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Abstract
We investigated how changes in outcome magnitude affect behavioral variation in human
volunteers. Participants entered strings of characters using a computer keyboard, receiving
feedback (gaining a number of points) for any string at least 10 characters long. During a
“surprise” phase in which the number of points awarded was changed, participants only increased
their behavioral variability when the reward value was downshifted to a lower amount, and only
when such a shift was novel. Upshifts in reward did not have a systematic effect on variability.
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When presented with novel activities, we must identify which behaviors or strategies lead to
successful outcomes. In most cases, this is not a matter of identifying a single “perfect”
action that always results in success; instead, many activities demand that behavior display
an ongoing degree of variability. In this respect, mastery of a task consists not only of
minimizing “errors” but also sustaining appropriate levels of variability in our actions
(Stokes, 2001).

In behavioral paradigms, variability has often been characterized in terms of “operant
response classes.” Rather than reinforcing a single discrete behavior, schedules instead
reinforce those behaviors that belong to broad classes that vary along multiple dimensions,
such as timing and response topography. The degree of variability of these various
dimensions can also be shaped by feedback (Shahan & Chase, 2002).

Organisms can readily increase or decrease behavioral variability, whether responses are
constrained to a narrow class (Davison & Baum, 2000) or widened to broad conceptual
categories (Neuringer & Jensen, 2010). Indeed, behavioral variability seems not only
inescapable but also often manifests at the precise levels appropriate to a given context;
response variability not only adapts, but is also adaptive (Neuringer, 2002).

Experimental evidence suggests that strategic increases in variability precede the discovery
of new problem-solving strategies. Greater variability during skill acquisition is associated
with greater learning (Stokes et al., 2008). This pattern of “variability-as-path-to-discovery”
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is observed in children mastering grammatical rules (Bowerman, 1982), learning to solve
arithmetic problems (Siegler & Jenkins, 1989), or acquiring novel concepts (Goldin-
Measdow et al., 1993). Furthermore, children who use more strategies when first learning a
task acquire the correct strategy more often than those with fewer initial strategies (Siegler,
1995). This is also seen in adults making novice-to-expert transitions in radiology (Lesgold
et al., 1988) or cardiology (Johnson et al., 1981), where greater variability precedes
acquisition of advanced diagnostic expertise. This makes modulating levels of variability
central to exploration/exploitation strategies (March, 1991).

The increase in variability under extinction protocols is well-established (see Balsam et al.,
1997, for a review), and this may simply be a basic principle of behavior. Natural selection
plausibly favors mechanisms for generating variability in the face of failure, and such a
mechanisms would have relevance to a wide range of problem domains (Neuringer, 2002).
In studies of extinction, reported changes in behavior are often more quantitative than
qualitative. Neuringer et al. (2001) report, for example, that although extinction increased
the frequency of rare response sequences, relatively common sequences were still exhibited
more often than their uncommon counterparts. In addition to extinction effects, intermediary
levels of variability are observed when reinforcement is reduced without being entirely
extinguished. Stahlman & Blaisdell (2011) report that variation in response form increases
as the probability of reinforcer delivery is lowered, as well as when the magnitude of the
reward is reduced or the delay to reward delivery is increased.

According to associative theories of Pavlovian conditioning, learning (and resulting changes
in behavior) depends on surprising outcomes that are processes differently from the status
quo (Kamin, 1969; Rescorla & Wagner, 1972; Wagner & Brandon, 1989). Surprising events
(whether they be positive or negative) thus result in “prediction error” necessary to
discovering causal relationships (Elsner & Hommel, 2004). This behavioral literature
complements findings that valence-independent prediction error signals can be observed in
the brain (Schultz, 2006; Wang & Tsien, 2011). A Pavlovian account of variability in
response to novel events might thus begin by examining whether a prediction error might
result in a shift in behavioral variability.

In practice, however, the simple ‘valence-independent’ symmetry of early prediction error
models (in which unexpected reinforcement has an equivalent effect to an equally
unexpected failure to obtain reinforcement) requires revision to accommodate experimental
evidence. Even when outcomes are programmed using Pavlovian schedules, infrequent
reinforcement corresponds to increased behavioral variability (Stahlman et al., 2010). When
reinforcement is infrequent, the overall uncertainty is lower (because most trials are
correctly predicted to be unreinforced); despite this, an increase in variability is observed.
Whether or not trial-specific prediction errors play a roll, results such as these suggest that a
degree of “induced variability” can be expected independent of whether the schedule
directly reinforces “functional variability.”

Amsel’s frustration theory (Amsel, 1992) proposes a mechanism that may increase
variability during extinction and other schedules with downshifted outcomes. If afferent
feedback from formerly reinforced responses becomes aversive in extinction, then variants
that do not produce this feedback will be negatively reinforced. Additionally, this “non-
reward frustration” changes the general stimulus conditions, thus altering the relative
strength of different responses and/or switching attention to different stimuli that might
control different responses. Amsel’s account draws on a large body of experimental work
(Killeen, 1994), and has been invoked to explain behavior in a wide range of species
(Papini, 2002).
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Surveying this literature suggests a variety of hypotheses. The classical prediction-error
view might suggest that any uncued change in the explicit value of an outcome should
impact variability; a more nuanced interpretation might suggest that only the initial (very
unexpected) changes might have an effect, as subsequent changes come to be expected (and
thus correspond to less dramatic prediction errors). On the other hand, an account that places
special importance on downshifts in outcome value (such as Amsel’s frustration theory)
might predict increased variability only in cases where the value of the outcome is reduced.
It is also unclear whether extinction differs from more general downshift, so reducing an
outcome’s value to zero might have an effect that is distinct from other reductions.

Because the literature has primarily emphasized the effects of low probabilities of
informative feedback, we examined the effects of varying explicit reward magnitudes. In our
experiment, participants generated arbitrary strings using a keyboard and were presented
with different surprising changes in the value of response outcomes. After participants
repeatedly earned points (delivered 10 at a time), they experienced one of three conditions:
“Extinction” (where feedback was shifted to 0 points), “Downshift” (where feedback was
shifted to 1 point), and “Upshift” (where feedback was shifted to 100 points). These shifts in
point values were introduced unexpectedly and then, after a brief period, were revoked. We
examined the response variability as a factor of this brief exposure to a surprising condition.

Method
Participants

Participants were 30 Barnard undergraduates (all female) who participated in the experiment
to fulfill an Introductory Psychology class requirement.

Apparatus
Participants made responses using a personal computer enclosed in a 1.5m×3.5m
experimental room. Participants used a modified QWERTY keyboard, with all keys covered
except for the Space key, the Enter key, and the eight characters in the string “kl;’m,./” (for
clarity, denoted as ABCDEFGH), as depicted in Figure 1. The eight symbolic keys (that is,
those other than the Enter and Space keys) are collectively referred to as the “Alpha” keys.
Any keys unlabeled in Figure 1 were blocked from view and could not be used.

The apparatus was identical to that used by (Stokes et al., 1999), where it is described in
more detail.

Procedure
Participants were randomly assigned to three groups: Extinction, Downshift, and Upshift.
These groups underwent identical training before beginning the experimental component of
the experiment. Throughout the experiment, Participants were given feedback with “points”
awarded on the computer screen, presented as black numbers in a white rectangle. Note that
an explicit award of 0 points was distinct from receiving no feedback at all.

Training Component
Participants were instructed to earn points by pressing keys and to use the ten keys depicted
in Figure 1; aside from these two statements, they were given no further verbal instruction,
learning the remaining details of the task by trial and error. During training, each reinforcer
was worth 10 points. Their responding was shaped in six stages, with each stage persisting
until 10 reinforcers were collected, except where noted:
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1. A blue rectangle was presented on screen. Reinforcement was delivered each time
Enter was pressed.

2. A blue rectangle was presented on screen. After a press to any Alpha key, the
upper-right corner of the rectangle turned white. Pressing Enter produced a
reinforcer when the white corner was visible.

3. A red rectangle was presented on screen. The rectangle remained red until Space
was pressed, which turned the rectangle blue. After any one press to an Alpha key,
the blue rectangle’s white corner indicated that a reinforcer could be earned by
pressing Enter.

4. Identical to (3), except that at least three Alpha key presses were required to make
the white corner visible. Repeated responses to an Alpha key were counted toward
this requirement.

5. Identical to (4), except that at least six Alpha key presses were required to make the
white corner visible.

6. Identical to (5), except that at least ten Alpha key presses were required to make the
white corner visible.

7. Identical to (6), with the exception that the white corner ceased to appear, so
participants were no longer given an explicit cue indicating they had made a
sufficient number of responses.

Experimental Component
In this component, the white corner never appeared, so participants were not given an
explicit cue that they had made a sufficient number of responses. However, if their
“response sequence” (the series of responses made between the initial Space response and
the final Enter response) contained fewer than 10 Alpha key presses, the task went directly
to presenting the red rectangle without providing feedback. As such, participants were still
given a cue indicating that at least 10 Alpha responses were required. Beyond the
requirement response sequences consisted of at least 10 Alpha responses, preceded by Space
and followed by Enter, any combination of responses was permitted, including repeating the
same Alpha key ten times. Reinforcement was not contingent on which Alpha responses
were emitted.

In all three groups, participants made responses until 40 reinforcers had been earned. We
will henceforth refer to this as “Phase 1” of the experiment. As in training, each reinforcer
earned participants 10 points, so Phase 1 consisted of a total of 400 points earned.

Phase 2 of the experiment was the “Surprise Phase” and consisted of 10 consecutive
reinforcers. In the Extinction group, participants were given an explicit reinforcer worth 0
points (although the requirement to emit at least 10 responses to receive explicit feedback
was still in effect). In the Downshift group, participants received reinforcers worth 1 point.
In the Upshift group, participants received reinforcers worth 100 points.

In Phase 3, participants returned to earning 10 points per reinforcer, as in Phase 1. This
persisted for a total of 50 reinforcers, or 500 points. Across all phases, the experimental
component consisted of as many trials as was necessary to earn 100 reinforcers.

Results
In order to compare the 10 reinforcers during Phase 2 with the 40 reinforcers in Phase 1 (and
the 50 reinforcers in Phase 3), the history of responses was divided into “subphases” of 10
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consecutive reinforcers apiece. From this point forward, “Phase 1” will refer to the 40
reinforcers in their entirety, whereas “Subphase 1-1” will refer to the first 10 reinforcers,
“Subphase 1–2” to the second 10, and so forth; the same subdivision will be used for Phase
3.

The mean length of response sequences emitted in each subphase was calculated for each
participant. Figure 2 presents the grand mean (across participants) of those means. A mixed-
model repeated-measures analysis of variance (ANOVA) was performed comparing the
effect of subphase (within subjects) and condition (between subjects) on subjects’ mean
string lengths. A significant effect was found for subphase (F(9,243) > 4.19, p < .0001). In a
post-hoc Tukey test, Subphase 1-1 was found to be significantly different (p < 0.04) from all
other subphases: Subjects had significantly shorter string lengths in Subphase 1-1 than in
subsequent subphases of the experiment. Otherwise, no significant differences were found,
including any effect resulting from the “surprise” manipulation.

In addition to performing an analysis comparing the mean lengths in each subphase, we
examined the mean of participant standard deviations for each subphase. Figure 3 shows
these across-subject means of within-subphase standard deviations, and suggests a
considerable increase in the variance during the surprise manipulation in the Extinction and
the Downshift conditions, but no such change in the Upshift condition. We performed a
mixed-model repeated-measures ANOVA comparing the effect of subphase (within
subjects) and condition (between subjects) on subjects’ within-subphase standard deviations,
and found a significant effect for subphase (F(9,243) > 10.5, p < .0001). We also found a
significant interaction between subphase and condition (F(18,243) > 4.9, p < .0001). In a
post-hoc Tukey test, we found that the Surprise Phase in the Extinction condition was
significantly different (p < .002) than all other subphases, with the exception of Subphase
3-1. In the Downshift condition, the Surprise Phase was significantly different (p < .01) from
all subphases except Subphase 1-1. Additionally, there was a significant difference (p < .03)
between Subphases 1-1 and 1–4 in the Downshift condition. However, the only result from
the Upshift condition was that Subphase 1-1 differed (p < .02) from all other subphases; its
Surprise Phase was indistinguishable from any subphase apart from the first.

These results suggest that the surprise manipulation had a distinctive effect on responding,
but only when the points awarded were unexpectedly reduced from their previous levels.
The return to 10-point reward in Phase 3 had no discernible effect. However, an increase in
the variance of length during the Surprise Phase might be independent of increased
variability in the content of those strings.

To determine whether the content of the response strings changed as a result of the
surprising manipulation in Phase 2, we compared strings in terms of “Levenshtein Distance”
(Levenshtein, 1966). Levenshtein distance, described in detail in Appendix A, is a metric of
the “edit distance” between two strings, which refers to the minimum number of discrete
operations necessary to change one string into another.

For each participant in each subphase, we calculated the Levenshtein distance between each
consecutive pair of strings (first to second, second to third, etc.). We then computed the
mean distance in each subphase as an overall estimator of how much participants varied
their responses as each subphase progressed. Figure 4 presents these grand means of the
within-subject mean Levenshtein distances for each subphase.

As with string length, we performed a mixed-model repeated-measures ANOVA comparing
the effects of subphase (within subjects) and condition (between subjects). We found a
significant effect for subphase (F(9,243) > 5.6, p < .0001), as well as a significant interaction
between subphase and condition (F(18,243) > 3.9, p < .0001). In a post-hoc Tukey test, we
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found significant differences in the Downshift condition: The Surprise Phase was
significantly different from all other phases (p < .004). In the Extinction condition, the
Surprise Phase differed significantly from Subphases 1-1, 1–4, 3-3, 3–4, and 3–5 (p < .05).
All other subphase comparisons, including all comparisons from the Upshift condition, were
non-significant.

In order to confirm that consecutive Levenshtein distances were representative of overall
behavioral variability (as opposed to, for example, merely being the result of switching
between two sequences), we calculated the average distance between all pairs of response
strings (Pinheiro et al., 2005). The resulting means in phase 2 (μext = 14.00, μdown = 10.16,
μup = 5.36) were similar to those in Figure 4, as were those in subphase 1–4 (μext = 9.07,
μdown = 6.44, μup = 7.26) and subphase 3-1 (μext = 8.91, μdown = 5.69, μup = 6.64). The
mean distance between pairs is a Hoeffding (1948) U-statistic of level 2, and as such its full
statistical analysis is beyond the scope of this paper. To confirm that these differences were
significant, a rank transformation of the means was performed, allowing ANOVA to be used
as a robust nonparametric test (Conover & Iman, 1981). When applied to the data from
Phase 2, the significant effect of the change in point value is confirmed by this
nonparametric analysis (F(2,26) > 6.3, p < .006).

Discussion
We trained subjects to enter strings of responses, requiring only that these strings begin with
Space, end with Enter, and consist of at least ten intervening Alpha key presses chosen from
a bank of eight alternatives. Each sequence meeting these criteria was awarded 10 points in
the first and third phases of the experimental component. Between these was a “surprise”
phase, during which the number of points awarded was changed to one of three values: 0 (in
the Extinction group), 1 (in the Downshift group), or 100 (in the Upshift group).

We observed that response variability increased during the surprise phase for the Extinction
and Downshift groups, but not for the Upshift group. This is consistent with results showing
that “unexpected downshifts” generally elicit variability, while also confirming that a
surprising change in the rewards is not sufficient to do so. Additionally, the Upshift group
also experienced a 10-fold downshift in the value of the reward at the end of the surprise
phase, but this did not have any detectable impact on their behavior. This suggests that the
unexpected nature of the initial downshift is an important characteristic of the manipulation,
because it introduces a new kind of change to the participant’s learning history.

Unlike traditional extinction schedules, we did not withhold information from participants.
Rather than use probabilistic reinforcement (e.g. Stahlman & Blaisdell, 2011; da Silva Souza
et al., 2010) or outright extinction (Neuringer et al., 2001; Kinloch et al., 1981), our
procedure was more akin to the “successive negative contrast” effects observed when
outcomes unexpectedly worsen (Freidin et al., 2009). In our Extinction group, participants
were given explicit feedback that ‘0 points’ were earned upon success, whereas they were
given no feedback at all upon failure. Thus, the informative value of the feedback regarding
whether each trial was correct was identical across conditions. It is inappropriate to interpret
the point values of awarded by this feedback as corresponding to their “reinforcement value”
in the classical sense, because number of points awarded was independent of how
informative the feedback was about whether a string was deemed acceptable by the
schedule.

Another benefit of the Alpha-sequence paradigm (previously described in Stokes et al.,
1999) was that response strings had many degrees of freedom: Given 8 alpha keys,
participants had over 1 billion ‘10-response’ strings to choose from. Tasks that constrain
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possible variability can be insensitive to differences in behavior, especially over short
windows of time. This is why many extinction studies require hundreds or thousands of
trials to obtain parametric estimates. Because of the combinatorial growth of possible
strings, a sequence of discrete responses can easily entail much greater uncertainty than any
single response sampled from a continuous multivariate space.

For example, spatial tasks (e.g. Stahlman & Blaisdell, 2011) constrain the range of behaviors
judged to be “effective” because they only have a few dimensions along which to vary.
Stahlman et al. (2010) report gradual shifts in the standard deviation of recorded behaviors
on the order of at most 25%. By contrast, our reported variability changes were substantial:
Our two downshifted groups at least doubled their standard deviations, doing so abruptly
(Figure 3). We hesitate to directly compare the amount of variability we observed to those
present in animal studies, but the increase in variability we observed appeared more acute
and pronounced than the “induced variability” that arises in more constrained response
paradigms.

The Levenshtein Distance provided a way to analyze these complex responses. As
(Nickerson, 2002) points out, “variability” has several technical definitions. According to
his classifications, Levenshtein Distance is a measure of compressibility, in contrast to more
common measures of behavioral entropy (Neuringer, 2002). Entropy estimates require many
observations, because estimators of entropy based on observed frequencies are biased,

having error of approximately  for k sequences and n observations (Roulston, 1999).
Given a rule of thumb that bias can be kept small by requiring that n ≥ 5k, our Surprise
phase did not consist of enough observations to obtain a reliable estimate, even in pairs of
key-presses (for which k = 82 = 64). Consequently, entropy estimates were not appropriate,
given the short duration of our manipulation. Contrastingly, the Levenshtein Distance
reliably measures variability in arbitrarily long strings, a property exploited by
computational biologists measuring mutation in genetic data (Gusfield, 1997). Future studies
examining the effects of schedule- or prediction-error-induced variability can use this metric
to complement findings from entropy-based metrics, as well as branch out to paradigms that
are ill-suited to entropy estimation.

Recent studies suggests that Pavlovian learning about causal relationships is unlikely to be
driven by mere contiguity, but instead depends on statistical contingency (Moore et al.,
2009). According to this view, downshifted participants may have increased their variability
in order to investigate the relationship between points and the input string. Such an account
still does not eliminate the role of prediction error, however, because the Upshift group also
experienced a tenfold downshift at the end of the surprise phase and did not change their
behavior at that time. This suggests that increasing variability as a form of ‘hypothesis
testing’ may depend on the relative unfamiliarity of the task conditions. This interpretation
is compatible with a signal detection account of learning, in which the perceived degree of
contingency between outcomes is modeled in psychophysical terms (Allan et al., 2008).

These results contribute to a growing literature examining how the properties of a
conditioned stimulus are interpreted. For example, the information conveyed by a stimulus
depends on the multiple layers of conditional probability used by an organism to build
predictions (Bromberg-Martin et al., 2010). Any theory invoking ‘prediction error’ must
thus account for the complexity of an organism’s prediction model. Similar results have
been observed in studies comparing how different learning histories lead to distinctly
different behaviors under an otherwise identical schedule (Stokes et al., 1999; da Silva
Souza et al., 2010).
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The interpretation that variability arises from primary drives, such as frustration (Amsel,
1992), suggests a very different underlying mechanism, wherein variability manifests
explicitly as a component of an exploratory strategy (Freidin et al., 2009). According to this
view, the dramatic effect in the downshift groups (as compared to the lack of any effect at
all in the Upshift group) would not necessarily reflect changes in judgments of response
dependency, but might instead point to framing effects: The 100-to-10 transition at the end
of the surprise Upshift would constitute a return to the norm, rather than an aversive
downshift in reward value. An important future direction in identifying these relationships
will be to determine the degree to which learning mechanisms (and their resulting behavioral
manifestations) depend on both the contingency detection and contextual outcome valence
(Bromberg-Martin et al., 2010; Wang & Tsien, 2011).

In conclusion, we found that the way in which participants reacted to a surprising change in
feedback depended on whether the change improved or worsened conditions. Although this
result does not preclude a role for prediction error, it rules out the claim that any unexpected
change is sufficient to induce variability. These results also rule out the claim that increased
variability necessarily follows from downshifts, as the 100-to-10 point transition in the
Upshift group did not result in a change in behavior. In our experiment, both the unexpected
nature of the shift and its direction appeared to play a role. This emphasizes the importance
of interpreting task cues not on their objective properties, but rather as they relate to an
organism’s learning history.
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Appendix A
Levenshtein distance (Levenshtein, 1966) is a metric for measuring the “edit distance”
between two strings of symbols. Put another way, it is a count of the smallest number of
edits needed to switch from one string to the other.

Each edit is a discrete operation. Levenshtein distance counts three varieties of edit:

• Insertion (“sit” → “skit” by inserting a “k”)

• Deletion (“chat” → “cat” by deleting the “h”)

• Substitution (“stale” → “stole” by replacing the “a” with an “o”)

Levenshtein distance is easily calculated using a dynamic programming algorithm (Gusfield,
1997). The following pseudocode describes an algorithm that calculates the distance
between two strings s and t:
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Algorithm 1

How to calculate Levenshtein distance

Below is an example comparing the strings “shout” and “scuttle” (minima in bold):

Step 1: Setup Step 2: First loop

s c u t t l e s c u t t l e

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

s 1 s 1 0

h 2 h 2 1

o 3 o 3 2

u 4 u 4 3
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Step 1: Setup Step 2: First loop

t 5 t 5 4

Each position in the matrix compares the two strings up a certain letter. For example, the
cell (2,2) compares the string “sc” to the string “sh.” The Levenshtein distance can easily be
calculated by testing whether each additional letter increases or reduces the number of edits
needed to match the strings.

First, the matrix d is initialized with starting values. Then, repeatedly looping through the
columns of the table, the minimal path from one string to the other is traced by the bold
values.

Step 3: Ongoing Step 4: Complete

s c u t t l e s c u t t l e

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

s 1 0 1 3 4 5 s 1 0 1 2 3 4 5 6

h 2 1 1 2 3 4 h 2 1 1 2 3 4 5 6

o 3 2 2 2 3 4 o 3 2 2 2 3 4 5 6

u 4 3 3 2 3 4 u 4 3 3 2 3 4 5 6

t 5 4 4 3 2 3 t 5 4 4 3 2 3 4 5

In other words, the minimum edit distance from “shout” to “scuttle” is 5 (substitute H for C,
delete O, and insert T, L, and E).
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Figure 1.
Keyboard layout used in the experiment. Key letters are labeled A through H for clarity.
Unlabeled keys were covered and could not be pressed.
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Figure 2.
Mean length of strings entered via the keyboard during each phase. Means were calculated
for each subject, and grand means were calculated from those means.
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Figure 3.
Standard deviations of string lengths during each phase. SDs were calculated for each
subject, and grand means were calculated from those SDs.
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Figure 4.
Mean Levenshtein distance between consecutive strings during each phase. These distances
were averaged for each subject, and grand means were calculated from those individual
means.
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