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Abstract
Celiac disease is caused by an inappropriate immune response to ingested gluten proteins. As a
dietary antigen, gluten undergoes extensive but incomplete proteolytic digestion in the intestinal
lumen. The resultant peptide fragments of gluten require deamidation, but not necessarily further
intracellular processing for presentation. Recent studies reveal why the disease associated HLA-
DQ2 molecule is particularly suited for binding proline-rich gluten peptides. In comparison, DQ8
exhibits different binding characteristics, which may explain the lesser risk for disease in
association with this molecule.

Introduction
Celiac disease (CeD) is an intestinal disorder caused by an inappropriate immune response
to ingested wheat gluten (consisting of the gliadin and glutenin subcomponents) and related
proteins of rye and barley in genetically predisposed individuals. Elimination of these
proteins from the diet leads to complete remission. Patients with active CeD have a variable
degree of symptoms, ranging from severe malabsorption to no subjective symptoms at all.
The diagnosis is made by demonstration of typical intestinal histopathology, but the
presence of auto-antibodies to the enzyme transglutaminase 2 and gliadin in gluten-
consuming subjects is used as a diagnostic adjunct.

Screening studies indicate that CeD affects about 1% of Caucasian populations [1]. CeD
exhibits a very strong HLA association, in which the relative risk of disease development for
carriers of certain alleles is increased 30-fold [2], higher than the HLA-association seen in
many other auto-immune diseases such as type I diabetes or rheumatoid arthritis [2].
Approximately 90% of celiac patients carry the HLA-DQ2 heterodimer encoded by the
DQA1*05 and DQB1*02 genes, carried either in cis on the DR3-DQ2 haplotype common to
many autoimmune diseases, or in trans where the α chain is encoded on the DR5-DQ7
haplotype on one chromosome and the β chain on the DR7-DQ2 haplotype on the other
chromosome [3]. Most of the patients that are DQ2 negative carry DQ8 (Figure 1). These
disease associated DQ2 and DQ8 molecules present gluten peptides or related antigens to
disease-specific CD4+ T cells.

Luminal pre-processing and transepithelial transport of gluten antigen
Unlike other exogenous proteins that have to be processed intracellularly in antigen
presenting cells (APC) before presentation on MHC class II molecules, dietary antigens such
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as gluten follow a unique antigen processing itinerary. Dietary proteins are subjected to
extensive pre-APC processing in the luminal compartment before they encounter APC,
which are likely to be localized in the lamina propria, as enterocytes generally do not
express HLA-DQ molecules [4,5]. Indeed, the luminal and brush-border enzymes are so
efficient that most dietary proteins are broken down to fragments too small to be
immunogenic. However, owing to its high proline content, gliadin is remarkably resistant to
luminal and brush-border proteolysis and large fragments remain intact after digestion. The
most illustrative peptide fragment is the 33mer produced by digestion of certain α-gliadin
proteins. This 33mer fragment remains intact even after extended incubation with gastric,
pancreatic and intestinal brush-border membrane enzymes [6]. It contains six overlapping
copies of three different DQ2-restricted T cell epitopes, and is recognized by T cell lines
from nearly all adult CeD patients. Even more intriguingly, this peptide can bind to DQ2
molecules directly on the surface of APC and can thus be presented to T cells without the
need for further intracellular processing [7]. The recent finding that DQ2 responds poorly to
HLA-DM-mediated peptide editing and that a large fraction of surface-expressed DQ2
molecules are occupied with conventional CLIP peptides (CLIP1) or an atypical invariant
chain CLIP fragment (CLIP2 peptide)[8•,9] raise the possibility that surface bound DQ2
may be more susceptible to extracellular peptide exchange. Thus, gliadin can bypass the
conventional intracellular processing requirements by being subjected to extensive luminal
and brush-border proteolysis and direct extracellular binding of the resultant antigenic
peptides to surface DQ2 by displacement of CLIP1/CLIP2 peptides from the binding
groove.

Several studies have shown a defective increase in the transepithelial translocation of gliadin
peptides in active celiac tissues, which resolve after treatment with gluten-free diet [10–
12,13•]. Reduced number of horizontal tight junction (TJ) strands and decreased
transepithelial resistance have been reported in active celiac mucosa [14,15], pointing to a
more ‘leaky’ gut that permits increased paracellular gliadin transport. In addition, gliadin is
also transported to the serosal compartment via the transcellular pathway, and this
transcytosis is altered in active celiac tissues. A large fraction of the immunodominant
33mer gliadin peptide was delivered intact to the serosal side in active celiac mucosa
compared to complete degradation in controls and biopsies from treated celiac patients [12].
Data from Schumann et al. show that enterocytes take up the 33mer by endocytosis and this
epithelial uptake was 10-fold higher in active celiac tissues compared with controls or
treated celiac patients [13•]. Interestingly, IFN-γ, a cytokine prevalent in active CeD,
weakens the epithelial barrier by triggering internalization of TJ proteins [16] and IFN-γ
treatment of the intestinal epithelial cell line Caco-2 increases translocation of the 33mer
[13•].

Matysiak-Budnik and et al. have recently suggested a receptor-mediated mechanism for
transepithelial gliadin transport [17•]. The transferrin receptor CD71 binds secretory IgA
and is overexpressed on the apical surface of enterocytes in active celiac mucosa. Ex vivo
transcytosis experiments suggest that CD71 can mediate the transport of IgA-gliadin
complexes, a process that can be specifically blocked by IgA or soluble CD71 receptors. In
addition to high titres of gliadin-specific IgA in patients with active CeD, gliadin-specific
IgG is also present. Given the fact that the neonatal Fc-receptor (FcRn) is expressed in adult
human intestinal epithelial cells [18] and mediates apical to basolateral transcytosis of IgG-
antigen immunecomplexes [19], FcRn may also transport gliadin antigens across the
epithelial barrier by transcytosis of immunecomplexes of anti-gliadin-IgG and gliadin.
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Antigen presenting cells
Two groups have investigated and characterized the mucosal dendritic cell (DC) populations
in celiac tissues. Both studies found severalfold increases in the number of DC in lamina
propria of active celiac mucosa, compared with treated celiac or normal biopsies [20••,21••].
However, the studies differ on which DC subtype dominates, myeloid or plasmacytoid DC.
Ráki et al. used immunohistological methods to characterize and enumerate DQ2+ APC in
situ in lamina propria of small intestine biopsies. The numbers of macrophages, identified by
the CD68 marker, and of CD1c+CD11c+ myeloid DC in active celiac mucosa were similar
to those found in healthy tissues. In comparison, the number of CD1c− myeloid DC, the
major subset of CD11c+ DC in normal tissues, was increased by about threefold in untreated
celiac lesions. Notably, this study found no or very few CD11c−CD123+ plasmacytoid DC
in the duodenal mucosa [20••]. By contrast, Di Sabatino et al. identified CD123+

plasmacytoid DC as the major DC population in the small intestinal lamina propria and this
subset was largely responsible for the increase of DCs in untreated celiac mucosa [21••]. In
the absence of other reports, it is difficult to reconcile these two studies with regard to the
phenotype of mucosal DC. On one hand, it appears convincing that Di Sabatino and et al.
[21••] have found a substantial number of CD123+ APC in mucosal tissues. On the other
hand, Raki et al. [20••] found that CD68+ macrophages and CD11c+ myeloid DC together
account for all the DQ2+ APC in situ in mucosal tissue, without any evidence of a CD123+

plasmacytoid DC population. It is difficult to compare these results directly because the
studies use different sets of cell surface markers and detection methods with different
sensitivities. The first study relied heavily on flow cytometric characterization of cell
suspensions isolated from intestinal tissues. However, the chemical and enzymatic
manipulations necessary to yield single cell suspensions introduces bias because some cell
subsets, in particular CD11c+ cells, are more vulnerable to this procedure and are lost to a
greater extent than others. Nevertheless, the fact that these authors found CD123+ cells in
situ by immunohistological staining, and that flow cytometric characterization showed that
the CD123+ cells are negative for the endothelial cell marker CD31, and positive for the co-
stimulatory markers CD80, CD83 and CD86, as well as TLR9, shows convincingly that
these cells are indeed APCs.

Despite these inconsistencies, both studies show that the number of APC is increased in
tissues affected in active celiac disease, but reverts to normal level upon successful
treatment with a gluten-free diet. Presumably, both circulating DCs and monocytes are
recruited to the inflamed mucosa during active CeD. Monocytes differentiate in situ into
cells with mature phenotypes, either CD68+ macrophage-like cells, or DC-like cells
expressing high levels of maturation markers CD80 and CD86. DCs isolated from active
celiac tissues are excellent APCs and transcribe higher levels of IFN-α, an important
cytokine for celiac pathogenesis [21••]. As discussed above, the precise phenotype of the
most prevalent DCs in active celiac mucosa is still under debate. The phenotypic description
of DC subsets, and indeed, for the entire monocyte-macrophage-DC cell lineage, also known
as the mononuclear phagocyte system, is particularly confusing depending on the
combination of surface markers used in each study. Even the concept that dendritic cells
merit a separate lineage has been called into question [22]. Nevertheless, it is important to
note that functionally, the CD11c+ APC subset is superior in presenting the
immunodominant 33mer peptide to T cells than both the DC-SIGN+ macrophages, and the
remaining cells depleted of CD11c+ and DC-SIGN+ APCs [20••].
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The gluten antigen, enzymatic post-translational modification and HLA
binding

Of the gluten proteins, both gliadins (alcohol soluble) divided into α-gliadin, γ-gliadin and
ω-gliadin, and the glutenins (alcohol insoluble) can cause CeD. Gluten proteins are rich in
glutamine and proline and the gliadins typically contain 35% glutamine and 25% proline.

Gliadin-specific, DQ2-restricted or DQ8-restricted CD4+ T cells can be cultured in vitro
from small intestine biopsies from celiac patients, but not controls [23]. The disease
associated DQ2 and DQ8 molecules prefer negatively charged amino acid residues in certain
binding pockets (P4, P6 and P7 for DQ2; P1 and P9 for DQ8). However, native gluten
contains few negatively charged residues. These charges are introduced post-translationally
by specific and targeted deamidation, that is, the conversion of glutamine residue to
glutamate, catalyzed by the enzyme tissue transglutaminase or transglutaminase 2 (TG2).
Deamidation increases the binding of gluten derived peptides to DQ2 and DQ8, and is in
many cases essential for T cell recognition. This deamidation-dependent recognition
exemplifies the importance of post-translational protein modification in creating novel T cell
epitopes [24,25].

Where and when the necessary gluten deamidation takes place is still in question. TG2 is
enzymatically active only in the presence of millimolar levels of Ca2+. Upon activation, the
enzyme undergoes a dramatic conformational change in which the C-terminal residues are
displaced by as much as 120 A ° [26••]. TG2 is a ubiquitous protein found both intra-
extracellularly and extracellularly. The intracellular Ca2+ concentration is low and tightly
controlled. By contrast, Ca2+ concentration is high in the extracellular environment and thus
it has been assumed that extracellular TG2 is enzymatically active. However, a recent study
revealed that the majority of extracellular TG2 is inactive, despite an environment
conductive to enzyme activation [27••]. However, TG2 can be enzymatically activated by
proper injury signals, such as those present in the in vitro wounding model, or in vivo in the
acute poly(I:C) injury model [27••]. These new insights in TG2 biology suggest that the
post-translational modifications of gluten antigen observed in CeD may be elicited only in
the presence of existing tissue damage, such as those caused by infection, or inflammation in
the early stages of CeD.

TG2 is expressed on most cell surfaces, notably the surface of monocytes [28] where it is
complexed with membrane-bound integrins and matrix fibronectin [29]. The presence of
TG2 on the APC surface leads to the tempting idea that this TG2 pool directly participates in
the deamidation of gluten peptides, and maybe also facilitates the uptake of gluten epitopes
enzymatically complexed to TG2 in a hapten-carrier-like manner. No evidence in support of
this notion has been obtained [30], although the function of surface TG2 in tissue resident
APC has not been tested. The monoclonal antibody 6B9 [31] used to demonstrate abundant
surface expression of TG2 is, in fact, specific for CD44 [32]. Thus, the question remains
whether TG2 is present on APC cell surfaces, and if so, whether this pool of TG2
participates in deamidation of gluten peptides or enhanced uptake of gluten antigens.

Since the identification of the first DQ2-restricted gliadin T cell epitope in 1998 [33], more
than a dozen celiac-specific T cell epitopes have been identified, mostly from wheat gliadin
[34–37], a few from glutenin [38] and oat avenin [39]. The majority of these epitopes are
DQ2-restricted, only three DQ8-restricted gluten epitopes having been identified so far
[38,40,41••]. Gliadin-derived T cell epitopes tend to cluster in proline-rich regions [35].
There are several reasons for this clustering. Proline contributes to the proteolytic resistance
of gliadin peptides, such that proline-rich fragments are more likely to survive the
proteolytic environment in the gut. Second, the TG2-mediated deamidation that results in
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enhanced DQ2 or DQ8 binding and T cell recognition is highly sequence-specific. In this
context, the positioning of proline residues in the immediate vicinity is shown to be the most
important factor that determines whether a glutamine residue is targeted by TG2 or not
[42,43]. In addition, we have found that some gliadin epitopes, notably those most often
recognized by celiac lesion T cells, are better substrates for TG2 and are deamidated faster,
than the less well-recognized epitopes [44•]. Thus, it appears that the epitope-modifying
enzyme TG2 is an important player in shaping gliadin T cell epitope repertoire in CeD.

Proline residues are unusually abundant in gliadin-derived T cell epitopes, with as many as
four proline residues within the 9mer core binding region (Table 1). Because proline is an
amino acid that cannot participate in essential hydrogen-bonds to the peptide backbone,
proline-rich peptides are not particularly suited for binding to MHC class II molecules. DQ2
proves to be an exception, as it readily accepts proline in certain positions, notably in P1, P3,
P5 and P8, where proline positioning is not penalized by loss of hydrogen bonds between
peptide backbone and conserved MHC residues, as shown by the crystal structure of DQ2
bound with the DQ2-α-I gliadin peptide [6]. Owing to a unique Arg53α deletion, DQ2 is the
only DQ molecule known to accept proline at P1 [41••,45]. Nearly half of the DQ2-
restricted gliadin T cell epitopes, and all the DQ2-restricted α-gliadin epitopes found within
the immunodominant 33mer peptide, have proline in P1. A recent binding study confirmed
that DQ2 is the preferred class II molecule by gliadin peptides containing celiac T cell
epitopes [46]. In comparison, the minor HLA-susceptibility allele, DQ8, accommodates
proline-rich peptides less well, in particular because its inability to accommodate proline in
P1 [41••,47•] (Figure 2). Thus, DQ8 cannot present the most immunodominant DQ2-
restricted epitopes of α-gliadins and the only identified DQ8-restricted epitope of α-gliadin
is not located within proline-rich proteolytic resistant regions of the α-gliadin proteins.
Owing to its special ability to accommodate proline-rich peptides and its preference for
negatively charged glutamate as anchor residues, the DQ2 molecule is therefore uniquely
suited to bind proline-rich and glutamate-rich gliadin fragments produced by luminal
digestion and TG2 deamidation. DQ8 shares some of these binding characteristics but is
overall less well suited for binding and presentation of gliadin peptides, and therefore this
allele confers less CeD risk compared with DQ2.
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Figure 1.
HLA association in celiac disease. A vast majority of celiac patients express the HLA-DQ2
heterodimer encoded by the DQA1*05 and DQB1*02 genes. These two genes are carried
either in cis on the DR3-DQ2 haplotype, or in trans in individuals who are DR5-DQ7 and
DR7-DQ2 heterozygous. Most DQ2-negative patients express DQ8 encoded on the DR4-
DQ8 haplotype.
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Figure 2.
Peptide binding signatures of DQ2 and DQ8 molecules. The DQ2-restricted γ-III epitope
and the DQ8-restricted γ-I epitope recognized by lesion derived T cells of CeD patients
share the same 9 amino acid core sequence. This sequence contains three glutamate residues
formed by TG2-mediated deamidation in positions P1, P4 and P9. DQ2 prefers negatively
charged glutamate residue in P4 (shaded) whereas DQ8 prefers glutamate in P1 and P9
(shaded).
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