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Abstract
The development of effective methods for the characterization of gene functions that are able to
combine diverse data sources in a sound and easily-extendible way is an important goal in
computational biology. We have previously developed a general matrix factorization-based data
fusion approach for gene function prediction. In this manuscript, we show that this data fusion
approach can be applied to gene function prediction and that it can fuse various heterogeneous
data sources, such as gene expression profiles, known protein annotations, interaction and
literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix
factors between sources. We demonstrate the effectiveness of the approach by evaluating its
performance on predicting ontological annotations in slime mold D. discoideum and on
recognizing proteins of baker’s yeast S. cerevisiae that participate in the ribosome or are located in
the cell membrane. Our approach achieves predictive performance comparable to that of the state-
of-the-art kernel-based data fusion, but requires fewer data preprocessing steps.
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1. Introduction
Assigning functions to genes and proteins is a major challenge of biological research.
Recent genome-scale data capture distinct but possibly noisy and incomplete views of
cellular function. Collectively, these data provide valuable information for inference of gene
and protein functions but require computational approaches capable of joint treatment of
heterogeneous data sources.

Gene function prediction aims to provide a set of functional terms along with associated
confidence for a given uncharacterized or partially characterized gene. In this work, we take
a step towards improved gene function prediction through fusion of data sets that are either
directly related to genes, such as genetic interactions, or are circumstantial, such as Medical
Subject Headings (MeSH) terms assigned to the relevant biomedical literature. In our
previous work, we proposed a matrix factorization-based data fusion1 and demonstrated its
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utility in detection of drug-toxicity.2 Its advantage over some well-known approaches that
infer prediction models through integrative data analysis is its ability to directly consider
data modality and to retain the structure of data representation during fusion. Our algorithm
can include any data source that can be represented in a matrix whereby the concrete
selection of data sources depends on the given function prediction task.

Methods for gene function prediction often consider a metric space of genes, that is, a gene
set equipped with a notion of distance or similarity between any pair of genes.3-6 All
available data has to be expressed through relations between genes and their functions,
although for specific data sources that might not be natural in any sense. For instance, to
include the semantic structure of the MeSH terms into the prediction model we should
design a metric that would, for a pair of genes, measures the distance between the MeSH
terms that are assigned to relevant gene-pair-associated literature. Such distance function is
hard to construct, and for integration of many heterogeneous data sources, becomes a major
obstacle in development of prediction system. Our approach can consider circumstantial
evidence for gene function prediction directly even if expressed in a non-gene space. Its
principal novelty is the ease of adding new data sources without requiring their substantial
preprocessing or transformation. Data sources are simultaneous considered during data
fusion and construction of predictive model.

In the paper we outline our previously proposed data fusion algorithm2 and then study it in
computational experiments on three function prediction tasks for baker’s yeast and slime
mold’s genome-wide data sets. We fuse eleven data sources to predict the Gene Ontology
(GO)7 annotations in slime mold D. discoideum and investigate the recognition of particular
classes of proteins in baker’s yeast S. cerevisiae by combining four data sources on
cytoplasmic ribosomal class and four sources on membrane proteins. Our principal
contribution in this work is a demonstration that matrix-based data fusion approach can be
applied to gene function prediction problem and can successfully integrate a diverse set of
data sources, thus raising the accuracy of predictions.

2. Related Work
Methods to predict gene annotations either follow approaches that transfer annotations from
well-characterized to partially characterized genes,3,8 or approaches that directly associate
genes with functional classes using supervised learning.5,9-13 Although annotation transfer is
appealing at first sight, excessive transferring causes error propagation and is often
outperformed by sophisticated classification algorithms.14

Recent methodological contributions to gene function prediction aim at extracting features
from different biological data sets and use them to train classifiers for functional categories,
such as GO terms or KEGG pathways.14 They derive features from gene expression profiles,
genetic interactions, protein-protein interaction networks, conserved protein domains,
sequence similarity, physiochemical properties, co-expression and data on orthologs. For
example, Vinayagam et al. (2004)9 and Mitsakakis et al. (2013)13 both applied support
vector machines for the classification of GO terms from sequence data and microarray
experiments, respectively, and Yan et al. (2010)11 trained a random forest classifier for each
functional category separately and tested their prediction model on data from fruit fly. The
accuracy of developed methods for gene function prediction has been further improved by
integrating data using multi-classifier approaches,12 Bayesian reasoning,3,4,10,15 network-
based analysis5,16,17 and kernel functions derived from different sources by multiple kernel
learning.18,19 Automated gene and protein function prediction methods are often trained to
only one species, are not available for high-volume and heterogeneous data, or require the
use of data derived by experiments, such as microarray analysis. The approach we proposed
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in this manuscript is organism-independent, it can be applied for various subsets of
functional terms and it provides confidence estimates of predictions. Also, it does not
impose any restrictions on the nature of underlying data.

Due to great potential of methods for computational prediction of gene function we recently
witnessed several initiatives6,20,21 for the critical assessment of their performance in
different experimental settings. These evaluations concluded that although best methods
perform well enough to guide the experiments, there is considerable need for improvement
of currently available approaches one of which is efficient data integration.

3. Methods
Matrix factorization-based data fusion1 can in principle consider an unlimited number of
data sources. In the context of gene function prediction, these could either describe
characteristics of genes and proteins directly (e.g., their physical interactions) or indirectly
(e.g., through MeSH terms that are assigned to scientific publications, which in turn mention
the genes of interest). Fig. 1 provides a toy example that combines five data sources on
objects of three different types: genes, GO terms and experimental conditions. Given a
multitude of data sources, we assume that each source describes relations between objects of
two types. Data fusion by matrix factorization involves three main steps. First, every data
source is represented as a matrix and together they are organized in a block-based matrix
representation (Fig. 1, left; Sec. 3.2). Constraint matrices, Θi, relate objects of type i and are
placed on the main diagonal of block representation. The off-diagonal blocks, which relate
objects of different types, i and j (i ≠ j), are called relation matrices, Rij. We expect that
these matrices are sparse and that some are completely missing because associated data
sources are not available. For example, a missing source from Fig. 1 would relate GO terms
to experimental conditions. Second, we simultaneously factorize all relation matrices such
that low-rank matrix factors are shared between decompositions of relation matrices that
describe objects of common type (Fig. 1, middle; Sec. 3.3). Constraints indicate pairwise
similarities or dissimilarities (it depends on signs of values) between the two objects. If
constraints are violated, for instance, if two highly similar objects have very different low-
rank profiles (i.e. corresponding rows in matrix factors), then current low-rank matrix
approximations are penalized. Finally, we employ low-rank matrix factors to complete
unobserved entries in relation matrices, to predict GO terms and to estimate confidence of
predictions (Fig. 1, right; Sec. 3.4 and Sec. 3.5).

We apply data fusion to infer relations between genes or proteins and their functions. We
observe target relation matrix in the context of all other data sources. We assume that it is
encoded as a [0, 1]-matrix that is only partially observed. Its entries indicate a degree of
relation, 0 denoting that corresponding function is absent from the gene and 1 denoting the
highest confidence that gene performs a specific function. We aim to predict its unobserved
entries by reconstructing them through matrix factorization.

3.1. Data
3.1.1. Gene Annotation Prediction in Slime Mold—In this study we observe objects
of six different types: genes (type 1), GO terms (type 2), experimental conditions (type 3),
publications from the PubMed database (PMID) (type 4), MeSH descriptors (type 5), and
KEGGa pathways (type 6). The organization of object types and data sources is shown in
Fig. 2a; fusion algorithm can integrate all available data if the underlying graph is
connected. We include gene expression measurements at different time-points of a 24-hour

ahttp://www.kegg.jp
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development cycle22 (R13, 14 experiments), gene annotations with experimental evidence
code to 148 generic slim terms from the GO (R12), associations of PMIDs and genes from
dictyBaseb, March, 2013 (R14), genes participating in KEGG pathways (R16), assignments
of MeSH descriptors to publications from PubMed (R45), references to published work
associated with GO terms (R42), and associations of enzymes involved in KEGG pathways
and related to GO terms (R62). To balance the target matrix R12 for the purpose of
performance evaluation we add an equal number of non-associations for which there is no
evidence of any type in the GO.

We consider protein interaction scores from STRING v9.0c (Θ1), the number of common
ortholog groups between KEGG pathways (Θ6) and slim term similarity scores (Θ2) that are
computed as −0.8hops, where hops is the length of the shortest path between two terms in the
GO graph. Similarly, MeSH descriptors are constrained with the average number of hops
between each pair of descriptors in the MeSH hierarchy (Θ5).

3.1.2. Yeast Ribosomal Protein Classification—We observe three object types:
proteins (type 1), cellular complexes (type 2) and experimental conditions (type 3). Their
relations are described by four data sources that correspond to arcs in Fig. 2b. We consider
the MIPS Comprehensive Yeast Genome Database (CYGD)d assignments of 1150 yeast
proteins to cellular complexes, of which 134 participate in the ribosome and the remaining
~5000 yeast proteins are unlabeled.18 We include gene expression measurements from the
Stanford Microarray Database (R13, 441 experiments), protein interactions from STRING
v9.0c (Θ1

(1)) and Smith-Waterman pairwise sequence comparisons (Θ1
(2)).

3.1.3. Yeast Membrane Protein Classification—We consider four data sources and
three types of objects (Fig. 2c): proteins (type 1), subcellular locations (type 2) and Pfame

protein domain families. We consider subcellular location information of 2318 yeast
proteins from the CYGDd database (R12), of which 497 belong to various membrane protein
classes and ~4000 proteins have uncertain location.18 We include the expectation values
from the hidden Markov models in the Pfam database (R13). Matrices Θ1

(1) and Θ1
(2) from

Fig. 2c have the same meaning as for the ribosomal protein classification.

In both yeast experiments the target R12 has a (6112 × 2)-shape, where a row of [0, 1]
denotes that the protein participates in ribosome or that it belongs to membrane protein class
and a row of [1, 0] that the protein is not assigned to the ribosomal complex or that it does
not belong to membrane protein class. Rows that correspond to unobserved proteins are set
to [0.5, 0.5].

3.2. Block-Based Data Representation
The data on slime mold from Sec. 3.1.1 can be represented in a block-based system:

(1)

bhttp://dictybase.org/Downloads
chttp://string-db.org
dhttp://mips.helmholtz-muenchen.de/genre/proj/yeast
ehttp://pfam.sanger.ac.uk
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The number of non-zero blocks corresponds to the number of included data sources. Such
representation is then fed into fusion algorithm. The block-based schemes for yeast-related
data (Sec. 3.1.2 and Sec. 3.1.3) have the structure from Eq. (2), where the individual
matrices are task-dependent:

(2)

Our fusion approach is different from treating an entire system from Eq. (1) or Eq. (2) as a
single large matrix. Factorization of such a matrix would disregard the structure from Eq. (1)
and Eq. (2).1

3.3. Data Fusion by Matrix Factorization
Approximate matrix factorization estimates matrix Rij as a product of low-rank matrix
factors that are found by solving an optimization problem, which maximizes some quality of
approximation. A tri-factor decomposition, which we use in this study, decomposes Rij into

a product of three low-dimensional matrix factors such that  (Fig. 3).

For data fusion we use simultaneous penalized tri-factorization to simultaneously
decompose all blocks Rij while considering constraints in Θi

(t) for t = 1, 2, … ti. The block
matrix R from Eq. (1) is tri-factorized into block matrices S and G:

(3)

Yeast data matrix in Eq. (2) is similarly decomposed into block matrix factors S and G, each
having 3 × 3 block-shape but we omit them here for brevity. Such factorization of block-
based representation retains the block structure of our systems from Eq. (1) and Eq. (2).
Matrix factors Sij in the resulting factorized system are specific to every data source and
factors Gi are specific to every object type. Factor Gi is present in decompositions of all
relation matrices that relate objects of type i to objects of some other type, whereas Sij is
used only for decomposing Rij. Thus, they capture object type- and source-specific patterns,
respectively. Sharing matrix factors between decompositions with common object type is
the key idea of our data fusion approach.

The objective function minimized by simultaneous penalized matrix tri-factorization ensures
good approximation of the input data and adherence to constraints, which are represented in
constraint matrices:

(4)

where ∥·∥ and tr(·) denote the Frobenius norm and trace, respectively. Updating rules for
decomposing relation matrices,1 iteratively improve matrix factors G and S, which converge
to a local minimum of the optimization problem in Eq. (4). The algorithm first initializes
factors Gi and then successively updates G and S until stopping criteria is met. See Žitnik et
al. (2013)1 for details about initialization algorithm, updating rules and stopping criteria.
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3.4. Predicting Gene Functions from Matrix Factors
Our target R12 is a partially observed [0, 1]-matrix, where 1 indicates that gene is assigned

the corresponding function and 0 that it is not. We complete it as: . When
the fused model is requested to propose relations for a new gene g that was not included in
the training data, we need to estimate its factorized representation and use the resulting
factors for prediction. We formulate non-negative linear least-squares and solve them for

, where  is the original description of gene g in i-th data

source and  is its factorized representation. Here, i varies from 2 to the number of
data sources used for fusion. A solution vector given by  is added as a new row to G1

and new  is computed.

We then identify gene-function pairs (g, f*) for which the predicted degree of relation

 is unusually high. Candidate functions for gene g have greater estimated
association score than the mean estimated score of all known annotations of gene g:

(5)

where  contains functions annotated to g. Eq. (5) is a gene-centric rule. Given a test
gene, it identifies functional terms to which it might be assigned. If the gene does not have
any known annotations we use the function-centric rule to identify gene-function candidate
pairs.

3.5. Assessing Strength of Predictions
We combine the gene- and function-centric rules such that, if possible, the gene-centric rule
is applied to identify gene-function candidate pairs and then the function-centric rule is used
to assess the strength of the candidate pair (g, f*). We estimate the strength of association of
gene g to function f* by reporting an inverse percentile of association score in the
distribution of scores for all true annotations to function f*, that is, by considering the scores

in the f*-th column of  (Fig. 4). Higher value indicates higher confidence of prediction.

4. Performance Evaluation
We estimated the performance by ten-fold cross-validation. In each fold, we split the gene
set to a train and test set. The data on genes from the test set were entirely omitted from the
training data. We developed prediction models from the training data and tested them on the
genes from the test set. The performance was evaluated using an F1 score, a harmonic mean
of precision and recall, which was averaged across cross-validation runs. We selected the
parameters of our data fusion algorithm, factorization ranks for each type of objects (ki), by

observing the quality of  in internal cross-validation.1 The parameters for kernel-based
fusion, such as width of an RBF kernel and regularization weight, were also selected
through internal cross-validation.

5. Kernel-Based Fusion Setup
We compared our data fusion algorithm to state-of-the-art integration by multiple kernel
learning (MKL; Yu et al. (2010)19) that follows a multi-label classification approach.
Kernel-based fusion used a multi-class L2 norm MKL with Vapnik’s SVM. The MKL was
formulated as a second order cone program and solved using the conic optimization solver
SeDuMif. We generated the kernel matrices for yeast experiments using the kernels
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proposed by Lanckriet et al. (2004).18 In slime mold study, we applied an RBF kernel to
gene expression measurements and three linear kernels to protein interactions, genes that
participate in KEGG pathways and to associations of genes to PMIDs. Data sources that
describe relations between object types other than genes had to be transformed to explicitly
relate them to genes. We represented the hierarchical structure of MeSH descriptors,
semantic structure of the GO graph and KEGG ortholog groups as separate weighted graphs
on genes (for instance, we counted common KEGG ortholog groups and calculated the
similarities of sets of GO terms associated with genes) and constructed kernel matrices using
diffusion kernel.

6. Results and Discussion
We evaluated our algorithm from the perspective of genes and functional terms. Thus, we
addressed two related questions: “What is the function of a particular gene or protein?” and
“What are the genes or proteins associated with a particular functional term?”.

6.1. Performance on Groups of Target Genes
We divided the D. discoideum gene set into three categories to compare predictive
performance in each category. In Table 1 we present the cross-validated F1 scores when
selecting the 100 or 1000 most GO-annotated genes and the accuracy obtained when
considering whole slime mold genome. The task was to provide a set of terms from the slim
subset of GO terms for every gene. We used the slim subset of GO terms to limit the
optimization complexity of the kernel-based approach18 with which we compare our
performance. These categories were selected to study the effects of data sparseness. Genes
with many GO annotations tend to be better characterized and more data is available about
them. Thus, functional terms of such genes would be considered easier to predict than those
of genes with only few annotations. The accuracy of our matrix factorization-based data
fusion is comparable to that of kernel-based approach. The performance of both approaches
improved when we included more genes and hence more data. Also, our approach
performed well when we added genes with sparser profiles although that increased the
overall data sparsity.

6.2. Performance on Functional Terms
We assessed the ability of our approach to predict individual GO terms when fusing whole
genome data from Fig. 2a. Table 2 shows the F1 scores for nine selected GO terms that
belong to “Biological Process” and “Molecular Function” categories from GO and which
contain variable number of annotated genes. These GO terms are of high relevance in
Dictyostelium community and were selected upon consultations. Predictions were examined
in the context of a complete set of GO terms rather than using a generic slim subset of terms.
The resulting data set had ~2000 GO terms, each had on average 9.64 direct gene
annotations.

Our approach achieved consistently higher accuracy than the kernel-based approach. With
the exception of “actin binding” and “lysozyme activity” terms, F1 scores are rather high.
We also found that prediction of less specific terms such as “chemotaxis” and “response to
bacterium” showed high performance. That was not expected because genes annotated with
less specific terms tend to have their profiles in data sets less similar. High performance is
important as all nine gene functions and processes are of interest in the current research of
D. discoideum where data fusion may propose new candidate genes for down-stream
experimental studies.

fhttp://sedumi.ie.lehigh.edu
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6.3. Ribosomal and Membrane Protein Classification
Table 3 shows the results of training a factorization-based fusion model and a kernel-based
method to recognize membrane and cytoplasmic ribosomal proteins in yeast. Our approach
yielded better accuracy than kernel-based method on the membrane proteins but worse on
the cytoplasmic ribosomal class. However, fused data sources were those whose kernels
gave best individual performance in kernel learning.18 Thus, the selection of data sources
was biased toward kernel-based method. The approach using factorization circumvents
tedious work of transforming different objects (e.g., strings, vectors, graphs) into kernel
matrices. These transformations depend on the choice of the kernels and may affect MKL’s
performance.

Results in this and previous sections suggest that factorization-based data fusion might be
useful not only to identify proteins that share the same molecular function but also to
recognize proteins that participate in the same biological processes or are located in the
same subcellular region.

7. Conclusion
We have examined the applicability of our recently proposed matrix factorization-based data
fusion approach1 on the problem of gene function prediction. We studied three fusion
scenarios to demonstrate high accuracy of our approach when learning from disparate,
incomplete and noisy data. The studies were successfully carried out for two different
organisms, where, for example, the protein-protein interaction network for yeast is nearly
complete but it is noisy, whereas the sets of available interactions for slime mold are rather
sparse and only about one-tenth of its genes have experimentally derived annotations.

Our approach can model any number of data sources that can be expressed in a matrix, and,
unlike most current data fusion approaches, does not require transformation of data into
gene-function space. This flexibility allows us to fuse the data derived from possibly very
diverse data sources without substantial preprocessing and loss of information. Described
method is applicable to problems such as prediction of regulatory, metabolic and other
functional classes, prediction of protein subcellular location and their interactions.
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Fig. 1.
An example of data fusion by matrix factorization that combines five data sources on objects
of three different types: genes, Gene Ontology (GO) terms and experimental conditions.
Target matrix relates genes to GO terms (matrix with colorful entries). Data is presented in a
block-based system (left), then a compressed representation is inferred that shares low-rank
matrix factors between decompositions of relation matrices (shown by matrices with grey
entries), which relate objects of common type (middle). Constraint matrices (shown by
matrix with blue entries) penalize violations of similarity constraints. Finally, original matrix
of gene annotations is completed (right).
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Fig. 2.
Fusion configurations for the gene function prediction task in slime mold (a) and two yeast
protein classification tasks to recognize cytoplasmic ribosomal proteins (b) and membrane
proteins (c). Nodes represent types of objects and arcs correspond to relation and constraint
matrices. The arcs that represent target matrices, R12, and their object types are highlighted.
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Fig. 3.

Matrix tri-factorization. Matrix  relates objects of two types, i and j. For
instance, we might relate genes to their expression profiles, publications to assigned MeSH
terms or genes to themselves if they interact genetically. Rij is decomposed into a product of

three matrix factors such that , where ,  and

, ki ≪, ni, kj ≪ nj.
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Fig. 4.
An example of estimating strength of candidate slime mold genes for “phagocytosis” term.

Association scores from  for all genes that are annotated with term “phagocytosis” are
shown in grey. Strength of the candidate pair (pikA, “phagocytosis”), s = 0.96, is assessed by
reporting its inverse percentile in the distribution of scores for true annotations (in grey).
That is, the percentage of estimated association scores that are smaller or equal to the score
of (pikA, “phagocytosis”).
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Table 1

Cross-validated F1 scores for fusion by matrix factorization (MF) and kernel-based method (MKL).

Slime mold task MF MKL

100 genes 0.799 0.781

1000 genes 0.826 0.787

Whole genome 0.831 0.800

Pac Symp Biocomput. Author manuscript; available in PMC 2015 January 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

ŽITNIK and ZUPAN Page 15

Table 2

Gene ontology term-specific cross-validated F1 scores for fusion by matrix factorization (MF) and kernel-
based method (MKL). Terms in Gene ontology belong to one of three categories, “Biological Process” (BP),
“Molecular Function” (MFn) or “Cellular Component”.

GO term name Term identifier Namespace Size MF MKL

Activation of adenylate cyclase activity 0007190 BP 11 0.834 0.770

Chemotaxis 0006935 BP 58 0.981 0.794

Chemotaxis to cAM 0043327 BP 21 0.922 0.835

Phagocytosis 0006909 BP 33 0.956 0.892

Response to bacterium 0009617 BP 51 0.899 0.788

Cell-cell adhesion 0016337 BP 14 0.883 0.867

Actin binding 0003779 MFn 43 0.676 0.664

Lysozyme activity 0003796 MFn 4 0.782 0.774

Sequence-specific DNA binding TFA 0003700 MFn 79 0.956 0.894
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Table 3

Cross-validated F1 scores for yeast membrane and cytoplasmic ribosomal proteins using matrix factorization-
based fusion (MF) and kernel-based method (MKL).

Yeast recognition task MF MKL

Membrane proteins 0.843 0.835

Ribosomal proteins 0.901 0.921
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