonstrate that meiotic impediments to Rad51–Rad54 complex

formation are present during wild-type meiosis, they do not

address whether this downregulation is functionally important. To

answer this question, whole genome sequencing of tetrads from a

hed1D diploid was performed and revealed a decrease in both

interhomolog COs and NCOs, even though DMC1 is wild type.

Furthermore, joint molecule experiments showed that intersister

recombination is increased when down-regulation of Rad51

activity is abolished, particularly when combined with dmc1-

T159A. These results indicate that regulation of Rad51–Rad54

complex formation by both Hed1 and Rad54 T132 phosphory-

lation normally occurs during meiosis.

In the sequencing strain background, hed1D decreases spore viability

slightly on its own and synergistically in combination with dmc1-T159A,

a phenotype that was not observed in SK1. The decreased spore

viability of the double mutant is likely due, in part, to a greater

reduction in crossovers compared to hed1D. In addition, the frequency

of chromosomes without crossovers appears to be increased, although

interference is wild-type. This suggests that, while the dmc1-T159A

hed1D mutant is proficient in the distribution of crossovers along

individual chromosomes, it may be defective in crossover assurance,

which is the regulation that ensures that every chromosome sustains at

least one crossover. If true, this could also account for the decreased

spore viability relative to hed1D. Further work is necessary, however, to

increase the sample size of E0 chromosomes before any definitive

conclusions concerning this point can be made.

Figure 4. Meiotic joint molecule analysis in various SK1 dmc1-T159A ndt80D strains. ndt80D (NH2188), hed1D ndt80D RAD54-T132A
(NH2223::pHN104(S/N)2, dmc1-T159A ndt80D (NH2235), dmc1-T159A hed1D ndt80D (NH2190) and dmc1-T159A hed1D ndt80D RAD54-T132A (NH2193)
diploids were transferred to Spo medium for nine hours to arrest the cells in pachytene and the DNA was crosslinked with psoralen, extracted and
digested with XhoI. Color coding is the same as in Figure 2. A. Southern blots of two-dimensional gels probed to detect interhomolog JMs (indicated
by black arrows) and intersister JMs (indicated by red arrows) as described in [64]. B. Quantitation of the ratio of interhomolog:intersister joint
molecules in the gels shown in A averaged with a second replicate. Error bars indicate the standard error.
doi:10.1371/journal.pgen.1004005.g004
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Multiple Mechanisms Promote Interhomolog Bias during
Meiosis

Crossovers between homologs are critical for proper alignment

and segregation of homologous pairs of sister chromatids to

opposite poles at the first meiotic division. This importance is

underlined by the multiple, non-overlapping meiosis-specific

mechanisms that cells use to change the bias for repair from

sisters in vegetative cells to homologs in meiotic cells. First, in

vegetative cells, intersister DSB repair is mediated by Rad51 and

promoted by the recruitment of cohesin molecules to the DSBs

[71–73]. In contrast, meiotic cells utilize cohesin complexes

containing a meiosis-specific kleisin subunit, Rec8, and cohesin

function at DSBs is antagonized by Mek1, thereby promoting

interhomolog recombination [27,74]. Second, the meiosis-specific

axial element structures into which sister chromatids are packaged

create additional constraints that promote interhomolog strand

invasion in a variety of organisms. Functional orthologs of Hop1 in

nematodes, plants and mammals all promote interhomolog bias,

suggesting that at least some of the fundamental mechanisms for

promoting crossovers between homologs during meiosis are

conserved [75–79]. Third, many organisms utilize the meiosis-

specific Dmc1 recombinase, which in budding yeast has been

shown to be sufficient for the bulk of meiotic recombination

[43,80]. Dmc1 may be better at performing interhomolog

recombination than Rad51 due to intrinsic properties of the

protein. For example, the D-loops formed by Dmc1 are more

resistant to dissociation than those formed by Rad51 [57]. In

addition Dmc1 utilizes different accessory factors such as Rdh54

that promote interhomolog recombination [15]. This work

demonstrates yet another mechanism for promoting interhomolog

bias: the down-regulation of Rad51 activity by the prevention of

Rad51–Rad54 interaction.

The Dmc1-T159A protein is defective in efficiently forming

filaments while maintaining the ability to mediate strand exchange

and interaction with Rad54 and Rdh54. The delay in DSB repair,

crossover formation and meiotic progression confirms that this

mutation makes Dmc1 less efficient as a recombinase. dmc1-T159A

cells produce nearly wild-type levels of crossovers which are

distributed normally throughout the genome, as well as being wild-

type for interhomolog bias, consistent with biochemical experi-

ments indicating that the mutant affects filament formation. One

possibility is that it may take longer for Dmc1-T159A containing

filaments to form, but having done so, they then function normally

in recombination. It is important however, that although meiotic

progression is delayed by dmc1-T159A, the cells do not arrest,

thereby avoiding the proposed hyperactivation of Mek1 [52]. The

fact that decreased spore viability, increased Meiosis I non-

disjunction, and reduced interhomolog recombination are strongly

apparent only when up-regulation of Rad51 activity was combined

with the less efficient dmc1-T159A mutant, supports the idea that

Dmc1 is fundamentally a more effective interhomolog recombi-

nase than Rad51 in meiosis. The amino acid mutated in Dmc1,

T159, is conserved in Dmc1 and Rad51 proteins from all species

that have been analyzed, suggesting that it may be possible to

construct similar hypomorphic mutants for these recombinases in

other organisms.

Recent work has shown that DSBs occur on chromosome axes

where localized activation of Mek1 is presumed to occur [34]. In

plants the localization of Rad51 and Dmc1 to DSBs is asymmetric,

with Rad51 loaded onto one end and Dmc1 loaded onto the other

end [41]. The asymmetric loading model is appealing because of

the asymmetry inherent in the recombination reaction that

generates COs. During CO formation, the two ends of the DSB

play different roles. The first end must undergo strand invasion of

a homologous duplex, while the second end undergoes annealing

to the newly displaced strand such that a double Holliday junction

can subsequently be formed [6]. One model is that local

antagonism of sister chromatid cohesion allows the release of

one end of the DSB, presumably the one bound by Dmc1, while

the other end remains tethered to the sister chromatid [27]. After

the Dmc1 filament stably invades the homolog, the second end

must be released to allow its annealing to the displaced strand at

the nascent interhomolog joint. Whether this release results from a

signal arising from individual recombination events, or is a

globally regulated event, is not known.

We propose that preventing Rad51 from binding to Rad54 is

important for keeping the second end quiescent until the first end

has engaged the homolog. When HED1 is removed and Rad54-

T132 phosphorylation is prevented, Rad51 is now active.

Although there is a two-fold increase in intersister recombination,

the efficiency of Dmc1 in making stable connections with the

homolog prevents a large reduction in crossovers. The inefficiency

of Dmc1-T159A in mediating strand invasion (possibly due to a

delay in filament formation) may provide the end containing

Rad51 more time to mediate the stable strand invasion of the sister

chromatid. This would then send the signal for the Dmc1-

containing end to anneal to the displaced strand at the sister

chromatid. The lack of coordination between the two ends could

further slow DSB repair, explaining the meiotic delay of the dmc1-

T159A hed1D RAD54-T132A diploid.

Although it has been suggested that Dmc1 and Rad51 are

bound to different sides of DSBs in yeast, similar to the situation in

plants [81], this has not been definitively established. In

contradiction to this idea, recent experiments have shown that

Rad51 can act as an accessory factor for Dmc1 in vitro, suggesting

instead that the two recombinases may co-localize on the same

ends of DSBs in yeast [43]. In this case, our model that activation

of Rad51 allows one end to engage in intersister recombination

still holds, although the mechanism that determines the asymmetry

of the ends (strand invasion vs. annealing to the displaced strand)

remains to be determined.

It should be noted that interhomolog recombination does not

require that there be two recombinases. Organisms such as

Drosophila and C. elegans do not contain DMC1 in their genomes

and therefore meiotic recombination is mediated solely by Rad51

[80]. Furthermore even in organisms that utilize both recombi-

nases, mutants exist which allow interhomolog recombination to

occur by either Rad51 alone or Dmc1 alone [41,48,49]. However,

the frequencies of interhomolog recombination in these latter

situations are not wild-type. Therefore, the optimal situation in

organisms with both Rad51 and Dmc1 is to have both

recombinases present. This may be because of a requirement for

Rad51 to load Dmc1 or to stimulate Dmc1’s enzymatic activities

[41,43,81]. But while the presence of Rad51 is important for

recombination, it is also important that Rad51’s capacity to

perform strand invasion be turned off while interhomolog

recombination is occurring to prevent competition with Dmc1

for repair of DSBs.

Materials and Methods

Strains
The genotypes of all the strains used in this work can be found

in Table 3. Genes were deleted by polymerase chain reaction

(PCR)-based methods using the kanMX6, natMX4 or hphMX4

markers that confer resistance to G418, nourseothricin and

Hygromycin B, respectively [82–84]. All deletions were confirmed

by colony PCR. For genomic sequencing of tetrads, isogenic
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diploids were generated in which one parent is a derivative of

S288c, JCF4413, and the other is a clinical isolate, YJM789 [17].

YJM789 has a tendency to become aneuploid, therefore manip-

ulations of this strain were limited as much as possible. To create a

diploid homozygous for dmc1-T159A, DMC1 was first deleted from

both haploids using kanMX6. The dmc1-T159A URA3 plasmid,

pNH301-T159A, was digested with HindIII to target integration

upstream of the DMC1 open reading frame, and transformed into

JCF4413 dmc1. Transformants were grown in YPD and plated on

5-fluoro-orotic acid to select for popouts of the plasmid [85].

Strains that retained the dmc1-T159A allele were selected based on

their sensitivity to G418. The presence of the dmc1-T159A allele

was further confirmed by colony PCR. To introduce a second

copy of dmc1-T159A into this haploid, pNH301-T159A was

integrated as before upstream of dmc1-T159A. JCF4413 dmc1-

T159A::URA3::dmc1-T159A was then mated to YJM789 dmc1

to make the diploid, NH2142. A similar procedure was followed

using JCF4413 dmc1 hed1 and YJM789 dmc1 hed1 to make

NH2145. Prior to sequencing, each spore colony was checked

using allele-specific colony PCR to confirm that no aneuploidies

had arisen during the growth of the strains [86].

The two-hybrid reporter strain,Y190, was generously provided

by Michael Dresser (Oklahoma Medical Research Foundation).

All other strains were derived from NHY1210 and NHY1215,

SK1 strains that contain the HIS4/LEU2 hotspot (generously

provided by Neil Hunter). The wild-type diploid created by

mating NHY1210 and NHY1215 is called NH716 [42]. Strains

containing dmc1-T159A were generated by first substituting DMC1

with kanMX6 and then transforming the strains with pNH301-

T159A to integrate dmc1-T159A upstream of dmc1D::kanMX6. For

some strains, the dmc1D::kanMX6 allele was recombined out as

described above so that dmc1-T159A haploids could subsequently

be transformed with pHN104(Sph1/NruI), which contains the

RAD54-T132A allele [49].

Plasmids
The GBD-DMC1 and GAD-DMC1 plasmids (pMDE422 and

pMDE467, respectively; provided by Michael Dresser) contain

codons 3-334 of DMC1 fused to either the Gal4 DNA binding or

activation domains [7]. The T159A mutation changes codon 159

from ACT to GCT and was introduced into various plasmids

using the QuikChange kit (Stratagene). For purification of Dmc1

and Dmc1-T159A from E.coli, the T159A mutation was

introduced into the DMC1 expression plasmid, pNRB150scDMC1

[87], to generate pNRB150scDMC1-T159A. To introduce the

dmc1-T159A mutation into yeast cells, DMC1 was first cloned into

a URA3 integrating plasmid by moving a 2.4 kb NotI/XhoI

fragment from pRS316-DMC1 (generously provided by J.

Engebrecht) into NotI/XhoI-digested pRS306 [88]. The resulting

plasmid, pNH301, was used for site-directed mutagenesis to make

Table 3. S. cerevisiae strainsa.

Name Genotype Source

YJM789 MATa ho::hisG lys2 cyhR [94]

JCF4413 MATa lys5 ho::hisG ura3D::natMX4 This work

NH1053 MATa ho::hisG lys2 cyhR LYS5 URA3 MATa ho::hisG LYS2 CYH
lys5 ura3D::natMX4

This work

NH2030 NH1053 only dmc1D::kanMX6 This work

NH2038 NH1053 only hed1D:::hphMX4 This work

NH2142 same as NH1053 only dmc1-T159A::URA3::dmc1-T159A dmc1D::kanMX6 This work

NH2145 NH1053 only dmc1-T159A::URA3::dmc1-T159A hed1D::hphMX4 dmc1D::kanMX6
hed1D::hphMX4

This work

NH2146 NH1053 only dmc1-T159A hed1D::hphMX4 dmc1D::kanMX6 hed1D::hphMX4
RAD54::URA3::RAD54-T132A RAD54

This work

NH716 MATa leu2::hisG his4-X::LEU2(NgoMIV+ori) hoD::hisG ura3(Dpst-sma) MATa
leu2::hisG HIS4::LEU2(BamH+oriI) hoD::hisG ura3(Dpst-sma)

[42]

NH792 NH716 only dmc1D::kanMX6 This work

NH1065 NH716 only hed1D::natMX4 This work

NH1065:: pHN104(S/N)2 NH716 only hed1D::natMX4 RAD54::URA3-RAD54-T132A This work

NH792:: pNH301-T159A2 NH716 only dmc1D::kanMX6::URA3-dmc1-T159A This work

NH942:: pNH301-T159A2 NH716 only dmc1D::kanMX6::URA3-dmc1-T159A hed1D::natMX4 This work

NH2231 NH716 only dmc1-T159A RAD54::URA3::RAD54-T132A This work

NH2184 NH716 dmc1-T159A hed1D::natMX4 RAD54::URA3::RAD54-T132A This work

NH2188 NH716 only ndt80D::natMX4 This work

NH2223:: pHN104(S/N)2 NH716 only hed1D::natMX4 ndt80D::natMX4 RAD54::URA3-RAD54-T132A This work

NH2235 NH716 only dmc1-T159A ndt80D::hphMX4 This work

NH2190 NH716 only dmc1-T159A hed1D::natMX4 ndt80D::hphMX4 This work

NH2193 NH716 only dmc1-T159A hed1D::natMX4 ndt80D::hphMX4
RAD54::URA3::RAD54-T132A

This work

Y190 MATa leu2-3,112 gal4 gal80 his3 trp1-901 ade2-101
ura3-52::pGAL-lacZ::URA3 lys2::pGAL-HIS3::LYS2 cyhR

[7]

aSuperscript ‘‘2’’ indicates that the plasmid was integrated into both haploid parents and the diploid is therefore homozygous.
doi:10.1371/journal.pgen.1004005.t003
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pNH301-T159A. All mutated alleles were sequenced at the Stony

Brook University DNA Sequencing Facility to confirm that no

unexpected mutations were introduced during the mutagenesis.

Digestion of pNH301-T159A with HindIII targets the plasmid to

integrate approximately 600 bp upstream of the DMC1 gene. To

introduce RAD54-T132A, pHN104(Sph1/NruI), a URA3 RAD54-

T132A integrating plasmid, was digested with BsiWI to target

integration upstream of RAD54 and transformed into the

appropriate haploids.

Whole Genome DNA Sequencing
DNA was prepared from each spore colony as described in

[86] and sequenced at either the Vincent J. Coates Genomics or

University of California San Francisco Sequencing Facilities

using the Illumina HiSeq 2000 platform with 50 nt single end

reads. Analysis of the sequences was performed using the

ReCombine suite of programs to determine the number of

crossovers and non-crossovers and the interference values [60].

The sequencing data can be found at NCBI SRA Bioproject,

Accession number PRJNA217886 (http://www.ncbi.nlm.nih.

gov/bioproject/?term = PRJNA217886). The ReCombine user

manual and software package can be accessed at http://

sourceforge.net/projects/recombine/. The ReCombine data files

used to determine the number of COs and NCOs are available

from the Dryad Digital Repository: http://doi.org/10.5061/

dryad.8gh60).

Two-Hybrid Assays
Y190 was co-transformed with the indicated plasmids and

protein-protein interactions were monitored using liquid b-

galactosidase assays. Transformants were inoculated into 5 ml

SD-leu-trp and grown overnight at 30uC. Cells were diluted 1:10

in SD-leu-trp and the OD600 was measured to determine cell

density. Two 1.5 ml aliquots of culture from each transformant

were pelleted in microfuge tubes and washed once in Z buffer

(60 mM Na2HPO4, 40 mM NaH2PO4.H20, 10 mM KCl, 1 mM

MgSO4.7H20, 4 mM 2-mercaptoethanol). The cells were then

resuspended in 150 ml Z buffer, vortexed and lysed by the addition

of 50 ml chloroform and 20 ml 0.1% SDS. After vortexing for

30 sec, the tubes were equilibrated at 30uC for five minutes. 700 ml

of 1.2 mg/ml ortho-Nitrophenyl-b-galactoside (ONPG) made up

in Z buffer was added to each tube which were then placed at

30uC. As soon as a yellow color appeared, the time was noted and

the reactions were stopped by the addition of 500 ml 1M Na2CO3

and put on ice. Any reactions that had not turned yellow by two

hours were stopped at that time. Cells were pelleted and the

OD420 of the supernatants was determined. Miller units were

calculated using the following formula: (10006A420)/(A6006time

(min)6vol (ml) [89]. Two replicates from each transformant were

averaged and these numbers were then used to calculate the

average and standard deviation from three transformants.

Protein Purification
Recombinant budding yeast Dmc1 proteins (WT and T159A)

were purified according to a new procedure developed by the

Sung laboratory [54], which results in Dmc1 preparations that

have a higher specific recombinase activity than the published

protocol [87]. Two independent preparations of Dmc1-T159A

were analyzed to ensure consistency of results. The proteins were

concentrated in an Amicon Ultra micro-concentrator (Millipore),

snap-frozen in liquid nitrogen, and stored at 280uC. RPA was

purified as described in [90]. S-Rad54 and S-Rdh54 were purified

as described in [10] and [58], respectively.

Strand Exchange Assay
Oligonucleotide-based DNA pairing and strand exchange assay

was conducted as described previously [91]. Briefly, Dmc1 (2, 4,

and 8 mM) was incubated with 150-mer ssDNA oligonucleotide

(6 mM nucleotides) in 10.5 ml of buffer A (50 mM Tris-HCl,

pH 7.5, 1 mM DTT, 20 mM KCl, 2 mM ATP, 5 mM MgCl2)

with the indicated amount of CaCl2 for 5 min at 37uC. 1 ml of

50 mM spermidine and 1 ml of 32P-labeled homologous 40-mer

dsDNA (for 0.8 mM base pairs final concentration) were added to

initiate the reaction. The reactions were incubated for 30 min at

37uC. The samples were deproteinized by the addition of 1% SDS

and 1 mg/ml proteinase K, and subjected to electrophoresis in a

10% polyacrylamide gel run in TAE buffer (40 mM Tris acetate,

pH 7.4, 0.5 mM EDTA). Products were quantitated using a

phosphoimager.

RPA Challenge Assay to Test for Dmc1 Filament Stability
This assay was modified from one developed by [55] for Rhp51.

Dmc1 protein (2.4 mM) was added to biotinylated dT 83-mer

ssDNA (4.3 mM nucleotides) coupled to magnetic streptavidin

beads (Roche) in 10 ml of buffer B (35 mM Tris-HCl, pH 7.5,

1 mM DTT, 20 mM KCl, 2 mM ATP, 5 mM MgCl2, 100 mg/ml

BSA). The reactions were incubated at 37uC for 5 min to permit

filament formation. Unbound Dmc1 protein was removed by

magnetic separation, and 10 ml of buffer B with 0.4 mM of RPA

was added to the beads. The reactions were mixed and incubated

at 30uC for 5 min followed by magnetic separation of the

supernatant and bead fractions. Both fractions were analyzed by

SDS-PAGE, Coomassie Blue staining, and band densitometry.

The indicated amount of CaCl2 was included in both the binding

and RPA challenge buffers.

Affinity Pull-Down Assay
Dmc1 (1.2 mg) was incubated with or without S-tagged Rad54

or S-tagged Rdh54 (2 mg each) in 30 ml of buffer C (40 mM

K2HPO4, pH 7.5, 0.5 mM EDTA, 10% glycerol, 150 mM KCl,

0.01% IGEPAL, 1 mM DTT) for 30 min at 4uC. The reactions

were mixed with 10 ml of S-protein agarose beads (Novagen) and

incubated for 30 min at 4uC with agitation. Beads were washed

twice with 200 ml of buffer C and bound protein was eluted with

2% SDS. Supernatant (S), elution (E), and wash (W) fractions were

analyzed by 10% SDS-PAGE followed by western blot with a-

hDMC1 antibody (Santa Cruz Biotechnology, catalog # 22768).

This experiment was performed twice with similar results.

D-loop Assay
The D-loop reaction was conducted as described [10,87].

Briefly, Dmc1 (0.5 or 1.0 mM) was incubated with 32P-labeled 90-

mer oligonucleotide substrate (1.5 mM nucleotides) at 37uC for

5 min. Next, Rdh54 (0, 150, or 250 nM) was added along with

pBluescript SK replicative form I DNA (72 mM base pairs). The

reaction (12.5 ml final volume) had a buffer composition of 50 mM

Tris-HCl, pH 7.5, 1 mM DTT, 72 mM KCl, 1 mM MgCl2,

5 mM CaCl2, and 4 mM ATP with an ATP regenerating system

(20 mM creatine phosphate, 30 mg/ml creatine kinase). After a

15 min incubation at 30uC, SDS (1%) and proteinase K (1 mg/

ml) were added, followed by a 5 min incubation at 37uC. The

deproteinized samples were subjected to electrophoresis in a 1%

agarose gel and analyzed by phosphorimaging.

Timecourses and Physical Analyses of Recombination
Cells were pregrown in YPA and transferred to Spo medium

(2% potassium acetate) and incubated at 30uC as described in
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[92]. At the appropriate time points, an aliquot of cells was fixed with

formaldehyde and stained with 49,6-diamidino-2-phenylindole (DAPI).

Meiotic progression was monitored by fluorescent microscopy to

determine the number of binucleate (MI) and tetranucleate cells (MII).

At least 200 cells were counted for each colony. Physical analyses were

performed as described in [64]. For the one-dimensional gel analysis

shown in Figure 3B, DNA was isolated using the MasterPure Yeast

DNA Purification kit (Epicentre, Cat. # MPY80200). For the CO

analysis shown in Figure S1 as well as the two-dimensional gel

experiments, cells were treated with psoralen and crosslinked with

ultra-violet light. DNA was extracted and digested with XhoI and

probed after fractionation on a one-dimensional gel to look at crossover

formation. To look at joint molecules, ndt80D diploids were arrested

nine hours after transfer to Spo medium and the psoralen crosslinked,

XhoI-digested DNA was fractionated in two-dimensions prior to

probing on Southern blots. The interhomolog JMs were normalized to

the total DNA, as was the sum of the two intersister JMs, and these

values were used to calculate the interhomolog: intersister JM ratios.

Quantitation was performed using the MultiGauge software with a

Fujifilm FLA-7000 phosphoimager. Timecourses analyzing COs were

conducted three times for all strains except NH1065 (hed1D RAD54-

T132A), which was only examined twice. All five strains shown in

Figure 3 are from the same timecourse, while for Figure S1, the

NH1065 strain was performed on a different day as the other four

strains. DSBs were only examined once in the Figure 3 timecourse.

Supporting Information

Figure S1 Meiotic progression and crossover formation in

various dmc1-T159A SK1 strains. Wild-type, hed1D RAD54-

T132A, dmc1-T159A, dmc1-T159A hed1D and dmc1-T159A hed1D
RAD54-T132A diploids were transferred to Spo medium at 30uC
at 0 hr and samples were taken at two hour intervals. Color coding

is the same as in Figure 2. A. Meiotic progression was measured by

staining the nuclei with DAPI and counting the fraction of bi-

nucleate (MI) and tetranucleate (MII) cells. B. Crossovers at the

HIS4/LEU2 hotspot. The DNA was digested with XhoI and

probed as described in [64]. P1 and P2 represent the parental

fragments and CO1 and CO2 represent the two products of

reciprocal recombination. Numbers above each lane indicated the

hours after transfer to Spo medium. C. Quantitation of the

crossovers shown in Panel B.

(TIF)
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