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Abstract
Measuring the modularity of networks, and how it deviates from random
expectations, important to understand their structure and emerging properties.
Several measures exist to assess modularity, which when applied to the same
network, can return both different modularity values (i.e. different estimates of
how modular the network is) and different module compositions (i.e. different
groups of species forming said modules). More importantly, as each
optimization method uses a different optimization criterion, there is a need to
have an a posteriori measure serving as an equivalent of a goodness-of-fit. In
this article, I propose such a measure of modularity, which is simply defined as
the ratio of interactions established between members of the same modules vs.
members of different modules. I apply this measure to a large dataset of 290
ecological networks representing host–parasite (bipartite) and predator–prey
(unipartite) interactions, to show how the results are easy to interpret and
present especially to a broad audience not familiar with modularity analyses,
but still can reveal new features about modularity and the ways to measure it.
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Introduction
Modularity, the fact that groups of nodes within a network inter-
act more frequently with themselves than with other nodes, is an 
important property of several systems, including genetic1,2, infor-
matics3, ecological4, and socio-economic5 interactions, as well as 
biogeographic patterns6,7 and disease spread management8. Because 
of the relevance of modularity for network properties, it is impor-
tant to assess it correctly. Several methods exist to measure network 
modularity, some of which rely on the optimization of a given crite-
rion9,10, label propagation11, or combination of these approaches12,13. 
These methods return two elements. The first is a value of modular-
ity for the networks, most often within the 0–1 interval. Each meth-
od often has a threshold value, above which a network is considered 
to be modular. Increasing values reflect an increasingly modular 
structure. The second element is a “community partition”, i.e. the 
attribution of each node to a module.

Recently, Thébault7 showed that different measures of modularity 
tailored to presence/absence matrices (i.e. networks in which links 
have no weight), gave roughly equal estimates of the significance 
of modularity, but differed in the community partition they returned 
(i.e. the identity of nodes composing each module varied). In such 
situations, one might look for a way to choose which community 
partition should be used. The challenge in this situation is that the 
criteria used by each optimisation method cannot be meaningfully 
compared, and so there is a need for a posteriori measurement of 
how strong the modular structure is, regardless of the method used 
to obtain the community partition. More importantly, this criterion 
should be different than the one used to track the progress of any 
optimisation algorithm.

An important feature of modular networks is the occurrence of 
interactions between nodes of different modules. They contribute 
to the propagation of disturbances4, flow of information14,15, and 
cross-regulation of biological processes16, inter alia17. In addition to 
measuring how modular the network is, determining to what extent 
modules are connected, and to identify nodes and edges responsible 
for connecting modules, is thus valuable information. In this article, 
I propose an a posteriori measure of the proportion of interactions 
established between modules, i.e. edges connecting different com-
munities. I apply this measure to the community partition identified 
by the Louvain method on 290 ecological networks, and show that 
it behaves in a similar way to other modularity measures.

The measure
In this contribution I define the realized modularity, termed Q

R
.  

Q
R
 measures the extent to which edges, within a network, are estab-

lished between nodes belonging to the same module. For E edges 

in a network, if W of them are established between members of the 
same module, then

                            
Q

W
ER = .

                            
(1)

When there are no between-module links, then W = E and Q
R
 takes 

the maximal value of 1. When between-module interactions are 
as numerous as within-module interactions, then W = E/2, and Q

R
 

takes the minimal value of 1/2. To express the realized modularity 
as a value between 0 and 1, it is expressed as:

                          Q QR R´ .= × −2 1   (2)

Note that Q′
R
 will yield values in the [0; 1] interval only if there are 

more edges established within than between modules. Although, if 
modules are determined at random, Q′

R
 values are expected to be 

centered on 0, it is expected that they will increase when modules 
are properly optimized (only as far as the network is modular). The 
main advantage of Q

R
 is that it is agnostic with regard to the meas-

ure used to optimize modularity (and even to the method by which 
the nodes were assigned to modules, which can be arbitrary), as 
it acts a posteriori, i.e. after nodes have been attributed to mod-
ules. Nonetheless, it assumes a simple yet functional definition of 
modularity: the fact that nodes interact more within than between 
modules. Given that measuring to which extent this is true, it can 
therefore be used to select the community detection method maxi-
mizing modularity. This measure works on most types of networks, 
as it makes no difference if links are directional, or if the networks 
are bipartite/unipartite. An illustration of this measure is given in 
Figure 1. This measure is purposefully simple, (i) so that it makes 
only minimal assumptions about what modularity is (except for 
the fact that in a modular network, nodes interact more within than 
between modules), or how it should be optimized, and (ii) because 
it is not meant to be used to optimize modularity, but to either com-
pare the outcome of different methods, or present the value of mod-
ularity in a way that is straightforward to interpretate.

A python implementation of this measure, using the networkx 
package, is proposed at https://gist.github.com/tpoisot/4947006. It 
reads data in the edge list format, and offers additional functions to 
generate null networks, as detailed in the following section.

Example application: realized modularity in 
ecological networks
In this section, I analyze the modular structure of a large dataset 
of 290 ecological networks (187 food webs and 113 host-parasite 
networks) published in previous meta-analyses18,19. Modularity is 
an important feature of ecological interaction networks, which is 
linked to their resilience20,21, stability7, biogeographic structure22, 
functioning23, and to the evolutionary mechanisms involved in their 
assembly24. Notably, the occurrence of interactions between and 
within modules plays a central role in the structure of pollination 
networks4, and help buffer the effect of species extinctions21.

The existence of interactions in ecological systems involves a large 
family of processes, ranging from abudance related25,26 (abundant 
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species are more likely to interact together) to trait related27 (pollina-
tion depends on the flower and insect having compatible morpholo-
gies, predators are constrained by the body-size of their preys). The 
interaction within these different families of mechanisms will drive 
heterogeneity in interaction strength28. Yet, the analysis of binary 
matrices (is there an interaction between a pair of species, or not), 
still has relevance to identify properties that are conserved across 
systems29, especially given that one could argue that quantitative 
information on interaction strength is an additional level of infor-
mation. The systems analyzed in this section are represented by 
their adjacency matrix, describing the presence or absence of an 
interaction. Bipartite networks have further been transformed into 
unipartite networks before analysis.

Data and analysis
I used the Louvain method30 to detect modules, due to its rapidity 
and efficiency on large networks. The Louvain method works in 
two steps: first it optimizes modularity locally, through clustering 
of neighboring nodes. These clusters are, in the second steps, 
aggregated together, until modularity ceases to increase. This meth-
od is known to give values of modularity comparable to what is found 
using e.g. simulated annealing, and has been observed to give mod-
ules that have a functional relevance30. Once the partition is returned 
by the Louvain method, I recorded its realized modularity Q′

R
, and 

its modularity Q (using the Newman and Girvan31 measure).

For each network, I compared the values of Q and Q′
R
 on the em-

pirical networks to their random estimate using a network null 
model. Because random networks will by chance (here meaning, as 
expected by networks having a given connectance and thus degree 
distribution, Poisot and Gravel32) display a modular (among other) 
structure, it is important to confront the empirical measures of both 

Q and Q′
R
 to their random expectations. The null model is defined 

as follows. For each node n of the network, I measured its degree d
n
, 

its number of successors (the number of node it links to, or general-
ity in ecological terms, as per33) g

n
, and its number of predecessors 

(the number of nodes that link to it, or vulnerability) v
n
. In each 

random network, for each pair of nodes (i, j), the probability that i 
interacts with j is given by

                  
P i j

g

d
v
d

i

i

j

j

( ) ,→ = +










1
2                     

(3)

and conversely for P(j → i). This null model allowed the generation 
of pseudo-random networks through a Bernoulli process (in each 
replicate, the occurrence of a link is randomly determined), with 
the same expected connectance, and the same expected distribution 
of degrees, generality, and vulnerability, as the original one (these 
properties are also conserved at the node level). For each of the 
290 networks, 1000 pseudo-random replicates are generated. For 
each of them, the average value of Q

R
 and Q′

R
 are estimated along 

with their 90% confidence interval. When the empirical value lies 
outside the confidence interval, it can be assumed that the modular 
structure of the network is different than expected by chance.

Results and discussion
There is a strong, positive relationship, between the values of Q′

R
 

and the values of Q (Pearsons’s product-moment correlation coef-
ficient, as implemented in R 2.1534, ρ = 0.64, 288 d.f., p < 10–6), 
i.e. networks for which a high modularity is detected tend to have 
relatively few between-module links (Figure 2). It is worth noting 

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Q

Q
′ R

Figure 2. Relationship between the modularity of the best 
partition using the Louvain method and the a posteriori realized 
modularity. There exists a strong, positive relationship between 
the two variables. Worth noting is the fact that, for some networks, 
the best partition resulted in negative versions of Q′R, i.e. there 
were more interactions between than within modules. Each dot 
corresponds to a network.

Figure 1. A cartoon depiction of a modular network with links 
between modules. Nodes of the same modules are identified by 
different colors. This network has a modularity (Louvain method) 
of Q = 0.527. Out of the 36 interactions, 31 are established within 
modules, and 5 between modules. This gives a QR value of 0.86, 
and Q′R = 0.72.
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of the network. Because the dataset presents these contrasted situa-
tions, it allows us to understand how the measure reacts to different 
network structures. Depending on whether the true modularity, or 
the realized modularity, is the most relevant metric of the processes 
studied, the interpretation of the null models for these networks will 
be different.

Relationships between raw and realized modularity

1 Data File

http://dx.doi.org/10.6084/m9.figshare.156237

Finally, for the unipartite network dataset, I compare the results of 
three alternative methods of community detection (the walktrap, 
spinglass, and edge-betweenness methods, as implemented in the 
igraph library). For each of the unipartite networks, I computed 
the value of Barber’s Q, and Q′

R
, on the best partition found. The 

strong correlation between Q and Q′
R
 were observed for the spinglass 

method (ρ = 0.61, 165 d.f., t = 10.02), and the weakest for the edge-
betweenness method (ρ = 0.04, non-significant at α = 0.05). The walk-
trap algorithm gave results in between (ρ = 0.489, 165 d.f., t = 7.20). 
For both the walktrap and edge-betweenness methods, several net-
works had negative values of Q′

R
, which indicates that the “best” 

community partition had more links between than within modules. 
The spinglass method had, by contrast, less than 8% of all networks 
with values of Q′

R
 lower than 0, meaning that this algorithm should 

be prefered when one wants to group nodes in densely connected 
clusters. This result reinforces the statement made by Thébault7, i.e. 
that several modularity optimisation methods will return best modu-
lar structures that widely differ in their properties; thus, there is a 
need for a posteriori comparison of these outputs.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1
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Connectance
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Connectance

Q
′ R

Figure 3. Relationship between the two measures of modularity and network connectance. A. Q is negatively affected by connectance, 
i.e. densely connected networks are more likely not to be modular. B. Q′R is not affected by connectance, allowing to use it to compare 
different networks. Each dot corresponds to a network.

that some Q′
R
 values were negative: in some cases, the best com-

munity division resulted in more interactions between than within 
modules. This result highlights why using an a posteriori measure 
is useful: other measures of modularity do not reveal the fact that 
there were more interactions between than within modules. In the 
dataset examined, most of the networks with a modularity lower 
than 0.2 had a negative realized modularity. This result suggests 
that discussing the modularity of such networks makes little sense, 
as their modules are not more densely connected, within a module, 
than other random collections of nodes within the graph. Q and Q′

R
 

have different relationships with connectance (Figure 3). Increased 
connectance values resulted in lower modularity (ρ = –0.61, 288 
d.f., p < 10–6), but had no impact on Q′

R
. This is a desirable property, 

as it allows easy comparison with the Q′
R
 values of networks with 

extremely different connectances.

There is a linear relationship between the deviation from random 
expectation of Q and Q′

R
 (ρ = 0.78, 288 d.f., p < 10–6 – Figure 4). 

The deviations (respectively ΔQ and ΔQ′
R
) are calculated as the 

empirical value, minus the average of the values on the networks 
generated by the null model. As an example, a ΔQ less than zero 
indicates that the empirical network is less modular than expected 
by chance. Confidence intervals for the average of the null models 
were typically very narrow (not represented in the figure to avoid 
cluttering – see associated original dataset), probably owing to the 
fact that the null model is restrictive on the type of networks which 
are generated. It is worth noting that for some networks, the di-
agnostic of the null model analysis is conflicted. In a vast major-
ity of the situations, this corresponds to networks having a lower 
modularity than expected by chance, yet having a higher realized 
modularity (dots in the upper left corner of Figure 4). In this type 
of situation, whereas one would usually conclude that the networks 
are not significantly modular, the identified modules are nonethe-
less more densely connected (internally) than they are with the rest 
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other measures of modularity, but is applied a posteriori. As such, 
it can help choose the “best” community partition according to the 
property of the network that one wants to maximize. For exam-
ple, choosing the partition giving the lowest Q′

R
 can help identify 

which species are more likely to act as connectors between differ-
ent modules. Ultimately, this information may have some practical 
relevance as a decision tool. Saavedra et al.5 showed that different 
nodes contribute differently to overall network properties. In a con-
text in which networks are increasingly being used as management 
tools to adress e.g. conservation or pest management8, knowing the 
realized modularity, and developing methods to estimate which spe-
cies have the highest impact on it, can allow the design of efficient 
policies to maximize, or decrease, the ability of network modules 
to interact.
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Figure 4. Linear relationship between the deviation from 
random expectation in Q and Q′R. Networks in the red area are 
detected as being less modular than expected both by Q′R and Q, 
while networks in the blue area are detected as being more modular. 
Although the agreement between the two measures is good (see 
main text for statistics), some networks are detected as having a 
higher than expected realized modularity Q′R, despite a lower than 
expected modularity Q. Each dot correspond to a network.

Conclusions
The Q′

R
 measure presented here allows the estimation of the pro-

portion of interactions established between different modules in a 
network. This measure can be analyzed much in the same way as 
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 Daniel Carstensen
Department of Bioscience, Universidade Federal de São Paulo, São Paulo, Brazil

I have no further issues with this submission.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 06 January 2014Referee Report

doi:10.5256/f1000research.3306.r2912

 Jochen Fründ
Agroecology, Georg-August-University of Göttingen, Göttingen, Germany

I appreciate the improvements to the article done during the revision. Both the abstract and the main text
now describe better where the article is going and explain the purpose of the new metric. Several minor
concerns have been overcome and questionable points have been clarified.

However, my main reservations largely persist. This includes:
I question whether Q'  is generally useful for choosing which community partition to use. For
choosing the best partition for a particular purpose, I think it would be most efficient to use the
metric of choice during the optimisation and not . In my view, a simple a posteriori a posteriori
metric is mostly useful for presenting and describing modularity. For this purpose, I would prefer Q

 over Q'  because it makes even less assumptions.
 
Fig. 4 still suggests to me that most of the empirical networks used here are not more modular than
expected by chance (more negative than positive deltaQ values) and I am thus still uncertain how
suitable the dataset is for exploring modularity.
 
Less fundamentally, in the comparison of the different algorithms from the package I am stilligraph 
missing the percentage of Q'  that were below 0 for the walktrap and edge-betweenness method,
in order to compare it to the 8% for the spinglass method (currently it only says "several").

In conclusion, I think the metric Q  presented here can be helpful, but should be applied with caution.
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In conclusion, I think the metric Q  presented here can be helpful, but should be applied with caution.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 06 Jan 2014
, Université du Québec à Rimouski, CanadaTimothée Poisot

I believe these points were all addressed in the revision and associated replies. I would be willing
to provide more arguments, but the referee is merely stating their feeling or ideas, not making any
factual criticism of the paper. In these circumstances, it is very hard for me to decide what to revise.

 No competing interests were disclosed.Competing Interests:

Version 2

 05 December 2013Referee Report

doi:10.5256/f1000research.2230.r2678

 Jochen Fründ
Agroecology, Georg-August-University of Göttingen, Göttingen, Germany

This article suggests a simple intuitive measure of network modularity. The suggested measure, Q'R, is
related to established measures but calculated slightly differently. It is proposed as an a posteriori
measure, which means it is not suggested to be used for assigning nodes (e.g. species) to modules, but
only to evaluate partitions based on other methods that calculate modularity, identify modules and assign
nodes to them.

In principle I welcome the suggestion of a simple, easy to interpret measure. The metric suggested here
can help presenting modularity. I see that the amount of between-module links in relation to within-module
links may have direct functional consequences. Established measures of modularity measure basically
the same, they only correct for the expectation of within-module links in non-modular random networks in
a different way.

However, I have a number of serious concerns making the study potentially misleading. These concerns
include reservations about whether the analyses address the study aim, whether the dataset is suitable
for testing modularity, how the proposed metric is interpreted and that it is suggested as an a posteriori 
measure.

General issues:

The study aim set out in the abstract and introduction, to compare different methods and approaches

detecting modularity, is not reflected by the analyses. Neither is a functional meaning of the new metric

R
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detecting modularity, is not reflected by the analyses. Neither is a functional meaning of the new metric
demonstrated to support the case that the metric can be used to evaluate other methods, and decide
which method to use. The abstract claims that new insights are gained about the modularity of the food
webs in the empirical example dataset, but I struggle to find these new insights.

A paragraph added during the revision does some comparison, but it is not integrated with the rest of the
paper and neither does it demonstrate the usefulness or added value of the new measure. For the most
part, the paper rather compares values of one standard measure of modularity with values for the new
metric in an example dataset of 290 unipartite and bipartite food webs. Using one method of module
assignment, the paper shows how the two metrics are related to each other, to randomizations of the
webs, and to network connectance. The meaning of these relationships for the study purpose is unclear.

Importantly, the usefulness of the empirical dataset for evaluating modularity methods is questionable.
Typically, studies proposing modularity methods test them on networks of known modularity. However,
the nullmodel analysis brings to attention that the vast majority of the networks used here are not more
modular (based on Q) than expected by chance, and even less might be significantly modular. This
means that this study tries to evaluate modularity methods on networks that are mostly not modular. This
questions the value of the whole study and calls again for external information for validation. If networks
are not modular, then the practical value of measuring modularity becomes negligible: the variation in
module assignment in networks not significantly modular is probably much less worrying than failure to
detect a known modular structure (which is not given here).

The straightforward interpretation of QR is changed in Q'R, the version the author describes as being
scaled between 0 and 1, only to report negative values later on in the paper (Fig. 2). For networks of
unknown modularity, Q'R can actually take values between -1 and 1. Furthermore, the notion that
negative values of Q'R detect cases of spuriously significant modularity is not generally correct. The
threshold of meaningful modularity depends on the purpose and may be above or below Q'R =0.

This brings me to a fundamental problem with the study – what is modularity and why should it be
measured? The author states that the new metric “makes no assumption about what modularity is”. If this
is really the case, then there is no point in defining a measure for it. To be useful, an assumption about
what is being measured has to be made. This questions the claims and even policy recommendations
made by the author. The difference in concepts and goals is likely a major reason why previous methods
differ (e.g. unipartite vs. bipartite modularity suggested by ). Only when a concept ofGuimera , 2007et al.
interest is defined can methods be compared in how well they serve the purpose.

I am not sure how useful the whole idea of an measure is. The author stresses that thea posteriori 
measure is not aimed at maximizing modularity in an algorithm, but just to select which algorithm to use.
This is not convincing: either the measure reflects the property of interest, then it should be maximized in
the first place in the algorithm to find the best partition; or it is not a sensible measure, then it cannot be
used for selection at all. The approach proposed here appears very inefficient and almost certainly not to
give the best partition. Furthermore, any measure of modularity could be calculated  or duringa posteriori
modularity optimization. The description of this index specifically as an  measure gives no reala posteriori
sense, without additional data or simulations showing that it is more meaningful than others. If the
functional meaning was demonstrated, there could be some value in using it for those whoa posteriori 
don’t have access to source algorithms.

Alternative methods (algorithms) paragraph:

As said above, this is not connected to the rest of the paper. Of course it improves the paper to consider
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As said above, this is not connected to the rest of the paper. Of course it improves the paper to consider
alternative methods for module assignment. However, this paragraph has several shortcomings. First,
restricting this analysis to the unipartite networks makes it hard to compare to the other results. Second, it
remains unclear why this focuses on the correlation between Q and Q'R. The modularity of the partition
returned by each method would be compared more directly by comparing the values of Q or Q'R between
methods. At the moment, for judging the three methods the reader is just left at guessing that “several”
negative values (for methods walktrap and edge-betweenness) are more than “less than 8%” (method
spinglass). Third, it looks like an inconsistent ad-hoc addition: citations for the methods and the igraph
library (package) are missing, the methods are not mentioned before or described and correlation
coefficients are called r here but rho above.

Null model:

The description of the nullmodel leaves unclear whether the connectance and degree are fixed exactly or
just determine the expected value probabilistically. Moreover, the nullmodel is discussed as reflecting
“chance”. Given that many links likely remain unobserved in ecological network datasets, a reasonable
simulation of chance should ideally consider detection probability. Binary network data (e.g. the data used
here) are often problematic: ecological network data are virtually always just samples of all realized
interactions – this likely applies to the examples used here (even expert opinion may be influenced by
observation bias). This can lead to strong biases in measures of network structure between the real web
and its sample, but these problems are ignored here. As the simulations are called “pseudo-random”, they
may be acceptable within the constraints of binary data – which then casts questions about the usefulness
of the test dataset for the study purpose (see above).

Unipartite vs. bipartite webs:

It should be better explained how the different data types were handled with the same methods. Bipartite
networks have additional (conceptual) ambiguities in how modularity should be calculated, which may be
a core reason for discrepancy between modularity methods ( , ). To beGuimera ., 2007et al Thébault, 2013
able to interpret the data better, it is warranted to present or identify the unipartite and bipartite webs
separately in the graphs and results.

Minor points:
More information on the datasets should be provided; the bipartite dataset is not even found in the
reference provided for it, but must be traced back several steps to the original reference.
 
Why is an algorithm chosen that is recommended for large networks (many thousands to millions
of nodes, ) when the webs analyzed here have less than 200 nodes?Blondel , 2008et al.
 
Without defining the purpose or demonstrating the functional meaning of Q'R, it is difficult to know
whether no correlation with connectance is desirable or not.
 
“Results” should actually be entitled “Results and Discussion”.
 
The terminological differentiation between true modularity and realized modularity is confusing.

Overall, the study is inconsistent and doesn’t live up to its promises. A study evaluating modularity
measures should look at additional information to validate it (especially if it is not a formal comparison of
multiple metrics). As shown by previous papers on the topic, this additional information could be the

correspondence to biological traits in empirical networks (e.g. ), the detectionMartín González , 2012et al.
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correspondence to biological traits in empirical networks (e.g. ), the detectionMartín González , 2012et al.
of build-in module structure in simulated networks (e.g. ) or the demonstration of functionalThébault, 2013
consequences (e.g. by a model). To be useful, the study should be put on a more solid foundation.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

 02 September 2013Referee Report

doi:10.5256/f1000research.2230.r1638

 Daniel Carstensen
Department of Bioscience, Universidade Federal de São Paulo, São Paulo, Brazil

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Version 1

 11 July 2013Referee Report

doi:10.5256/f1000research.1000.r1055

 Daniel Carstensen
Department of Bioscience, Universidade Federal de São Paulo, São Paulo, Brazil

The aim of the author is interesting and relevant. I am intrigued by the development of a method to quickly
evaluate different modularity measures, and an method might well be a good solution. a posteriori 

Overall the manuscript is generally well written. However, it is not clear to me how much is gained with this
approach. Poisot only uses one method to detect the module configuration ( ) and oneLouvain 2008
method to calculate the modularity ( ). It would be interesting to explore if the QNewman & Girvan 2004
differs markedly when applied to the results of different methods. It would also be good to see what
existing modularity measures do when optimizing modularity; do they minimize between module links?
This is why Q  measures and the strong correlation in Figure 2 is not surprising. What is more interesting
about Figure 2 is that it shows that below a certain value of Q (~ 0,2 ?) it is not sensible to talk about
modularity even if the empirical data is more modular than a random system. In such cases, the
presented method seems useful to evaluate results. 

Other minor revisions

An earlier reference could be used for the use of modularity in biogeographic networks instead of 
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An earlier reference could be used for the use of modularity in biogeographic networks instead of 
 (reference 6). Cummings  does not handle modularity. THe authorCummings  2010et al. et al.

should onsider citing .Carstensen & Olesen 2009
In the 'Data and analysis' section the statement starting on line six in this paragraph needs a
reference.
Null model: What is meant by generality/successors and vulnerability/predecessors?

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

 26 June 2013Referee Report

doi:10.5256/f1000research.1000.r1028

 Carsten Dormann
Biometry and Environmental System Analysis, University Freiburg, Freiburg, Germany

The proposed index of modularity is of striking simplicity - and thus likely to be prone to artifacts. In the
opening paragraph, Poisot forgot to mention that random networks are also modular. Thus, a Q_R > 0
means, in itself, nothing, as Poisot rightly assumes when employing a null model.

The typically log-normal abundance of species in nature will introduce apparent structure into networks,
even if the links simply reflect probabilistic interactions (i.e. any species interacts more with a common
than a rare species). Thus, without a null model correcting for number of species, for their abundance and
for the possibility of random networks also being modular, any index may report only spurious, artefactual
results. Poisot uses a null model, but because his example data are binary networks (containing no
information about the strength of a link), the best he (or anyone) can do is to use a null model based on
degrees, which is only a very poor reflection of the actual abundance. Given that often more than a third of
the species in a network are singletons, I believe that their contributions to modularity are
overemphasized by any binary measure.

Suggested Revisions:

1. Simulate networks (ideally weighted ones) and compare their Q_R values to quantitative null models.
How much information does Q_R (and Q) actually contain? 
2. Comparison of Q_R not only with Q and connectance but also with other network metrics, such as
linkage density or dependence asymmetry  (and particularly those with a more or less clear ecological
interpretation, such as H2'). The question, again, is: what does Q_R provide in addition to current
metrics?
3. Gain in ecological knowledge (which follows from 1. and 2.): If there is additional information, what
does it mean? Which ecological features (specialization, number of functionally similar species, number
of trophic level, number of habitats sampled etc.) contribute to Q_R? (For example along the lines of 

, who work on different types of sub networks put together into one large, or Pocock  2012et al. Clauset et
. Are these different sub networks identifiable as modules? If so, what does Q_R stand for?). 2008al
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:
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