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Abstract

The Arabidopsis SUPERMAN (SUP) gene encodes a C2H2 type zinc finger protein that is required for maintaining the
boundaries between stamens and carpels, and for regulating development of ovule outer integument. Orthologs of SUP
have been characterized in bisexual flowers as well as dioecious species, but it remains elusive in monoecious plants with
unisexual flowers on the same individual. Here we isolate the SUP ortholog in Cucumis sativus L (CsSUP), a monoecious
vegetable. CsSUP is predominantly expressed in female specific organs: the female flower buds and ovules. Ectopic
expression of CsSUP in Arabidopsis can partially complement the fruit development in sup-5 mutant, and its over-expression
in wide-type leads to reduced silique length, suppressed stamen development and distorted petal patterning. Our data
suggest that CsSUP plays conserved as well as distinct roles during flower and fruit development, and it may function in the
boundaries and ovules to balance petal patterning, stamen and ovule development in Arabidopsis.
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Introduction

In flowering plants, approximately 90% species produce

bisexual flowers with specialized male and female organs in the

same flower, while 6% species are dioecious with separate male

and female plants, and the remaining species are monoecious,

producing male and female flowers on the same individual [1,2].

Arabidopsis thaliana is a model species for bisexual plant, whose

flowers consist of four types of floral organs arranged into

concentric whorls, specifically sepals in outermost (whorl 1), petals

in whorl 2, stamens in whorl 3 and carpels in innermost (whorl 4).

The patterning of floral organs in different whorls is controlled by

the combinatorial interactions between three classes of homeotic

genes, designated A, B, and C class of genes [3,4]. Sepal identity is

determined by the function of A genes APETALA1 and

APETALA2, petal identity is specified by the simultaneous function

of A and B genes (which include APETALA3 and PISTILLATA),

stamen identity is determined by combinatorial action of B and C

(provided by the AGAMOUS gene), whereas carpel identity is

specified by C function alone [3–5]. Recently, D class of genes,

FLORAL BINDING PROTEIN7 (FBP7) and FLORAL BINDING

PROTEIN11 (FBP11), have been shown to be involved in carpel

and ovule development, whereas E class of genes (provided by

SEPALLATA 1-4) are required for all the floral organ development,

thus the classical ABC model has been modified into ABCDE

model for floral patterning [6–10].

In Arabidopsis, the cadastral gene SUPERMAN (SUP) has

shown to be a negative regulator of B class of genes at the

boundaries between stamens and carpels. Loss of function of

AtSUP leads to extra stamen production in the fourth whorl at the

expense of carpel development, and expansion of the B class of

genes APETALA3 and PISTILLATA from the second and third

whorls into the forth whorl [11,12]. AtSUP encodes a C2H2 type

zinc finger transcription factor that is expressed in the subdomain

of third whorl adjacent to the forth whorl, and may function at the

boundaries to balance cell proliferation in whorl 3 and 4 [12,13].

The DLELRL hexapeptide in the AtSUP carboxy terminal

domain confers the transcriptional repression activity and is

required for the normal flower development [14,15]. In addition,

AtSUP also function in cell proliferation suppression of outer

integument on the adaxial side of the ovule [16]. In sup mutants,

outer integument grows evenly and leads to production of infertile

ovules that are radially symmetrical [16]. Consistent with the

function in ovule, AtSUP is expressed in the developing ovules and

then limited to the stalks of ovules [16].

Numerous studies have explored the function of AtSUP upon

ectopic expression in various species. Overexpression of AtSUP

under APETALA1 promoter leads to reduced size as well as
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decreased number of all four types of floral organs in Arabidopsis

[17]. Similarly, ectopic expression of AtSUP using FLORAL

BINDING PROTEIN1 (FBP1) promoter results in size reduction

in petals and stamens in petunia or tobacco [18]. However, when

overexpressed under constitutive promoter in dicotyledonous

species such as Arabidopsis or tobacco, AtSUP causes dwarfness at

the whole plant level, and restores stamen development and

produces functional pollen in an alloplasmic CMS tobacco plant

[14,19,20]. While overexpressed in monocotyledon such as rice,

high level of AtSUP expression leads to juvenile death, and low

level of AtSUP expression results in expansion of ventral carpel and

decreased number of stamen [21]. Recently, several orthologs of

SUP have been cloned, including NtSUP in Nicotiana tabacum,

PhSUP1 in Petunia hybrida and SlSUP in Silene latifolia, and their

functions are generally conserved, but the expression patterns are

quite divergent [19,20,22].

Despite the extensive studies of AtSUP and SUP orthologs, no

study has been performed in monoecious plant with unisexual

flowers on the same individual. Cucumber (Cucumis sativus L.) is a

typical monoecious species with male flowers produce at the

bottom and female flowers form at the top. Therefore, we cloned

the SUP ortholog in cucumber designated as CsSUP, and the

expression pattern of CsSUP was characterized by both qRT-PCR

and in situ hybridization. CsSUP is predominantly expressed in

female organs: female flower buds and ovules of fruit. Ectopic

expression of CsSUP in Arabidopsis can partially complement the

fruit development in sup-5 mutant, and its over-expression in wide-

type leads to reduced silique length, suppressed stamen develop-

ment, and disorganized petal patterning. Our data suggested that

CsSUP possesses conserved functions in stamen and fruit develop-

ment as well as a distinct role in floral patterning.

Results

Identification of CsSUP gene from C. sativus L
To isolate the potential SUP-like genes in cucumber, we

performed BLAST analysis against Cucumber Genome Database

[23] using the sequence information of AtSUP in Arabidopsis. Three

SUP-like genes were identified in cucumber, Csa000134,

Csa001112 and Cas010435, in which Csa000134 displays the

lowest e-value with AtSUP using both cDNA (3e-16) and deduced

protein sequence (2e-17), thus was designated as CsSUP in this

study. The cDNA of CsSUP were cloned from the female buds.

Consistent with known SUP orthologs [12,20,22,24], CsSUP has no

intron, and the full length CsSUP encodes a protein of 171 amino

acids. ClustalW was used to align the amino acid sequence of

CsSUP with known SUP-like genes, including AtSUP and

RABBIT EARS (RBE) in Arabidopsis, NtSUP in tobacco, PhSUP

in petunia, SlSUP in white campion, and Os05g0286100 in rice

[25] (Figure 1A). Despite CsSUP shows only 28.78%, 33.62%,

29.78% and 30.36% identity with AtSUP,NtSUP,PhSUP and

SlSUP respectively, the zinc-finger domains and the leucine zipper

(LZ)-like domains are highly conserved (Figure 1A). The DLELRL

domains, which are required for transcriptional repression during

cell proliferation in Arabidopsis and petunia [14,15], are identical

over all the proteins we aligned except for Csa001112. Phyloge-

netic analysis was performed with the entire amino acid sequences

using the neighbor-joining (NJ) method [26]. As shown in

Figure 1B, CsSUP and Csa001112 belong to the same clade with

known SUP orthologs, which are distinct from the clade consisting

of SUP-like genes RBE, Os05g0286100 and Cas010435 [25],

suggesting that CsSUP and Csa001112 maybe the SUP homologues

in cucumber.

Expression pattern of CsSUP in Cucumber
Next, we examined the transcription of CsSUP and Csa001112

in different organs of cucumber through qRT-PCR (Figure 2A).

Total RNA was isolated from leaves (lf), tendril (te), male flower

buds (mb), female flower buds (fb), male open flowers (mf), female

open flowers (ff), and fruits at three different developmental stages.

Our results showed that CsSUP and Csa001112 display similar

expression patterns, which are highly enriched in female specific

tissues such as female flower buds and developing fruits, whereas

there were very few expressions in other organs (Figure 2A, Figure

S1). Specifically, CsSUP has the highest expression in female flower

buds (Figure 2A), while Csa001112 has the most abundant

transcription in fruits 4 days before flower opening (fr-4) (Figure

S1). Given that CsSUP shows the highest sequence similarity with

SUP orthologs, and the expression of CsSUP appears to be

enriched in younger female tissues than that of Csa001112, we

focus on characterization of CsSUP thereafter. Cucumber fruit

largely results from expansion of ovary, therefore, we next

explored the transcript accumulation of CsSUP in different parts

of cucumber fruits (Figure 2B–C). Epicarp, mesocarp, endocarp

and ventricle were separated according to Figure 2B, and qRT-

PCR was performed with these four types of tissues. Ventricle,

where the ovules are located, showed the highest CsSUP expression

(over 5 folds than that of epicarp), and mesocarp, which comprised

of plentiful vascular system, displayed the second highest

expression among the four parts of fruit (Figure 2C), suggesting

that CsSUP may be highly expressed in ovules and vasculature of

cucumber fruits.

We further characterized the spatial and temporal expression

pattern of CsSUP during flower and fruit development through in

situ hybridization (Figure 3). Consistent with the results in qRT-

PCR, CsSUP expression is detected throughout the inflorescence

meristem (IM), floral meristem (FM) and young floral primordia

during stage 1–2 [27]. By flowers develop into stage 4, CsSUP

expression is limited to the boundary between petal and stamen

(arrow in Figure 3C). CsSUP shows high expression in the

developing ovary of female flower (arrow in Figure 3D), specif-

ically, in the boundary of developing ovary (arrow in Figure 3E),

and the developing ovules (arrow in Figure 3F). In male flower

primordia (Figure 3G), CsSUP shows no detectable signal as

compared to the sense control hybridizations (Figure 3H–I).

Phenotypes of ectopic CsSUP expression in Arabidopsis
To understand the function of CsSUP, ectopic expression

analysis was first performed in the sup-5 mutant Arabidopsis plants

under AtSUP promoter (pAtSUP) or 35S promoter of Cauliflower

mosaic virus (CaMV). As shown in Figure 4, ectopic CsSUP

expression can partially rescue the sup-5 mutant phenotype. In the

sup-5 mutant, number of stamens and carpels are increased, silique

length is decreased and seed number is reduced (Figure 4A, 4D,

4G and 4H) [28], ectopic expression of CsSUP under native AtSUP

promoter (pAtSUP::CsSUP;sup-5) (Figure 4B, 4E,4G and 4H) or

constitutive 35S promoter (35S::CsSUP;sup-5) (Figure 4C, 4F and

4G) results in normal number of stamens and partially rescued

silique length and morphology. For example, the ratio of normal

silique is 23% in the sup-5 mutant, and it increases to 50% in the

pAtSUP::CsSUP;sup-5, and to 83% in the 35S::CsSUP;sup-5

(Table 1). Further, 35S::CsSUP;sup-5 generally has better rescue

effects than that of pAtSUP::CsSUP;sup-5 with regards to both

flower and silique development (Figure 4). Consistently, expression

of CsSUP is higher in the 35S::CsSUP;sup-5 lines as compared to

those in the pAtSUP::CsSUP;sup-5 lines (Figure 4I). We further

quantified the seed numbers in sup-5 and 35S::CsSUP;sup-5. As

shown in Table 2, ectopic expression of CsSUP significantly

Functional Analysis of Cucumber SUPERMAN

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e86192



Figure 1. Alignment and phylogenetic analysis of SUP-like genes. (A) Alignment of CsSUP and SUP-like genes. The amino acid sequences of
CsSUP, Csa001112 and Cas010435 in cucumber, AtSUP and RBE in Arabidopsis, NtSUP in tobacco, PhSUP in petunia, SlSUP in white campion and
Os05g0286100 in rice were aligned using ClustalW in the MEGA5 software package. The black and gray areas indicate identical and similar amino
acid, respectively. Zinc-finger and leucine zipper (LZ)-like domains were indicated in black lines. The DLELRL domain [15] was showed in red box. (B)
An unrooted phylogenetic tree constructed using the amino acid sequences of CsSUP, Csa001112, Cas010435, AtSUP, RBE, NtSUP, PhSUP, SlSUP and
Os05g0286100 based on the neighbor joining method. Branch length is proportional to evolutionary distance.
doi:10.1371/journal.pone.0086192.g001
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increased the seed numbers per silique in the sup-5 mutant

background, suggesting that the function of SUP is largely

conserved between complete flower Arabidopsis and unisexual

flower cucumber.

Next, we examined the effects upon overexpression of CsSUP in

the Ler background (35S::CsSUP/Ler). As indicated in Figure 5,

overexpression of CsSUP leads to disorganized petal patterning,

suppressed stamen development, and reduced silique length

(Figure 5). Compared to the flowers in wide-type plant

(Figure 5A), 35S::CsSUP/Ler transgenic flowers display 10–20%

petals with aberrant organization (Figure 5B), while petal number

and petal size show no noticeable changes. Further, stamen

development in the 35S::CsSUP/Ler transgenic flowers is largely

suppressed. In contrast to the wild-type flower with six stamens,

the 35S::CsSUP transgenic flowers developed an average of

4.3960.06 stamens (Table 3), and about 10–15% stamens are

greatly short (Figure 5C–D). Accordingly, silique length and seed

numbers per silique are significantly reduced in the 35S::CsSUP

plants (Figure 4E–F, Table 4 and Table 5). For example, the

average silique length is 10 mm with 46 seeds per silique in the

WT, while it decreases to 6.8 mm with 17 seeds per silique in the

35S::CsSUP transgenic plants (Table 4 and Table 5). At the whole

plant level, transgenic plants are slightly dwarf as compared to

wide-type plant (data not shown). Taken together with the

Figure 2. Quantitative RT-PCR (qRT-PCR) analysis of CsSUP in different organs of cucumber (A) or different parts of cucumber fruit
(B–C). Three biological replicates were used for each sample, and 18S rRNA was used as internal control. Bars represent the standard error. (A) CsSUP
is predominately expressed in the female flower bud and developing fruit. lf: leaves, te: tendrils, mb: male flower buds, fb: female flower buds, mf:
male flowers, ff: female flowers, fr-4: fruit of 4 days before flower opening, fr: fruit on flower opening, fr+3: fruit of 3 days after flower opening. (B)
Transverse sections of commercially mature cucumber fruit. ep: epicarp, me: mesocarp, en:endocarp, ve:ventricle. (C) CsSUP is highly expressed in the
ventricle of cucumber fruit where the ovules are located.
doi:10.1371/journal.pone.0086192.g002
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expression data of CsSUP in Figure 2 and 3, CsSUP may function

in the boundaries and ovules to modulate petal patterning, stamen

and fruit development in Arabidopsis, probably through negative

regulation of cell proliferation.

Discussion

During early stages of flower development, all floral buds are

bisexual, and unisexual flowers are formed by subsequent

arrestment of either carpel or stamen development [29]. Phylo-

genetic analysis indicated that unisexual flowers evolved from

bisexual flowers many times in the angiosperm lineage [20,30,31].

It is not surprising that unisexual species and bisexual species have

distinct mechanism underlining flower development. So far, most

studies about floral patterning are performed in bisexual flowers,

while flower development in unisexual species is largely neglected.

Here we cloned the ortholog of AtSUP in unisexual species

cucumber (CsSUP) (Figure 1), and we characterized the expression

pattern of CsSUP by tissue-specific qRT-PCR and in situ

hybridization (Figures 2 and 3), and we explored the function of

CsSUP by ectopic expression in Arabidopsis (Figures 4 and 5,

Tables 1–5). Our data showed that CsSUP played shared as well as

divergent roles during flower and fruit development.

CsSUP is expressed mostly in the female specific organs
Among the orthologs of SUP, expression patterns of PhSUP and

SlSUP have been explored previously [13,20,22]. Transcripts of

Arabidopsis SUP were first detected in late stage 3 flower primordia,

and in boundaries between stamen and carpel primordia. Then, it

was found in the adaxial side of the stamen primordia and later in

stage 9, SUP RNA was detected in the ovary [13]. PhSUP, on the

other hand, is expressed in the basal regions of developing petals

and stamens, the interthecal regions of developing anthers, and the

basal part of ovules [20]. While the SlSUP gene is exclusively

expressed in female flowers in Silene latifolia, in developing petals,

stamens and ovules [22]. In this study, we found that CsSUP is

mostly expressed in the female specific organs: the female flower

buds and fruits (Figure 2). Specifically, CsSUP is expressed

throughout the IM, FM, and stage 1–2 floral primordia, then it

is restricted to the boundary between petal and stamen at stage 4.

By the time of unisexual flower is noticeable (stage 6 and on),

CsSUP is expressed only in female flowers, in the boundary of

developing ovary and in ovules (Figure 3). Therefore, the

expression patterns of SUP orthologs are quite divergent, implying

they may have distinct roles in bisexual flowers, dioecious species

or monoecious species. Despite the specific domains are different,

both CsSUP and SlSUP are expressed predominantly in female

flowers, the reason of which may lie in the fact that both species

produce unisexual flowers.

Figure 3. In situ hybridization of CsSUP transcripts in developing flowers and fruits of cucumber. Longitudinal sections of the shoot apex
(A), stage 2 flower (B), stage 4 flower (C) and stage 8 female flower (D) reveal that CsSUP is expressed throughout in the IM, FM and young floral
primordia (stage 1–2), and then limited to the boundary between petal and stamen (arrow in C), and the developing ovary (arrow in D). Transverse
sections reveal that CsSUP is specifically expressed in the boundary of developing ovary (arrow in E), and the developing ovules (arrow in F). CsSUP is
undetectable in the male flower primordia (G). Control hybridizations with CsSUP sense probe in male (H) or female flower primordia (I) show no
signal. Bar = 200 mm except for (I), in which bar = 100 mm.
doi:10.1371/journal.pone.0086192.g003
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CsSUP has both conserved and divergent functions
during flower and fruit development

Arabidopsis AtSUP has been shown to function through cell

proliferation to regulate the balance between stamen fate and

carpel fate, as well as to control the growth of outer integument of

ovule [13,16]. Loss-of-function of AtSUP results in increased

Figure 4. Ectopic CsSUP expression can partially rescue the phenotype of sup-5 mutant Arabidopsis. Flowers of sup-5 (A, D),
pAtSUP::CsSUP;sup-5 (B, E) and 35S::CsSUP;sup-5 (C, F) shows the complement of excess stamen upon ectopic CsSUP expression. (G) Representative
siliques of sup-5 (top), pAtSUP::CsSUP;sup-5 (top middle), 35S::CsSUP;sup-5 (bottom middle) and Ler (bottom) indicate the partial rescue of the sup-5
silique development by ectopic expression of CsSUP in Arabidopsis. (H) Opened siliques of sup-5 (top) and pAtSUP::CsSUP;sup-5 (bottom) at similar
developmental stages. (I) Expression of CsSUP in transgenic Arabidopsis. Lane 1–2: sup-5 plants, lane 3–4: 35S::CsSUP;sup-5 lines, lane 5–6:
pAtSUP::CsSUP;sup-5 lines. Actin2 was used as internal control to normalize the expression data. Bars = 1 mm.
doi:10.1371/journal.pone.0086192.g004

Table 1. Quantification of silique phenotype.

Normal
Mild
malformed

Severe
malformed Normal %

sup-5 7 5 18 23.33%

pAtSUP::CsSUP;sup-5 15 4 11 50.00%

35S::CsSUP;sup-5 25 2 3 83.33%

The values shown are silique numbers. Total of 30 siliques were characterized
for each genotype.
doi:10.1371/journal.pone.0086192.t001

Table 2. Partial complement of sup-5 mutant upon ectopic
expression of CsSUP.

Control
Plant

Seed
Number

Transgenic
Plants Seed Number

Ler 46.1060.78 35S::CsSUP/sup-5 line1 23.6761.20**

sup-5 14.8060.64 line2 26.0060.87**

line3 21.3361.61**

line4 30.6761.98**

Average 25.4164.81**

The values shown are the means 6 SE of 20 siliques from Arabidopsis Ler and
sup-5 mutant, or 6 siliques from CsSUP transgenic lines (35S::CsSUP/sup-5). T-
tests were used to determine whether differences between sup-5 and
transgenic lines were statistically significant.
* and ** represent p,0.05 and p,0.01, respectively.
doi:10.1371/journal.pone.0086192.t002
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number of stamen, defective carpel and infertile ovules [13,16].

Ectopic expression of PhSUP or SlSUP in Arabidopsis can partially

or fully rescue the excess stamen and infertile ovule phenotype in

sup mutants [20,22]. Similarly, our study showed that overexpres-

sion of CsSUP can partially complement the sup-5 mutant

phenotype, particularly the number of stamens, silique length

and number of seeds per silique (Figure 4, Tables 1–2), suggesting

that CsSUP plays a conserved role during stamen and ovule

development. However, constitutive expression of CsSUP in wild

type Arabidopsis leads to disorganized patterning of petal, reduced

number of stamen, decreased length of silique, reduced seed

production and mild dwarfness of the whole plant (Figure 4).

Dwarfness, suppressed petal and stamen development have been

reported previously when ectopic expression of AtSUP or SUP

orthologs under the 35S promoter [14,19,20,22], while decreased

silique length and seed production, and disorganized petal

patterning appears to be specific to CsSUP, suggesting that

monoecious CsSUP may evolved a distinct roles in petal patterning

and fruit development as compared to SUP orthologs in bisexual

or dioecious species. Considering the unique expression of CsSUP

in the boundary between petal and stamen primordia (Figure 3C),

the boundary of developing ovary (Figure 3E), and in ovules

(Figure 3F), CsSUP may function in the boundaries and ovules to

modulate petal patterning, stamen and fruit development in

Arabidopsis, probably through negative regulation of cell prolifer-

ation. Previous studies showed that depending on the species, cell

types and expression level, AtSUP and SUP orthologs stimulated or

suppressed cell division, cell expansion or cell elongation so that

enabling proper flower and ovule development

[17,18,20,21,24,32]. Recent studies showed that Arabidopsis and

tobacco SUPs regulated cell proliferation through auxin and

cytokinin signaling pathways in tobacco [24], and AtSUP

suppresses cell division in floral meristem redundantly with a

RNA helicase CARPEL FACTORY [33], and epigenetic

modification-methylation is involved in the active or inactive state

of AtSUP [34,35] Therefore, tackling the underlining mechanism

of CsSUP function in Arabidopsis, especially the potential relation-

ship between CsSUP with hormones, RNA helicase and methyl-

ation modification during petal patterning and silique develop-

ment, would be useful for gaining an entrance into understand

how CsSUP might function in cucumber. Further studies through

RNA interference and genetic transformation, to explore the

precise roles of CsSUP in cucumber would shed light on the

evolutional scenery of SUP function in hermaphrodite, dioecious

and monoecious species of flowering plants.

Materials and Methods

Plant materials and growth
Cucumber (Cucumis sativus L.) inbred line 1461 was used in this

study. Seeds were grown in pots in a regulated chamber at 28uC in

a 16 h light/8 h dark cycle for about a month, and then they were

moved to greenhouse for further development. The Arabidopsis

Landsberg erecta (Ler) was used as wide-type control in the transgenic

analysis. The sup-5 mutant was obtained from the Arabidopsis

Biological Resource Center (ABRC). Arabidopsis seeds were sown in

soil or Murashige-Skoog (MS) medium (0.2% agar and 1%

sucrose) at 23uC on a 16 h light/8 h dark cycle.

Figure 5. Phenotypes of overexpression of CsSUP in wild type
Arabidopsis. (A–B) Flowers of wild type (A) and 35S::CsSUP (B) show the
disturbed petal organization. (C–D) Stamens of wild type (C) and
35S::CsSUP (D) indicate the suppressed stamen development in the
transgenic lines. (E–F) Siliques (E) and opened siliques (F) of wild type
(top) and 35S::CsSUP (bottom) show the reduced silique length and
decreased seed numbers. Bars = 1 mm.
doi:10.1371/journal.pone.0086192.g005

Table 3. Reduced stamen numbers in 35S::CsSUP transgenic
plants.

Control
Plant

Stamen
Number Transgenic Plants

Stamen
number

Ler 6.060.0 35S::CsSUP/Ler line1 3.9760.13**

line2 4.4460.11**

line3 4.3860.13**

line4 4.7660.08**

Average 4.3960.06**

The values shown are the means 6 SE of 30 flowers from wild-type Arabidopsis,
or 20 flowers from CsSUP transgenic plants (35S::CsSUP/Ler). T-tests were used to
determine whether differences between Ler and transgenic lines were
statistically significant.
* and ** indicate p,0.05 and p,0.01, respectively.
doi:10.1371/journal.pone.0086192.t003
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Isolation of CsSUP
Total RNA was extracted from female flower buds using the

Huayueyang RNA isolation kit (China), and 3 mg of samples were

used to synthetize cDNA using M-MLV Reverse Transcriptase

(Promega). The cDNA samples were amplified by PCR via the

following system: 95uC for 5 min; 30 cycles of 95uC for 30 s, 53uC
for 30 s, and 72uC for 30 s; then 72uC for 10 min.

Sequence comparison and phylogenetic analysis
Amino acid sequences of CsSUP and SUP-like genes were

obtained by BLAST searches (http://www.ncbi.nlm.nih.gov/

BLAST/) and aligned by ClustalW software (http://clustalw.

ddbj.nig.ac.jp/top-j.html/). A phylogenetic tree based on their

entire amino acid sequences was constructed by applying the

neighbor joining (NJ) method using the bootstrap analysis

with1000 replications [26]. The GeneBank accession numbers of

the amino acid sequences are: AtSUP (U38946), PhSUP1

(AB117749), NtSUP (GQ227844), SlSUP (BAH59432), RBE

(AB107371), Os05g0286100 (BAF17009). The sequence data for

the three SUP-like genes in cucumber can be found in the

Cucumber Genome Initiative databases (http://cucumber.

genomics.org.cn) under the following accession numbers: CsSUP

(Csa000134), Csa001112 and Cas010435.

Quantitative real-time RT-PCR
The leaves, tendrils, flower buds, flowers and fruits were frozen

in liquid nitrogen and stored at 280uC prior to RNA extraction.

Total RNA was extracted with Huayueyang RNA isolation kit

(China), cDNA was synthetized using M-MLV Reverse Tran-

scriptase (Promega). Quantitative RT-PCR was performed using

an Applied Biosystems 7500 real-time PCR systems with SYBR

Green as fluorescent dyes (TaKaRa). Three biological replicates

were performed, upon which three technical replicates were used

for the qRT-PCR analysis. 18S rRNA was used as reference

control to normalize the expression data [36]. The gene specific

primers are listed in Table S1.

Semi-quantitative RT-PCR
Inflorescence of sup-5, pAtSUP::CsSUP;sup-5, 35S::CsSUP;sup-5

were frozen in liquid nitrogen and stored at 280uC prior to RNA

extraction. Total RNA was extracted with Huayueyang RNA

isolation kit (China), cDNA was synthetized using M-MLV

Reverse Transcriptase (Promega). Actin2 was used as internal

control to normalize the expression data. The gene specific

primers are listed in Table S1.

In situ hybridization
Cucumber flower buds and young fruits were fixed, embedded,

sectioned, and hybridized with digoxigenin (DIG)-labeled sense

and antisense RNA probes as described [37]. Through PCR

amplification of cDNA, in situ probes were synthesized using gene

specific primers including T7 and SP6 RNA polymerase-binding

sites. T7 RNA polymerase was used for the synthesis of antisense

probes and SP6 RNA polymerase was used for the generation of

sense probes. The primer pairs are listed in Table S1.

Ectopic expression of CsSUP in Arabidopsis
The full-length CsSUP cDNA fragment was amplified by PCR

using gene specific primers O-CsSUP-F and O-CsSUP-R containing

Xba I and Sma I restriction enzyme sites respectively. The

resulting fragment was digested and fused into the pBI121 vector.

The resulting CsSUP-pBI121 construct driven by CaMV35S

promoter was introduced to Agrobacterium tumefaciens by electric

shock to transform wide-type (Ler) and sup-5 mutant of Arabidopsis

using the floral-dip method [38]. Meantime, The 2.2 kb length of

AtSUP promoter was amplified by PCR using gene specific primers

pAtSUP-F and pAtSUP-F containing Cla I and Xba I restriction

enzyme sites respectively. The resulting fragment was digested and

Table 4. Reduced silique length in 35S::CsSUP transgenic plants.

Control Plant Silique Length (mm) Transgenic Plants Silique Length (mm)

Ler 10.1960.14 35S::CsSUP/Ler line1 6.9060.10**

line2 5.0860.10**

line3 8.5360.14**

Average 6.8460.16**

The values shown are the means 6 SE of 30 siliques from Arabidopsis Ler or CsSUP transgenic lines (35S::CsSUP/Ler). T-tests were used to determine whether differences
between Ler and transgenic lines were statistically significant.
* and ** represent p,0.05 and p,0.01, respectively.
doi:10.1371/journal.pone.0086192.t004

Table 5. Reduced seed numbers in 35S::CsSUP transgenic plants.

Control Plant Seed number/Silique Transgenic Plants Seed number/Silique

Ler 46.1060.78 35S::CsSUP/Ler line1 17.3560.97**

line2 7.1560.49**

line3 26.8561.56**

Average 17.1261.22**

The values shown are the means 6 SE of 20 siliques from Arabidopsis Ler or CsSUP transgenic lines (35S::CsSUP/Ler). T-tests were used to determine whether differences
between Ler and transgenic lines were statistically significant.
* and ** show p,0.05 and p,0.01, respectively.
doi:10.1371/journal.pone.0086192.t005
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fused into the CsSUP-pBI121 construct, and transformed into sup-5

mutant of as above. Transgenic plants were screened by MS

medium with 40 mg/L kanamycin, and resistant plants were

verified by CsSUP specific primers CsSUP-F and CsSUP-R.

Supporting Information

Figure S1 Quantitative RT-PCR (qRT-PCR) analysis of
Cs001112 in different organs of cucumber. Csa001112 is

predominately expressed in the fruit. lf: leaves, te: tendrils, mb:

male flower buds, fb: female flower buds, mf: male flowers, ff:

female flowers, fr-4: fruit of 4 days before flower opening, fr: fruit

on flower opening, fr+3: fruit of 3 days after flower opening. Three

biological replicates were used for each sample, and 18S rRNA

was used as internal control. Bars represent the standard error.

(TIF)

Table S1 Oligonucleotide primers used in this study.

(DOCX)
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