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Abstract

Measurement error of a phenotypic trait reduces the power to detect genetic associations. We examined the impact of
sample size, allele frequency and effect size in presence of measurement error for quantitative traits. The statistical power to
detect genetic association with phenotype mean and variability was investigated analytically. The non-centrality parameter
for a non-central F distribution was derived and verified using computer simulations. We obtained equivalent formulas for
the cost of phenotype measurement error. Effects of differences in measurements were examined in a genome-wide
association study (GWAS) of two grading scales for cataract and a replication study of genetic variants influencing blood
pressure. The mean absolute difference between the analytic power and simulation power for comparison of phenotypic
means and variances was less than 0.005, and the absolute difference did not exceed 0.02. To maintain the same power, a
one standard deviation (SD) in measurement error of a standard normal distributed trait required a one-fold increase in
sample size for comparison of means, and a three-fold increase in sample size for comparison of variances. GWAS results
revealed almost no overlap in the significant SNPs (p,1025) for the two cataract grading scales while replication results in
genetic variants of blood pressure displayed no significant differences between averaged blood pressure measurements
and single blood pressure measurements. We have developed a framework for researchers to quantify power in the
presence of measurement error, which will be applicable to studies of phenotypes in which the measurement is highly
variable.
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Introduction

In genome-wide association studies (GWAS), association

between large number of single nucleotide polymorphisms (SNPs)

and a trait measurement is computed and SNPs with strong

associations will be replicated in a separate cohort. Non-

differential measurement error in both genotyping and phenotyp-

ing reduces the power and hence increases the type II error to

identify true associations in discovery cohorts. This decreases the

efficiency of GWAS to produce findings in discovery that are less

likely to be replicated in subsequent studies. Errors in genotype

have been reduced through technological advances and stringent

quality controls in SNP genotyping. Measurement and misclassi-

fication errors in case-control studies and measurement errors in

exposure variables have been well studied[1–5]. However, to the

best of our knowledge, there is only one paper evaluating the

implications of measurement error in a continuous outcome in

genetic analysis [6].

Performing power and sample size calculations allows research-

ers to manage cost of genotyping effectively. With recent

discoveries made using web-based questionnaire for data collec-

tion [7], one may question the trade-off between sample size and

accuracy of phenotype measurement to achieve a minimal level of

statistical power. Using the asymptotic non-centrality parameter of

the x2 distribution, researchers have arrived at power and sample

size formulas that account for misclassification error in case-

control studies [8,9]. Online programs PAWE-PH and PAWE-3D

were also developed [10] and used to demonstrate that in case-

control GWAS, there is substantial reduction in statistical power

when diagnostic error increases, especially for lower allele

frequencies and genotype relative risks [11]. Barendse [6]

recommended checks at phenotype collection stage, but did not

offer theoretical solutions in terms of power and sample size

calculation.

In this study, firstly we quantified the power to identify genetic

variants that affect the means and variability of quantitative traits

in GWAS of unrelated individuals in the presence of measurement
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error, where measurement error was defined as the additional

variation introduced to a ‘‘true’’ underlying phenotype. Secondly,

we demonstrated the impact of measurement error on the pipeline

of GWAS analysis in population-based studies. We presented real

data analysis based on two phenotypes: age-related cataract and

blood pressure to illustrate the impact of measurement error on

GWAS discovery and on genetic replication studies.

Materials and Methods

Power to Detect Differences in Means
We used the following model to describe the phenotype:

Yi~mzbXizei

where Yi is the phenotype for the ith individual, m is the phenotype

mean, b is the effect size of a SNP, Xi is the allelic dosage for the

Table 1. Additive model for phenotype variances with and without measurement error.

Genotype Frequency Genotype Indicator E(y2) E(y4) E(y2
e ) E(y4

e )

AA (1{p)2 0 1 3 1zs2 3(1zs2)2

AB 2p(1{p) 1 1zbv 3(1zbv)2 1zbvzs2 3(1zbvzs2)2

BB p2 2 1z2bv 3(1z2bv)2 1z2bvzs2 3(1z2bvzs2)2

doi:10.1371/journal.pone.0087044.t001

Figure 1. Impact of effect size, sample size and minor allele frequency on power. Measurement error is displayed in terms of the number of
SD of the true phenotype (without errors). The top panel represents comparison of means and three configurations were considered with the rest of
the parameters following the default configuration: p = 0.2, n = 15,000, b = 0.06. b is interpreted as the change in the standardized phenotype for
every increase in one effect allele. The bottom panel represents comparison of variances and three configurations were considered with the rest of
the parameters following the default configuration: p = 0.2, n = 30,000, bv = 0.06. bv is interpreted as the change in the standardized and squared
phenotype for every increase in one effect allele.
doi:10.1371/journal.pone.0087044.g001
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SNP, taking values 0, 1 or 2, and ei is the noise in the phenotype.

We made the following assumptions:

1. The marker locus satisfies the Hardy-Weinberg equilibrium

(HWE). Hence the genotype frequencies are computed based

on p, the minor allele frequency (MAF). Xi is dependent on p

via a Binomial distribution.

2. ei follows a standard normal distribution, which can be

achieved through standardization of a normally distributed

phenotype.

3. SNP effects are additive. Without loss of generality, we let

m~0. This can be easily extended when m=0 by centering the

phenotype. Taking the previous assumption into account, the

underlying true phenotype is standard normally distributed.

With measurement error ui, our model becomes:

Yi~mzbXizeizui ð1Þ

where ui is normally distributed with mean 0 and variance s2, and

independent of ei.

The power for linear regression can be determined using the

non-central F distribution, with non-centrality parameter (NCP)

l~n
r2

1{r2
[12], where n refers to the total sample size and r2 is

the squared correlation coefficient. r2 is computed as follows (Text

S1):

r2~
2p(1{p)b2

Var(Y )
ð2Þ

Without measurement errors, Var(Y )~1. With measurement

errors, Var(Ye)~1zs2. As r2 ranges from 0 to 1, we require

s2
§2p(1{p)b2{1. Since effect sizes in GWAS tend to be very

small, this constraint is usually satisfied. Finally, power can be

computed as 1{F1{a
n{1,1,l, where F1{a

n{1,1,l is the cumulative

distribution function of the non-central F distribution with n{1
and 1 degree of freedom, non-centrality parameter l, evaluated at

the 100(1{a) percentile of the F distribution.

Power to Detect Differences in Variances
Following the framework described by Visscher and Posthuma

[13], the underlying model of trait variance assuming there are no

covariates is:

Yi{m

t

� �2

~mvzbvXizev,i

where Yi is the phenotype for the ith individual, m is the phenotype

mean, t is the phenotype variance, bv is the effect of a SNP, and Xi

is as defined previously. mv refers to the intercept of the regression

of phenotype variability on genotype distribution and ev,i is the

noise. We added a subscript of n to denote that these variables are

different from the model for comparison of means. In addition to

the assumptions made for the previous model, we made the

following assumptions:

1. The SNP has effect on phenotype variance but not the trait

mean.

2. Phenotype is standard normally distributed in absence of

heterogeneous variance.

We assume that m~0, mv~1 and t~1 via standardization of a

normally distributed phenotype. Hence,
Yi{m

t

� �2

~Y 2
i . The

model with and without measurement error is summarized in

Table 1. Using the same definition of the non-centrality

parameter, we compute power with r2 defined as (Text S1):

r2~
p(1{p)b2

v

(1zs2)2z4pbv(1zs2)zpb2
v(3zp)

ð3Þ

Empirical Power Simulations
To verify our findings and assess the power of genetic

association testing in the presence of measurement error, we

carried out simulation studies under various scenarios. First, we

simulated the genotypes Xi based on the Binomial distribution

with probability p. For the comparison of phenotype means, the

phenotypes were simulated using Equation 1, where the pheno-

types have different means for different genotypes under the

alternative hypothesis. For the test of difference in variances, the

phenotypes were simulated under the normal distribution with

mean 0 and variances based on Table 1, and the standardized and

squared phenotype was used for testing. We performed 10 000

linear regressions for each simulation configuration and computed

the empirical power, assuming a~0:05. Configurations of model

parameters were chosen to suitably represent the reality for future

GWAS, where the effect sizes are expected to be very small and

large sample sizes are required to detect the effects. Default

parameters were p = 0.2, n = 15,000, b = 0.06 for the comparison

of means and p = 0.2, n = 30,000, bv = 0.06 for the comparison of

variances, and we varied only one parameter at one time. The R

software version 2.14.2 was used for the simulations [14].

Cost coefficients of Phenotype Measurement Error
We defined cost of phenotype measurement error as the

percentage increase in sample size required to maintain a constant

analytical power for an increase in measurement error. Following

the framework of Edwards et al. [8], we set l~lv, where l is the

non-centrality parameter when there is no measurement error and

lv is the non-centrality parameter when there is measurement

Table 2. Cost coefficients to account for measurement error.

Measurement Error s (SD) C1 C2
v

0.1 1.0 2.0

0.2 4.0 8.0

0.3 9.0 18.3

0.4 16.0 33.7

0.5 25.0 54.7

0.6 36.0 82.6

0.7 49.1 118.5

0.8 64.1 163.9

0.9 81.1 220.5

1.0 100.1 290.4

1The following parameter values were used: p = 0.2, n = 15,000, b = 0.06.
2The following parameter values were used: p = 0.2, n = 30,000, bv = 0.06.
doi:10.1371/journal.pone.0087044.t002
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error. For comparison of phenotype means, we used Equation 2

with Var(Y )~1 and Var(Ye)~1zs2 to obtain the following

expression for the cost of phenotype measurement error:

C~
s2

1{2b2p(1{p)

Similarly, for comparison of phenotype variances, we used

Equation 3 and by letting s2~0 for l, the following expression

was obtained:

Cv~
s2(2zs2z4pbv)

1z4pbvz2pb2
v(1zp)

Study Populations
The Singapore Malay Eye Study (SiMES) and Singapore

Chinese Eye Study (SCES) are population-based cross-sectional

epidemiological studies on eye diseases for residents of Singapore.

Details of the study design and methodology have been reported

and published elsewhere [15,16]. In brief, a total of 4,168 Malay

and 4,605 Chinese residents in the southwestern part of Singapore,

aged 40 to 80 years old, were identified through age-stratified

random sampling and were invited to participate in the study, for

which 3,280 (response rate, 78.7%) Malays and 3,353 (response

rate, 72.8%) Chinese underwent a detailed ocular examination.

Ethics approval was obtained from the Singapore Eye Research

Institute Institutional Review Board and all participants were

provided with written informed consent in adherence to the

Declaration of Helsinki.

Phenotype Measurements
In the SiMES cohort, nuclear cataract was assessed using two

methods: 1) the Lens Opacities Classification System III (LOCS

III) [17] under slit lamp, and 2) the Wisconsin Cataract Grading

System (Wisconsin System) based on lens photographs [18]. For

LOCS III (decimal grade 0.1 to 6.9), participants went through slit

lamp bio-microscopy where nuclear cataract was graded by

multiple study ophthalmologists through comparison with stan-

dard photographs. For Wisconsin System (decimal grade 0.1 to

5.0), lens photographs were taken using a digital slit-lamp camera

(model DC-1 with FD-21 flash attachment; Topcon, Tokyo,

Japan) and grading was performed through comparison with

Figure 2. Deviation between Wisconsin System and LOCS III. (A) Standardized phenotype for comparison of means, (B) Bland-Altman plot of
difference in standardized phenotype (Wisconsin System – LOCS III) against the average of the two, (C) Standardized and squared phenotype for
comparison of variances, and (D) Bland-Altman plot of difference in standardized and squared phenotype (Wisconsin System – LOCS III) against the
average of the two.
doi:10.1371/journal.pone.0087044.g002
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standard photographs, at the University of Sydney by a single

experienced grader, with adjudication by a senior ophthalmolo-

gist. A decimal grade was used if the severity of cataract was

judged to be midway between two standards photographs. Higher

accuracy and consistency is achieved with lens photographs

graded by a single person. Hence, we assume that the Wisconsin

System is the preferred grading system and deviation of the LOCS

III grading from the Wisconsin System is regarded as measure-

ment error.

In the Chinese cohort, blood pressure was measured according

to a protocol used in the Multi-Ethnic Study of Atherosclerosis

[19]. Blood pressure was measured twice, at an interval of 5

minutes. A third measurement was performed if blood pressure

differed by more than 10 mmHg systolic or 5 mmHg diastolic.

Blood pressure was taken as the mean between the two closest

readings, which was assumed to be the ‘‘true’’ blood pressure

value. The last measured blood pressure reading of an individual

was assumed to contain measurement error for systolic and

diastolic blood pressure (SBPe and DBPe) and used for association

testing in comparison with the ‘‘true’’ values (SBP and DBP).

Genotyping and Data Quality Control
Genotyping of 3,072 and 1,952 samples in SiMES and SCES,

respectively, was performed using Illumina Human610-Quad

BeadChips (Illumina Inc.). A total of 620,901 SNPs were

genotyped in each cohort. An additional 635 samples in SCES

was genotyped using Illumina Human OmniExpress BeadChips

with a total of 729,698 SNPs. Detailed quality control procedures

for sample and SNPs were described elsewhere [20,21]. In brief,

samples were excluded based on the following conditions: (1)

sample call-rates of less than 95%; (2) excessive heterozygosity; (3)

cryptic relatedness; (4) gender discrepancies; and (5) discordant

ethnic memberships. We excluded SNPs with (1) high missingness

(.5%); (2) gross departure from HWE (p value ,1026) and (3)

MAF ,1%. Detailed quality control procedures for SCES samples

genotyped on OmniExpress chips were provided in the supple-

mentary materials (Text S2). After quality control, we have the

following samples and SNPs available for analysis: 2,542 samples

and 557,824 SNPs in SiMES, 1,889 samples and 538,408 SNPs in

SCES on Illumina Human610-Quad BeadChips, and 615 samples

and 633,783 SNPs in SCES on Illumina Human OmniExpress

BeadChips.

Real Data Analysis
For genome-wide analysis of nuclear cataract in SiMES, we

used the nuclear cataract value from the worse eye, where a larger

value indicates higher severity. Each phenotype was standardized

by subtracting the mean and dividing over the SD of the

phenotype. Association testing was performed on standardized

nuclear cataract phenotype for comparison of means and squared-

standardized nuclear cataract phenotype for comparison of

variances. For genetic replication analysis, we analyzed 9 variants

which showed significant associations with BP in East Asians [22].

We followed the analysis protocol used by Ehret et al. [22] for

phenotypes DBP, DBPe, SBP and SBPe in each cohort. In brief,

linear regression analysis was performed assuming an additive

model, adjusted for age, age-squared and body mass index (BMI),

with medication corrected BP as the dependent variable. To

account for batch effect of data from separate chips in SCES,

meta-analysis was performed using an inverse-variance fixed

effects model and a Bonferroni adjusted cut off of p value = 0.0055

(0.05/9 tests) was used to control Type I error at 5%.

The PLINK software (version 2.0) [23] was used for association

testing on nuclear cataract and blood pressure phenotypes. We

assumed an additive genetic model where individual genotypes

were coded according to the number of variant allele present. A

trend test within a linear regression model was used to test the

associations between phenotypes and SNPs.

Results

Power to Detect Differences in Means and Variances
Figure 1 represents impact of effect size, sample size, and minor

allele frequency on analytical power for comparison of phenotypic

means and variances. For comparison of phenotypic means, there

was substantial decrease in power when measurement error was

larger than 0.6 SD of the true phenotype. Decreasing effect size to

0.04 (change in 0.02 SD per additional copy of the risk allele) had

the most impact on power, dropping it by 20% even without

measurement error. For comparison of phenotypic variances, the

impact of measurement error on power was more significant. In

most of the simulated configurations, there was substantial

decrease in power when measurement error was larger than 0.4

SD. We also noted that an effect size of 0.06 with 0.7 SD of

measurement error achieved equivalent power (78%) to an effect

size of 0.04 with no measurement error.

To verify our findings, we compared the analytical power with

the simulated power. The mean (SD) of absolute difference between

the analytical power and simulation power for comparison of means

and variances was 0.00169 (0.00195) and 0.00418 (0.00398)

Table 3. Significant (p value,1025) SNP in the GWAS of
nuclear cataract (comparison of means).

SNP Chr
Position
(bp)

Effect
allele MAF

Effect
size P value

Wisconsin System

rs11184985 1 107,115,133 C 0.37 0.13 7.8261026

rs12133448 1 107,100,064 A 0.40 20.13 5.9461026

rs1401830 1 107,068,638 A 0.37 0.13 9.0961026

rs777965 3 105,954,655 A 0.24 0.17 3.2661027

rs9985272 3 176,362,024 A 0.10 20.22 3.7361026

rs6879319 5 117,214,194 G 0.37 20.14 4.1861026

rs17066166 6 137,585,624 T 0.17 0.18 5.0561026

rs12931881 16 83,436,787 A 0.15 0.20 1.0461026

LOCS III

rs4676323 2 107,164,560 G 0.13 0.19 7.8161026

rs1981845 5 53,734,292 A 0.29 20.14 8.5261026

rs17072293 6 143,564,955 G 0.04 20.40 4.4361027

rs6977512 7 39,471,584 T 0.26 0.15 5.5261026

rs917454 7 32,196,702 G 0.38 0.14 1.9461026

rs2160766 8 129,207,845 T 0.09 0.24 2.1361026

rs10760430 9 128,205,909 A 0.32 20.15 4.4861026

rs11255087 10 7,441,387 G 0.03 20.44 2.7061026

rs2724188 12 98,372,331 A 0.24 0.15 5.9461026

rs309427 15 82,932,421 G 0.03 20.43 3.7161026

rs13038799 20 61,200,607 C 0.03 20.44 1.8661026

rs3021272 22 38,730,950 G 0.03 20.45 5.5861028

rs4145526 22 14,577,021 C 0.03 20.42 3.2561026

MAF, minor allele frequency.
doi:10.1371/journal.pone.0087044.t003
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respectively. The maximum absolute difference for comparison of

means and variances was 0.00941 and 0.0197 respectively.

Cost Coefficients
For small effect sizes, C could be approximately equal to s2.

Hence the percentage increase in sample size ranged from 1% to

100% for measurement errors between 0.1 and 1.0 SD. For the

analysis of heterogeneity of variances, the cost was almost three times

higher as compared to the analysis of heterogeneity of means when

the measurement error was equal to 1 SD of the phenotype (Table 2).

Replication and Genome-wide Association Testing
Results

A total of 2,349 samples from SiMES with both genotype and

phenotype data of Wisconsin System and LOC III grading were

included for genome-wide testing. The measurements of nuclear

cataract in SiMES varied substantially for some individuals

(Figure 2), especially for the standardized and squared phenotype,

which has SD of 1.52 and 1.80 for the Wisconsin System and

LOCS III, respectively. The Pearson correlation between stan-

dardized phenotypes for the two grading systems was 0.71 while

the correlation between the standardized and squared phenotypes

was 0.56. The average measurement error was 0.0112, which

corresponded to about 0.1 SD of the standardized Wisconsin

Figure 3. Deviation between blood pressure measurements. (A) Standardized phenotype for DBP, (B) Bland-Altman plot of difference in
standardized phenotype (DBP – DBPe) against the average of the two, (C) Standardized phenotype for SBP, and (D) Bland-Altman plot of difference in
standardized phenotype (SBP – SBPe) against the average of the two.
doi:10.1371/journal.pone.0087044.g003
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System phenotype. Table 3 displayed the top SNPs (p,1025) from

both grading scales in the GWAS of nuclear cataract in a

comparison of phenotypic means. None of the SNPs overlapped.

For genetic replication analysis, a total of 2,490 SCES samples

with BP phenotype, age, gender, BMI information and genotype

data were included. The Pearson correlations between DBP and

DBPe was high (r = 0.92) and the correlations between SBP and

SBPe was also high (r = 0.93). The average measurement error,

defined as the mean absolute difference between the standardized

values of the two measurements for systolic and diastolic blood

pressure, was 0.251 and 0.252 respectively, which corresponded to

about 0.25 SD of SBP and DBP (Figure 3). Table 4 showed the

association results for the 9 variants previously found to influence

blood pressure in East Asians. Variants replicated in DBP or SBP

were also replicated in their error counterparts (rs633185 and

rs17249754).

Discussion

We derived power calculations that take measurement error

into account, which could be used for study design purposes. Using

simulations, we verified our calculations and concluded that

researchers may perform adequate power and sample size

calculations for GWAS in the presence of phenotype measurement

error. Recently, Yang, et al. discovered variants related to

phenotypic variability of BMI in a GWAS setting [24]. Analyzing

phenotypic variability could uncover presence of statistical

interactions associated with the genetic variant that has not been

account for. Various methods have been proposed for such

Table 4. Summary association results for 9 blood pressure SNPs.

DBP DBPe SBP SBPe

Index SNP Chr Position Gene EA MAF Beta P value Beta P value Beta P value Beta P value

rs1458038 4 81,383,747 FGF5 T 0.43 0.037 0.163 0.007 0.804 0.041 0.097 0.025 0.319

rs1173771 5 32,850,785 NPR3-C5orf23 G 0.32 0.031 0.283 0.046 0.127 0.019 0.469 0.027 0.326

rs11191548 10 104,836,168 CYP17A1-NT5C2 T 0.25 20.0009 0.975 0.011 0.731 0.018 0.518 0.018 0.541

rs381815 11 16,858,844 PLEKHA7 T 0.14 0.050 0.186 0.037 0.342 0.097 5.861023 0.086 0.016

rs633185 11 100,098,748 FLJ32810-TMEM133 C 0.48 0.101 1.661024* 0.111 5.361025* 0.087 3.961024* 0.089 3.961024*

rs17249754 12 88,584,717 ATP2B1 G 0.32 0.043 0.142 0.015 0.624 0.084 2.161023* 0.090 1.261023*

rs1378942 15 72,864,420 CYP1A1-ULK3 A 0.18 0.017 0.635 0.022 0.536 0.033 0.311 0.030 0.370

rs2521501 15 89,238,392 FURIN-FES T 0.09 0.081 0.118 0.057 0.288 0.094 0.051 0.126 9.961023

rs1327235 20 10,917,030 JAG1 G 0.45 0.042 0.120 0.048 0.084 0.017 0.503 0.009 0.719

EA, effect alleles.
*p value ,5.561023. Significance level was set at 0.05/9 = 0.0055.
doi:10.1371/journal.pone.0087044.t004

Figure 4. Comparison between power of GWAS of blood pressure measurements. (A) By effect size, the parameter values used were
p = 0.3, n = 2,490. (B) By MAF, the parameters values used were b = 0.05, n = 2,490.
doi:10.1371/journal.pone.0087044.g004
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analysis [13,25]. Since measurement error affects the variability of

phenotype, it is imperative that its impact on power should be

studied closely. Hence, we developed the power analysis frame-

work for comparison of both means and variances.

We used real datasets to demonstrate the impact of using

different measurements of the same trait for GWAS. In the GWAS

of nuclear cataract, our results displayed almost no overlap

between the top SNPs associated with the two measurements. This

finding was consistent with the results from Barendse [6] who also

compared GWAS from two independent quantitative trait

measurements of subcutaneous fat thickness in animals. In our

replication study of BP, SNPs which replicated in the averaged BP

measurements were also replicated in the single measurements.

The minor differences suggest that failure to replicate is largely

attributed to differences in genetic nature of the trait or false

discoveries [26]. Based on our sample size, MAF and effect size

range in our study, the power of GWAS of BP with a

measurement error of 0.25 SD was almost identical to the power

of GWAS of BP without measurement error (Figure 4). In the

process of reaching these conclusions, we had assumed that the

difference between trait measurements were only due to random

errors. The Bland-Altman plots of the measurements in Figures 2

and 3 implies that the differences were more likely to occur at

random and not due to systematic differences.

The impact on statistical power is much smaller in the presence

of measurement error (of quantitative traits), compared to the

presence of misclassification errors (of case-control status) for

GWAS. We note that only as the measurement error exceeded 0.4

and 0.6 SD of the phenotype for comparison of means and

variances respectively, the decrease in power became substantial.

In current times, measurements prone to large errors have mostly

been improved through technological advancements, or taking of

multiple measurements and averaging them. While measurement

error is not easily quantifiable in practice, we provide a framework

to estimate measurement error using repeated measurements

(Text S3).

In the National Cooperative Gallstone Study, it was reported

that 7% and 17% of the variation in observed triglycerides and

cholesterol values were attributable to errors respectively [27].

Depending on the settings or instruments used during phenotyp-

ing, measurement error in other studies ranged from 0.0035 to

0.63 SD of phenotype[28–31]. Knowledge of the impact of

measurement error on statistical power can improve the efficiency

of the data collection process with the optimal approach.

Our measurement error model has the same power as a classical

measurement error model, where the error is in the independent

variable instead of the dependent variable. The impact of

measurement error under the classical measurement error model

has been well studied in the area of econometrics and statistics

[32–35] and results based on the linear and multivariate linear

regression models could be extended to the GWAS framework. As

estimates based on measurement error in the dependent variable

are more innocuous than that based on the classical measurement

error model, one need not apply bias-correction methods such as

regression calibrations [36].

To reduce measurement error, simple methods such as

trimming and winsorizing have been used to screen outliers

[37]. Application of data trimming in GWAS context was

performed by Barendse [6], where bivariate trimming resulted in

improved correlation of two independent measurements of the

same phenotype. Bollinger and Chandra, however, highlighted

that only in the case where measurement error results in an

upward bias in the regression coefficient could the simple outlier

screening methods perform well without introducing more bias

[38]. Another method in which measurement error can be

reduced is through threshold-based sampling [39]. Using a

Gaussian mixture model, the distribution of phenotype measure-

ment can be described using three mixture Gaussian components,

one for each genotype (AA, AB or BB). Samples with phenotype

measurement that fall between two genotype distributions would

likely be due to measurement error and subsequently be excluded

from analysis. Although this method results in a reduction of

sample size, there is a potential gain in power through decreased

variability of phenotype. Power calculations for threshold traits

with two categories (case-control) in association-based studies have

been described by Gorden et al. and Purcell et al. [10,40]. We

suggest that if the power quantified based on our framework is low,

apart from collection of additional samples, the sampling method

based on mixture models could be a good choice for consideration.

In this work, we chose to compute power based on the simple

linear regression framework and additive allele effects. We

recognize that there are other tests available for testing association

in GWAS [41,42]. Linear regression has the advantage of

simplicity in implementation across cohorts in large meta-analyses,

and is able to incorporate covariates and interactions. Our method

can be extended to other types of allelic effects: multiplicative,

dominant and recessive, by computing the relevant expected

values such as those in Table 1. Our work is restricted by other

model assumptions which include independent random errors and

normality of phenotype. For large sample sizes, linear regression

can perform well with data which deviate far from normality [43].

Our results have important implications in practice. The

methods of assessing the power of the sample size calculation in

GWAS, which do not account for potential measurement errors,

may optimistically over-estimate the power or equivalently under-

estimate the sample size required. In the present study, we

recommend the computation of sample size and power for GWAS

of traits that have low repeatability, or differ between different

grading scales and machinery, by a magnitude of more than 0.6

and 0.4 SD of true phenotype for comparison of means and

variances respectively. A pilot study with multiple measurements is

recommended to estimate the measurement error using our

proposed method. This is to ensure accurate sample size

calculation before GWAS. Finally, we note that the statistical

power incorporating measurement errors is straightforward to

compute using any software that provides values under the F

distribution probability density function and the R code is

available at request from the authors.
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