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Abstract
Streptococcus mutans Antigen I/II (AgI/II) has been widely studied as a candidate vaccine antigen
against human dental caries. In this report we follow up on prior studies that indicated that anti-
AgI/II immunomodulatory monoclonal antibodies (MAbs) exerted their effects by destabilizing
the native protein structure and exposing cryptic epitopes. We show here that similar results can
be obtained by immunizing mice with truncated polypeptides out of the context of an intra-
molecular interaction that occurs within the full-length molecule and that appears to dampen the
functional response against at least two important target epitopes. Putative T cell epitopes that
influenced antibody specificity were identified immediately upstream of the alanine-rich repeat
domain. Adherence inhibiting antibodies could be induced against two discrete domains of the
protein, one corresponding to the central portion of the molecule and the other corresponding to
the C-terminus.
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1. Introduction
Due to its etiological association with dental caries [1], multiple antigens of Streptococcus
mutans have been studied as vaccine candidates [2–6]. One such protein is the cell-surface
localized Antigen I/II adhesin [7], also called P1 [8], Antigen B [9], or PAc [10]. AgI/II
family members mediate interactions with host salivary constituents, cell matrix proteins,
and other bacteria (reviewed in [11]). Until recently, a lack of high-resolution structural
information hindered the design and interpretation of immunological studies. As deduced
from the primary sequence, AgI/II has discontinuous alanine (A)- and proline (P)-rich
tandem repeats that flank a variable (V) region where strain differences are clustered [10,
12, 13]. Recently, an unusual tertiary structure was discovered in which the A-repeats form
an α-helix that intertwines with the polyproline II (PPII) P-region helix to form a long
narrow stalk [14]. The intervening segment including the V-region comprises a β sandwich
arranged in two sheets [15]. The crystal structure of the C-terminus also revealed β sheet
structure with three consecutive domains adopting a DE-variant IgG fold [16]. Hence, two
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globular regions lie on either end of an extended stalk. A high affinity intra-molecular
interaction between the N-terminus, which has not been crystalized, and the C-terminus
increases stability of AgI/II and enhances adhesive function [17]. The primary and modeled
tertiary structures of AgI/II are illustrated (Figure 1).

AgI/II’s interaction with salivary components is complex and involves two distinct
adherence sites [16, 18]. The interaction differs depending on whether the major physiologic
receptor, salivary agglutinin (SAG), is immobilized or is in fluid-phase. Monoclonal
antibodies differ in their ability to inhibit adherence to SAG compared to SAG-mediated
bacterial aggregation indicating that the determinants that mediate these two processes are
not identical [19]. SAG is an oligomeric protein complex consisting primarily of the
scavenger receptor glycoprotein gp340, and also containing amylase, sIgA and an 80 kDa
protein [20, 21]. Different regions of both gp340 [22] and AgI/II [19] contribute to the
different interactions. S. mutans adherence in vivo involves binding of AgI/II to immobilized
SAG within the salivary pellicle coating the tooth surface [23]. Disruption of this interaction
by antibodies is the focus of preventative therapeutic protocols. In contrast, interaction of
fluid-phase SAG with cell surface AgI/II represents an innate host defense mechanism [24,
25], whereby aggregated are removed by swallowing. Hence it is desirable to elicit
antibodies that disrupt SAG-mediated adherence, but not aggregation.

Numerous studies have demonstrated the relevance of an antibody response against AgI/II in
protection against S. mutans colonization and cariogenicity (reviewed in [3, 11, 26, 27]).
Both salivary and serum antibodies, that enter the oral cavity via transudation through the
gingival crevice, have been reported to be protective [6, 28–33], or in some instances non-
protective [34–36]. Subtle and potentially unapparent differences among immune responses
can be crucial in determining the outcome of a host pathogen interaction. Naturally
dominant epitopes are often not optimal for protection and pathogens can persist in the face
of an immune response [37]. Therefore, it is fine specificity and functional activity, more so
than total antibody amount, which likely determines whether colonization and cariogenicity
is sufficiently inhibited to prevent disease by S. mutans.

Our laboratory has evaluated seven different anti-AI/II (P1) MAbs for immunomodulatory
properties using an active immunization approach that incorporated them as part of immune
complexes (IC) with whole bacterial cells [38–44]. Their approximate binding sites are
illustrated in Figure 1B and were deduced based on reactivity with internal deletion
constructs and combinations of truncated polypeptides [44–47]. MAbs 1–6F and 4–9D are
influenced by overall conformation and bind within the region intervening the A- and P-
repeats. 4–10A recognizes a repeated epitope formed by interacting A- and P-region
sequences. Guy’s 13 also binds an epitope formed by interacting of A- and P-region
sequences, but on a different part of the stalk. 6–11A, 5–5D, 3–10E bind epitopes that
depend on the A-P interaction, but also involve a pre-A-post-P-region interaction. 3–10E’s
binding is almost completely eliminated when this interaction is disrupted. MAbs 1–6F, 4–
9D, and 4–10A inhibit bacterial adherence, while 6–11A, 5–5D, 3–10E, and Guy’s 13 do not
[41, 44].

Previous studies showed that when incorporated within ICs, MAbs 6–11A, 5–5D, 3–10E, 4–
10A, and Guy’s 13 redirected the adaptive immune response toward one of increased
efficacy with regard to inhibition of bacterial adherence to SAG [38–44]. The presence of
the MAbs within ICs altered the fine specificity and isotype composition of the elicited
antibody response. These effects appeared to stem from a structural perturbation of the cell
surface adhesin resulting in increased exposure of at least one normally cryptic or
subdominant epitope, with the epitope recognized by 1–6F, an adherence-inhibiting MAb,
shown to be affected [43, 44]. In the current study we sought to determine whether the
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effects of anti-Ag I/II MAbs could be mimicked by immunization with truncated and
internal deletion variants of AgI/II in which important target epitopes might be better
exposed. As a result, novel putative T helper cell and C-terminal epitopes were identified.

2. Materials and Methods
2.1 Bacterial strains, plasmids, expression and protein purification

S. mutans NG8 was grown aerobically for 16 hr in Todd-Hewitt broth with 0.3 % yeast
extract (BBL, Cockeysville, MD). E. coli strains were grown aerobically at 37°C in Luria-
Bertani broth (1 % [wt/vol] tryptone, 0.5 % [wt/vol] yeast extract, 1 % [wt/vol] NaCl)
supplemented with ampicillin (50–100 µg/mL) or kanamycin (25–50 µg/mL). Construction
of the CK1 and RR2 [45], NA1, P3C, and NR7 [17], and NR21 [43] polypeptides has been
described. Recombinant proteins were purified on amylose or nickel resin. An additional in-
frame deletion construct of AgI/II lacking two putative T-cell epitope sequences (aa 164–
193) was generated by circle PCR-mutagenesis using primers 5’-
GCTGCTCATGAGGCAGCTGCAAATGCTGC and 5’-
GCAGCATTTGCAGCTGCCTCATGAGCAGC with pCG14 [48] as template. Amplified
DNA was self-ligated using Quick T4 ligase (New England Biolabs) and transformed into E.
coli Top10. Plasmid DNA [17] with the confirmed deletion, pPC303, was transformed into
E. coli M15 (pRep4). The histidine-tagged T-delete protein was purified on nickel resin
following induction of mid-exponential phase cells with 1 mM IPTG for 2–4 hours at 37 °C.

2.2 Mice
Six-eight week old female BALB/c mice were purchased from Charles River (Laboratories,
Wilmington, MA) and housed in biosafety level 2 facilities under infectious disease
conditions and fed a standard diet.

2.3 Source of antibodies
MAb 3–10E was obtained from a previously established hybridoma [49]. IgG was purified
from murine ascites fluid using an ImmunoPure (A Plus) IgG Purification Kit (Pierce,
Rockford, IL). Peroxidase-labeled and unlabeled secondary reagents were obtained from
Southern Biotech (Birmingham, AL).

2.4 Immunizations and sample collections
AgI/II demonstrates numerous SDS-resistant discontinuous conformational
epitopes that are preserved in Western blots [45]—Groups of five mice were
immunized intraperitoneally with emulsified polyacrylamide gel slices containing
recombinant full-length AgI/II (CG14), or recombinant AgI/II polypeptides NR7, NR21,
CK2, RR2, T-delete, NA1, PC3, or a mixture of NA1 and P3C. Sham immunized groups
received polyacrylamide only. Protein samples were loaded onto 7.5 % SDS-polyacrylamide
preparative gels, negatively stained with 0.3 M cupric chloride for 5 min and rinsed with
water. Negative stained bands of the correct size (∼1 □g total protein) were excised and de-
stained with three 10 min washes with 0.25 M EDTA and 0.25 M Tris (pH 9) at room
temperature with a final exchange into PBS. Gel slices were emulsified into 1 ml of PBS,
and 100 µl was used to immunize individual mice. Mice were pre-bled 1 week before the
first inoculation, immunized on days 0, 14, 21, and 35, and exsanguinated on day 50.
Experiments were approved by the University of Florida Institutional Animal Care and Use
Committee (Protocol # 201105486).
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2.5 S. mutans adherence by BIAcore
Adherence of S. mutans to SAG immobilized on a CM5 sensor chip (GE Healthcare,
Piscataway, NJ) was evaluated using the BIAcore 3000 machine (BIAcore AB, Uppsala,
Sweden) [40]. SAG was prepared by adsorption to and desorption from S. mutans NG8 as
described [22, 50]. Sera from mice within each group were pooled. Adherence of S. mutans
reacted with sera (diluted 1:50) from mice immunized with full-length protein, versus those
from mice immunized with truncated polypeptides, were compared. Each sample was run at
least three times. Values were normalized to the delta RU of an S. mutans control sample
run for each experiment in the absence of sera.

2.6 Biotin-labeling of MAb 3–10E and competition ELISA
Approximately 1 mg of purified 3–10E was biotinylated using EZ-Link™ Biotin-LC-
Hydrazide (Pierce, Rockford, IL). ELISA plate wells were coated with S. mutans (∼107 cfu/
well) [49] in carbonate-bicarbonate buffer, pH 9.6. Pooled antisera from each group were
serially diluted two-fold in PBS containing 0.03% Tween-20 beginning at 1:25, 100 µl were
added to the wells followed immediately by biotinylated 3–10E and incubated at 37 °C for
two hours. Plates were washed and avidin-HRP conjugate (Pierce, IL) was applied to the
wells for 30 minutes at room temperature. Plates were washed again and developed with 0.1
M o-phenylenediamine dihydrochloride containing 0.012 % hydrogen peroxide in 0.01 M
phosphate citrate buffer. Percent inhibition was calculated as [OD450 direct binding of
biotin-labeled 3–10E - OD450 experimental well / OD450 direct binding of biotin-labeled 3–
10E] × 100. Positive and negative control wells contained unlabeled 3–10E, no inhibitor, or
avidin-HRP only.

2.7 Quantitative subclass ELISA
ELISA plate wells were coated with S. mutans whole cells as described above or with 100
ng/well of purified recombinant NR21. Pooled sera from each group were serially diluted
three-fold beginning at 1:50 and 100 µl were to the wells. Antibody reactivity was detected
using affinity-purified peroxidase-labeled goat anti-mouse peroxidase conjugated IgG1,
IgG2a, or IgG2b subclass specific antibodies (Southern Biotech) at a 1:2000 dilution. Plates
were developed as above. Concentrations of anti-NR21 subclass antibodies were calculated
by interpolation on standard curves generated using purified mouse subclass reagents
(Southern Biotech, Birmingham, AL).

2.8 Prediction of T cell epitopes
We utilized RANKPEP (http://bio.dfci.harvard.edu/RANKPEP) to identify AgI/II peptides
likely to interact with the class II I-Ad and I-Ed MHC alleles from Balb/c mice. The 1522
amino acid sequence representing the mature polypeptide was input and the 5 peptides
predicted to bind the I-Ad and I-Ed molecules with the highest affinities, respectively, were
identified. These are listed in order in Table 1 including their locations and the truncated
polypeptides that contain them.

2.9 Statistics
Statistically significant differences were determined by one- or two-way analysis of variance
(ANOVA) using Graph Pad Prism 4.0. A p-value of less than 0.05 was considered
significant. Tukey’s Multiple Comparison Test determined differences among the groups.

Robinette et al. Page 4

Vaccine. Author manuscript; available in PMC 2015 January 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://bio.dfci.harvard.edu/RANKPEP


3. Results
3.1. P1 polypeptides vary in eliciting adherence-inhibiting antibodies

To evaluate the immunogenicity of truncated P1 polypeptides (Figure 1a), mice were
immunized with full-length recombinant AgI/II (CG14), compared to RR2, CK2, and NR7.
These were chosen because of their increased reactivity with MAb 1–6F [45], a strong
inhibitor of S. mutans adherence [22, 41]. Inhibition of S. mutans adherence to immobilized
SAG correlates with the level of 1–6F–like antibodies in the sera of mice immunized with
IC of S. mutans and immunomodulatory MAbs [43]. As previously observed [43], pooled
sera from mice that received CK2 was better able to inhibit adherence compared to that from
mice that received full-length AgI/II (Figure 2A). This was also true of pooled sera from
mice that received RR2. Surprisingly though, pooled sera from mice that received the
internally-deleted NR7 polypeptide was no better at inhibiting adherence than pooled sera
from mice immunized with CG14, despite the change in antigenicity and improved
recognition of NR7 by MAb 1–6F [45]. Comparable levels of anti-S. mutans IgG were
measured in all groups of mice that received any of the AgI/II constructs (Figure 2B), with
no statistically significant differences detected among the groups.

3.2. Predicted helper T cell epitopes affect antibody specificity and isotype
The top five I-Ad and five I-Ed AgI/II T helper cell epitopes in Balb/c mice were predicted
using RANKPEP (Table 1). Since I-Ed peptide 5 and I-Ad peptide 4 were contiguous and
contained within the segment that had been deleted from NR7 (aa 84–190), we constructed a
more defined in-frame deletion (aa 164–192). This construct was no more effective than
CG14 at eliciting an adherence-inhibiting response (Figure 2A). Next, we determined
whether elimination of the two putative T cell epitopes affected formation of 1–6F–like
antibodies, particularly those of the IgG2a and IgG2b isotypes, since these had correlated
with improved adherence inhibition [41, 43]. We utilized polypeptide NR21 that
corresponds to the central region of AgI/II and has an in-frame deletion of the P-region. It is
recognized by MAb 1–6F, but no others in our panel; hence, it is a useful tool to evaluate 1–
6F–like antibodies of particular isotypes contained within polyclonal sera. The levels of anti-
NR21 antibodies in the sera of mice that had been immunized with the T-delete polypeptide,
particularly the IgG2a and IgG2b isotypes, were significantly decreased compared to the
full-length recombinant AgI/II group (Figure 3).

3.3 Relevant C-terminal epitopes are masked within AgI/II
To evaluate potential masking of protective epitopes within the native protein resulting from
the pre-A/post-P-region interaction additional murine immunizations using NA1 and P3C
were performed (Figure 1A). These fragments form a stable complex that reconstitutes
multiple discontinuous epitopes, including that recognized by MAb 3–10E. MAb 3–10E
does not itself inhibit adherence [41], but serves as a marker for achievement of native
structure [17]. To evaluate the ability of NA1 and P3C to maintain an interaction in vivo, a
competition ELISA was employed in which the ability of pooled immune sera to inhibit
binding of biotinylated 3–10E to S. mutans was tested. Pooled sera from the full-length
CG14 group, followed by the NA1+P3C group, contained antibodies able to compete for
MAb 3–10E binding, while pooled sera from P3C-, and particularly NA1-immunized mice,
were less able to compete (Figure 4A). Pooled sera from mice immunized with P3C also
were increased in their ability to inhibit S. mutans adherence to immobilized SAG compared
to pooled sera from CG14 (p<0.05) or sham immunized (p<0.0001) groups (Figure 4B).
This effect was not observed for pooled sera from the NA1 or NA1+P3C groups. Of note,
total anti-S. mutans IgG measured in pooled sera from the P3C immunized mice was
significantly less than that measured from mice immunized with CG14 and comparable to
that from mice immunized with the NA1/P3C mixture (Figure 4C).
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4. Discussion
In proteins with complex conformations, formation of functional antibodies may be
hampered by inaccessibility of cryptic, but protective, target epitopes. Binding of an
antibody to its cognate antigen can induce a conformational change in that antigen [51–67].
Importantly, these conformational changes can lead to exposure of functional subdominant
or neoepitopes [54, 60, 65, 68–87], and such determinants can represent important targets of
functional or neutralizing antibodies [62, 68, 88–97]. This is most evident in viral systems in
which the availability of well-resolved crystal structures has outpaced that of bacterial
molecules.

A tertiary model for S. mutans AgI/II has now allowed the approximation of SAG binding
domains [14, 16], and MAb binding sites [44]. In this study we capitalized on information
from previous work that suggested destabilization of AgI/II structure was the basis of
immunomodulatory effects by several MAbs [43]. Destabilization of protein by antibody
can identify key internal segments that are integral to overall tertiary structure [63]. We had
discovered that several anti-AgI/II MAbs recognize epitopes contributed to by aa 84–190
immediately upstream of the A-region [39, 98]. Circular dichroism, surface plasmon
resonance, and differential scanning calorimetry confirmed this segment contributes to
folding and function of the adhesin, and increases stability of its elongated hybrid helical
stalk [17]. The NR7 polypeptide lacking this sequence demonstrates increased exposure of
the 1–6F epitope [45]; therefore, we speculated that NR7 would represent a superior
immunogen. Surprisingly, it did not. Therefore, we evaluated whether elimination of two
putative T cell epitopes within the segment deleted from NR7 affected immunogenicity
against the 1–6F epitope. Compared to unaltered AgI/II, the T-delete polypeptide resulted in
the formation of significantly less antibody reactive with the NR21 polypeptide that is used
as a tool for measurement of 1-6F-like antibodies. Unlike NR7, the T-delete polypeptide did
not lose its ability to interact with MAb 3–10E or gain in reactivity with MAb 1–6F (data
not shown), hence it appears to be structurally similar to the unaltered full-length adhesin.
This suggests that its altered immunogenicity was a consequence of the elimination of the
two putative T cell epitopes identified by RANKPEP rather than a structural alteration.

Two other constructs also demonstrate increased reactivity with MAb 1–6F compared to
full-length AgI/II [45]. The longer, RR2, lacks a major portion of the C-terminus but retains
an ability to form the 3–10E epitope [99]. RR2 was superior to CG14 in its ability to elicit
an efficacious adherence-inhibiting response. The second shorter construct, CK2, lacks the
entire C-terminus, and was also a more efficacious immunogen than full-length CG14. The
interaction of AgI/II with SAG is multivalent and contains two distinct binding sites [18].
These have been localized within two discrete fragments. A3VP1, corresponds to the third
alanine-rich repeat through the third proline-rich repeat, a segment contained within both
RR2 and CK2. The second binding site is contained within the C-terminus [16]. Based on
our current results, it appears that relevant target epitopes are associated with each of the
binding sites, but are obscured within the context of the complete native structure. P3C, but
not its intra-molecular binding partner NA1, was significantly better able to elicit adherence-
inhibiting antibodies compared to the full-length adhesin or a mixture of P3C and NA1. The
A3VP1-containing RR2/CK2 polypeptides, as well the P3C polypeptide, therefore retain
important functional epitopes, yet expose them in such a way that a more desirable host
response is achieved. It will be important in future studies to test whether co-immunization
with a mixture of CK2 and P3C has an additive effect. Unlike RR2, CK2 lacks the entire N-
terminus of AgI/II so would not be expected to bind to or influence the immunogenicity of
the C-terminus.

Robinette et al. Page 6

Vaccine. Author manuscript; available in PMC 2015 January 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



While dental caries is associated with acidogenic and aciduric organisms such as S. mutans,
oral health is associated with other oral streptococci that also express AgI/II family
molecules [100–102]. Cross-reactivity of immune sera from this study was observed against
S. oralis and to a lesser extent S. mitis; however, these organisms did not adhere to the SAG
prepared using S. mutans (data not shown). Since the binding specificities of AgI/II
homologs among species are known to differ [103], the cross-reactive antibodies should not
be problematic. Minimal cross-reactivity was observed against S. salivarius and S.
sanguinis. In a previous study [45] we found that anti-AgI/II monoclonal antibodies cross-
reactive with S. gordonii were directed against epitopes that were subsequently mapped to
the hybrid helical stalk rather than to the globular adherence domains lying at either end of it
[44]. This is consistent with our current study in which more cross-reactivity was detected in
sera from animals immunized with polypeptides that included the stalk. Unlike S. oralis and
S. mitis, S. gordonii demonstrated substantial adherence to SAG, but this binding was not
blocked by the anti-P3C sera that significantly inhibited S. mutans adherence (data not
shown). Taken together, our results suggest that AgI/II-derived vaccine immunogens can be
designed to selectively interfere with adherence of S. mutans. Ag I/II-mediated adhesion
represents a sucrose-independent mechanism. Thus in conjunction with immunogens such as
glycosyltransferase and glucan binding proteins that target sucrose-dependent adhesion [2]
truncated AgI/II polypeptides such as CK2 and/or P3C would be useful adjuncts in an
integrated immunoprophylactic approach.

The three-dimensional structure of an antigen clearly impacts immunogenicity against
conformational epitopes, but stimulation of particular T cell subsets can also depend on
minor alterations within an Ag [104]. Despite the presence of the newly identified predicted
T cell epitopes in full-length CG14 (Table 1), its folded structure still appears to interfere
with responses against important protective epitopes. Our results reiterate that in any system,
optimal immunogenicity is a balance between structure, epitope exposure and availability of
T cell epitopes following antigenic processing of any given conformer, and are consistent
with an accumulating body of literature that points to an ability to capitalize on information
regarding antibody-mediated changes in an antigen and to apply that information to mimic
antibody-mediated destabilization of protein structure. These data will facilitate future
studies regarding S. mutans AgI/II as a vaccine candidate. In addition, this approach can
serve as a model for improvement of protective responses against pathogenic microbes for
which the natural immunodominance of candidate antigens is less than optimal.
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Highlights

Streptococcus mutans adhesin AgI/II elicits adherence-inhibiting antibodies.

We utilize truncated proteins to identify targets of relevant antibodies.

Putative amino-terminal T cell epitopes impact formation of adherence-inhibiting
antibodies.

The C-terminus was identified as a new target of adherence-inhibiting antibodies.

An intramolecular interaction appears to dampen the adherence-inhibiting immune
response.
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Figure 1.
Schematic representations of S. mutans Antigen I/II illustrating location of putative T cell
epitopes and approximate antibody binding sites. (A) A representation of the primary
structure of AgI/II and the recombinant polypeptides used in this study. (B) A three-
dimensional model of Ag I/II. Approximate binding sites of monoclonal antibodies are
indicated.
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Figure 2.
Evaluation of S. mutans adherence to SAG and detection of anti-S. mutans IgG. (A) BIAcore
SPR analysis was used to evaluate bacterial adherence following incubation of S. mutans
with sera collected from mice immunized with full-length P1 (CG14) and truncated
derivatives of P1 (NA1, P3C). Values were normalized to the change in resonance units
(ΔRU) for S. mutans NG8, in the absence of added serum, detected following the 60-second
injection cycle. Immunogens are indicated on the X-axis. Tukey’s Multiple Comparison Test
determined differences among the groups; *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001
(B) The presence of anti-S. mutans IgG in the sera of mice immunized with P1 versus
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truncated P1 polypeptides was evaluated by serial dilution and standard ELISA. Data are
representative of at least three independent experiments. Statistical significance between
groups was evaluated by two-way ANOVA and no significant differences were observed.

Robinette et al. Page 18

Vaccine. Author manuscript; available in PMC 2015 January 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Evaluation of the specificity and isotype of serum antibody responses by ELISA. The level
of anti-NR21-specific IgG1, IgG2a, and IgG2b subclass antibody in the sera collected from
sham-immunized mice, mice immunized with full-length P1, or the truncated protein lacking
2 putative T cell epitopes was evaluated by ELISA. All results are expressed as mean ±
SEM and data are representative of at least three independent experiments. Statistically
significant differences of the T-delete compared to CG14 were determined by two-way
ANOVA. p≤0.05 (IgG1) , p≤0.0001 (IgG2a), p≤0.01 (IgG2b)
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Figure 4.
Functional C-terminal epitopes are masked by intra-molecular interactions. (A) Sera from
mice immunized with full-length P1 (CG14), NA1, P3C, or a mixture of NA1 and P3C were
used in a competition ELISA to evaluate inhibition of binding of biotin-labeled MAb 3–10E
to S. mutans. Serum dilution is indicated on the x-axis. (B) BIAcore SPR analysis was used
to evaluate bacterial adherence following incubation of S. mutans with sera collected from
immunized mice. Values were normalized to the change in resonance units (ΔRU) for S.
mutans NG8, in the absence of added serum, detected following the 60-second injection
cycle. Immunogens are indicated on the X-axis. Tukey’s Multiple Comparison Test
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determined differences among the groups; * p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001.
(C) The level of anti-S. mutans IgG in the sera from P1 versus truncated P1 -immunized
mice was evaluated by serial dilution and standard ELISA. Data are representative of at least
three independent experiments. Statistically significant differences compared to the CG14
group were determined by two-way ANOVA. p≤0.01 (P3C, NA1+P3C), p≤0.0001 (NA1).
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Table 1

MHC class II P1 helper T cell epitopes predicted by RANKPEP*

I-Ad peptides Residue numbers Polypeptides containing
predicted epitopes

LLERGQSATATYTNL 599–613 CK1, CK2, RR2, NR21,
NR7

AYQKALAAYQAELKR 227–241 CK1, CK2, RR2, NR7

NLPEAQGSASKEAEQ 62–76 NR7

EKDMAAHKAEVERIN 179–193 CK2, RR2

RVQEANAAAKAAYDT 241–255 CK1, CK2, RR2, NR7

I-Ed peptides Residue numbers Polypeptides containing
predicted epitopes

DRTLVAKQSVVKFQL 1017–1031 RR2, NR7

QKALAAYQAELKRVQ 229–243 CK1, CK2, RR2, NR7

NEEIRKRNATAKAEY 271–285 CK1, CK2, RR2, NR7

ANEEIRKRNATAKAE 270–284 CK1, CK2, RR2, NR7

VAKIKAKNQATKEQY 164–178 CK2

*
The rankpep prediction program (http://bio.dfci.harvard.edu/RANKPEP) was used to identify the top 5 potential peptides likely to be displayed to

helper T cells by MHC Class II I-Ad and I-Ed molecules in BALB/c mice and their distribution among the polypeptide immunogens was tabulated.
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