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Abstract
DNA microarrays have gained wide use in biomedical research by simultaneously monitoring the
expression levels of a large number of genes. The successful implementation of DNA microarray
technologies requires the development of methods and techniques for the fabrication of
microarrays, the selection of probes to represent genes, the quantification of hybridization, and
data analysis. In this paper, we concentrate on probes that are either spotted or synthesized on the
glass slides through several aspects: sources of probes, the criteria for selecting probes, tools
available for probe selections, and probes used in commercial microarray chips. We then provide a
detailed review of one type of DNA microarray: Affymetrix GeneChips, discuss the need to re-
annotate probes, review different methods for regrouping probes into probe sets, and compare
various redefinitions through public available datasets.
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2. Introduction
DNA microarray technology has provided an opportunity to simultaneously monitor the
expression levels of a large number of genes in response to intentional experiment
perturbations such as gene disruptions and drug treatments. The patterns obtained from
microarray experiments have helped researchers to understand genetic mechanisms and
progress of diseases (1, 2), to predict molecular functions of genes (3, 4), to build functional
pathways (5), and to identify novel genes or splice variants (6). The successful
implementation of DNA microarray technologies requires the development of methods and
techniques for the fabrication of microarrays, the selection of probes to spot, the
quantification of hybridization, and data analysis (7-9). Currently, DNA microarrays are
manufactured using either cDNA or oligonucletides as gene probes. cDNA microarrays are
usually created by spotting amplified cDNA fragments in a high density pattern onto a solid
surface such as a glass slide (10, 11). Probes for oligonucletides arrays are either spotted or
synthesized directly onto a glass or silicon surface using various technologies including
photolithography, ink-jets, and some other technologies (12-14). There are two schemes to
detect differently expressed targets when comparing an experimental sample with a
reference sample: one- and two-color schemes. In one-color case, images are obtained on a
different chip for each sample using a single fluorescent label (for example, phycoerythrin).
Different images are then compared to obtain differentially expressed targets. In two-color
format, two RNA samples (reference and experimental) are labeled separately with different
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fluorescent tags (for example, cyanine 3 and cyanine 5 (Cy3, Cy5)), then hybridized to a
single microarray and scanned to generate fluorescent images from the two channels. A two-
color graphical overlay can then be used to visualize targets that are up-regulated or down-
regulated.

Since the emerge of the technology in the mid 1990s, both commercial and academic groups
have developed a number of different microarray platforms but the validity of the results
remains a subject of concern to the scientific community mainly due to the poor
reproducibility among various platforms (15-22). A number of studies have been conducted
to compare different platforms but there is no clear consensus. Some claim a significant
divergence across platforms, while others believe the level of consensus is acceptable. With
extensive attention being devoted to improving the statistical algorithms used to estimate
expression levels and detect differential expressed targets, we believe that probe and probe
set identity is also an important factor for the poor reproducibility. It is possible that the
sequences immobilized to the microarray surface are not the intended ones possibly caused
by unavoidable errors introduced during the manufacturing process (23, 24). For example,
cDNA probes are usually obtained from cDNA libraries, and the clone misidentification
rates within libraries have been estimated as high as 30% (25-27). Additionally, probes are
designed to match particular mRNA transcripts, often based on deposited NCBI sequences
such as ESTs, cDNAs, or mRNAs. However, those sequences might be incorrect because of
sequencing errors such as including foreign vector sequences (28). Furthermore, annotations
of probes might also be inaccurate or incomplete due to limited knowledge available at the
probe design stage. Usually, probes are selected to represent genes while measures are
obtained based on the hybridization with mRNAs. But one gene can have multiple splice
variants and it is estimated that the number of genes which can be spliced is between 30% to
99% (29, 30). Accurate quantitation requires knowledge of both the identity of the genes and
the splice variants that are expressed. As our knowledge of genomic sequences (particularly
for the human genome) increases, annotations for a substantial number of probes for existing
microarray platforms need to be corrected. For example, a large portion of the Affymetrix
probes (up to 30-40% depending on the actual chip) did not correspond to their intended
mRNA reference sequences defined by the highly curated, publicly available RefSeq
database (31-33).

A large number of reviews on about DNA microarray technology prior to year 2002 were
assembled by Michael Heller (34). Several reviews have been assembled recently mainly
focusing on the similarities and differences among different technologies as well as efforts
to integrate data from cross-platform comparative studies (9, 19, 21, 35, 36). Here, we
address issues and studies related to probe sequence which include probe resources, probe
selection during the design stage, and annotation correction by incorporating up-to-date
genomic knowledge for data analysis.

3. Microarray Probes and Probe Sets
Table 1 provides an overview of probes or probe sets used in several commercial platforms.
Most of these platforms select probes using public resources such as GenBank or RefSeq.
Some of them use in-house or commercial resources. For example, both Agilent and
CodeLink use a commercial sequence resource, LifeSeq besides public resources.

Probes or probe sets need to be chosen to provide sufficient sensitivity (i.e., the ability to
detect the rarely expressed transcripts in a complex background), and specificity (i.e., the
ability to distinguish measures among transcripts with high sequence similarity), as well as
high coverage (i.e., the ability to include all relevant transcripts to the experiment) (37). It is
desired to avoid sequences that are ambiguous (i.e., hybridize to multiple transcripts) or
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highly similar to non-target transcripts (i.e., cross-hybridization). Additionally, redundancy
(i.e., several probes or probe sets targeting the same transcripts) can increase the accuracy of
measures but it can at the same time reduce the coverage. Furthermore, the successful
application also requires correct and up-to-date annotation (i.e., the association of probes
with target transcripts) of the probes or probe sets.

3.1. cDNA microarrays
Probes in cDNA microarrays are mostly cDNA clones provided by IMAGE (the Integrated
Molecular Analysis of Genomes and their Expression) Consortium. The consortium was
initiated in 1993 as a collaborative effort among several academic groups to share high-
quality arrayed cDNA libraries and to place sequence, map, and expression data for use in
the public domain (38). Researchers can purchase physical clones from authorized
distributors, such as Research Genetics/Invitrogen (http://www.resgen.com), the American
Type Culture Collection (http://www.atcc.org), and RZPD German Resource Center for
Genome Research (http://www.rzpd.de). Most of these clones have the status of expressed
sequence tags (ESTs), and their corresponding sequences are collected in the dbEST
database (39).

When dealing with EST or cDNA clones, a common problem is poor specificity caused by
unreliable annotations of their sequence data. For example, Taylor et al. found that only
79% of the clones matched to the designated sequences when sequencing 2300 PCR
products ordered from a human, sequence-verified cDNA clone library (25). They
recommended sequence verification of clones at the final design stage before actually
printing them on microarray slides. Halgren et al. documented that only 62.2% of the 1,189
cDNA sequences of clones ordered from the consortium had significant sequence identity to
the published data for the ordered clones (26). The IMAGE Consortium is aware of this and
does list problematic clones on its web site based on user feedbacks, however there is no
consensus as to the actual error rate or the source of the errors.

Redundancy is another problem when using EST or cDNA clones as probes. Highly
expressed genes are often represented by multiple clones. There are two potential ways to
reduce the redundancy. One is to use clones from a normalized clone library where the
number of clones representing each gene has been equalized (40-42). Another way to
control the redundancy is the use of clustering data through either pair-wise or genome-
based alignment clustering methods. NCBI's UniGene is the most widely used clustering
data which was originally generated using pair-wise alignment and currently is based on
genome-wide alignment. The TIGR Gene Indices (TGI) is another well known EST
clustering data that uses a highly refined protocol to analyze EST sequences, clustered
sequences, and identify genes represented by them.

The use of complete cDNA sequence as probes usually imposes the danger of cross-
hybridization. A fragment of the cDNA sequence can be used to spot on the array. cDNA
fragments are usually chosen to reduce the danger of cross-hybridization caused by either
sequence homology or other factors. Kane et al indicated that selected fragments need to be
75% less than similar to non-target transcripts within the 50 mer region to prevent
significant cross-hybridization (43). Besides cross-hybridization caused by sequence
similarity, there are some unspecific hybridization signals caused by repetitive elements
such as Alu-repeats within the cDNA sequence. Utilizing repetitive element databases such
as REPBASE (44), one can avoid the complication caused by repetitive elements.

Liu et al. Page 3

Front Biosci (Elite Ed). Author manuscript; available in PMC 2014 January 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.resgen.com
http://www.atcc.org
http://www.rzpd.de


3.2. Oligonucleotide microarrays
The use of oligonucleotides as probes has become popular because they usually have better
specificity than cDNAs and also have the capacity to distinguish single-nucleotide
polymorphisms (SNPs) and to discern splice variants (37). There are several issues to
consider when selecting oligonucleotide probes.

One is the probe length. Currently, probes used in major commercial platforms can be either
short (20-30 mers) or long (50-70 mers) oligonucleotides (see Table 1). It was expected that
the length of the probes would be associated with sensitivity, signal strength, and specificity
(45). For optimal intensity measure, Chou et al. suggested to use long probes (e.g., 150 mer)
if no experimental validation is provided (see Figure 1). Accurate gene expression
measurements can be achieved with multiple probes per gene, and fewer probes are needed
if longer probes rather than shorter probes are used. Comparing to cDNA microarrays, long
oligonucleotide microarrays have the advantages of i) distinguishing different transcripts for
the same gene or genes from the same gene family, ii) higher specificity, and iii) requiring
smaller quantities of mRNA (36, 43).

The gene region from which a probe is selected can greatly affect specificity and cross
hybridization. Coding regions are more conserved and show high degree of similarity with
other closely related genes. Hence, probes selected from coding region are the most
susceptible to cross-hybridization events. Most probe collections focus on 3’ UTR, in part
because of a presumption that oligo dT will be used to prime the RNA populations, and also
in part because sequence divergence is typically greater in such regions. However, with
more probes distributed in 3’ UTR and less distributed in coding region, it will provide less
discrimination among splice variants.

It is difficult to predict whether an oligonucleotide probe will bind efficiently to its target
sequence and yield a good hybridization signal on the basis of sequence information alone.
It was reported that very high sequence similarity can lead to cross-hybridization even when
the sequences have been pre-screened for contiguous perfect match. For example, Hughes et
al showed that 18 or more randomly placed mismatches per 60-mer can reduce hybridization
to background levels (13). They also suggested that the placement of distinguishing bases at
positions relative to the surface has a dramatic impact on the stability of the duplex and
therefore can be used to maximize specificity.

3.3. Tools for probe selection
As discussed by Tomiuk and Hofmann, the successful application of each DNA microarray
application, depending on the objective of the application, imposes certain criteria for
selecting appropriate probes (37). Software tools have been developed to allow users to
select appropriate probes or probe sets. Table 2 provides an overview of those tools. Most
tools address issues relevant to probe length, cross-hybridization, secondary structure, as
well as probe melting temperature.

Most software tools provide users with the freedom to select probe lengths to optimize the
performance (46-52). For example, Array Designer (46) allows users to choose specific
length for oligonucleotides or PCR primers. The sequence is broken down into small equal-
sized fragments according to the size chosen by the user, and then a specific probe is
designed for each target. Oligo Array 2.0 (47, 48) allows users to specify oligo length with a
range. OligoPicker (49, 50) allows users to choose oligo length from 20 bases to 100 bases
long, although it suggests 70 bases as the default. Oligodb (51, 52) treats oligo length one of
the required input parameters provided by users. Several tools try to select an optimal probe
length given a range (53-56). For example, PROBEWIZ (53, 54), which can design both
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oligo and PCR primer, lets users input both the minimum and maximum length of the
oligonucleotides or PCR primers, and tries to find the optimal length for the best
performance. Sarani (55) lets users choose a range of probe length, and automatically make
the decision. The Visual OMP (56) gives users flexibilityto either choose a certain oligo
length or let the system make decision.

Many oligonucleotide probe design tools take gene regions into consideration. For example,
Array Designer (46) allows users to choose their desired oligonucleotide location, such as
3’UTR, 5’UTR, or anywhere else in the sequence. In OligoArray 2.0 (47, 48), normally, the
input sequence reads backwards from the 3’ UTR using a moving window according to the
oligonucleotide length. The Oligodb (51, 52) lets users choose their desired oligonucleotide
probe location from the 5’ UTR to the 3’ UTR. The OligoPicker (49, 50) makes its oligo
probes lie as close to the 5’ UTR of the RNA as possible. The Visual OMP (56) can let users
choose the oligo probe location visually, and based on the choice, decides the right probe.

To avoid cross-hybridization, all probe design tools utilize BLAST to make sure the chosen
oligonucleotide probe or probe sets have the lowest similarity to the whole genome
comparing to other sequence fragments in the target sequence. For example, OligoPicker
(49, 50) uses contiguous base match and at the same time, to reduce the contribution to
cross-hybridization by the global similarity, oligonucleotides whose BLAST scores higher
than a pre-defined threshold value (around 96%) comparing to all sequences in the same
universe are rejected.

Most probe design tools try to avoid secondary structures so that the chosen probes have
higher sensitivity. Both OligoArray (47) and Oligodb (51, 52) use program mfold,
developed by Zuker et. al. (57), to predict and eliminate secondary structures. The Visual
OMP (56) can visually show the structure of each candidate probe so that users can easily
reject probes with secondary structures. OligoPicker (49) uses a self-complementary
likelihood method to predict secondary structures, and probe candidates are tested for
homology to the complementary strand of their cognate sequence using BLAST, but this
approach does not take into account the local concentration of the complementary sequence.

To ensure quantitative comparison of gene expressions, microarray hybridization conditions
should be similar for all genes in the study, therefore the melting temperature (Tm) of
probes should fall in a narrow range. Several tools consider the oligonucleotide melting
temperature as an important criteria to choose probes. Oligo Array 2.0 (47, 48) and Sarani
(55) apply the Nearest-Neighbor model using DNA parameters develop by SantaLucia et. al.
(58) to compute the Tm, and the following formula is used: Tm = (DH°/(DS° + R ln(DNA/
4)) -273.15, where R is the gas constant (1.9872 cal/K.mol) and DNA is the DNA
concentration. Oligodb (51, 52) uses a program called melting developed by Le Novère et.
al. (59), which is also based on nearest neighbor method, to calculate the Tm. The Oligodb
(51, 52) does not choose Tm to be an inclusion/exclusion criterion at the Tm computing
stage, since the G/C content, which mainly determines Tms, typically varies at scales longer
than the transcript length. The user may choose those specific oligos from the output list that
fit best the individual respect to Tm and the position in the transcript. OligoPicker (49, 50)
first calculates the melting temperature of all sequence using the formula: 64.9 + 41
×gcCount/oligoLength − 600/oligoLength where gcCount is the number of all Gs and Cs in
an oligo and the molar sodium concentration is taken to be 0.1 M (60), and then choose
those candidates whose Tm is with 5°C of the median Tm. Visual OMP (56) utilizes a N-
Stage model to predict the Tm of a duplex within 2°C on average.
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4. Redefinition of Affymetrix Genechips
In order to accomplish high sensitivity and specificity in the presence of a complex
background, Affymetrix introduced a system that entails the use of a series of specific and
non-specific gene probe sets that are intended to result in a more accurate discrimination
between true signal and random hybridization. Each probe set usually consists of 8 to 16
pairs of probes (PM, MM)s where PM probes are perfect matching 25-mer oligos to the
target transcripts and MM probes contain sequences with the 13th position of the
corresponding PM sequence being modified to the complement nucleotide. Affymetrix
claims that probes of approximately 25 nucletoides long provide a very effective balance
between signal intensity and related sequence discrimination which allows expression
monitoring of thousands of targets. The use of (PM,MM) pairs and multiple pairs for a target
transcript allows both absolute and comparative analysis and compensates for variations and
noises in the complex background. Affymetrix uses one-color method for obtaining
expression measures.

4.1. Issues related to the Affymetrix probes
Probe sets in Affymetrix arrays were either selected based on a set of heuristic rules or on
some thermodynamic models (61, 62). For example, candidate probes of the first generation
of arrays were chosen from 600 bases at 3’UTR region of each target sequence and rules
were used to ensure probes to be unique and have relatively good hybridization performance
(61). Mei et al proposed a probe selection method based on the influence of empirical
factors on the effective fitting parameters of a thermodynamic model. Probe sets were
selected to optimize with respect to probe sensitivity, independence (degree to which probe
sequences are non-overlapping), and uniqueness (lack of similarity to sequences in the
expressed genomic background) (62).

Table 3 shows examples of the two major problems that necessitate redefining probe sets in
the Affymetrix U133A chips for experiments identifying differently expressed transcripts.

A probe set containing some probes that match multiple transcripts - Probes within a probe
set do not all target the same set of transcripts. The expression levels measured by those
probes will introduce an inconsistency in the quantitation algorithms.

• Affymetrix had originally represented the human genes CLEC2D by one probe set
220132_s_at and NPM1 by two probe sets, 221691_x_at and 200063_s_at.

• Currently, three RefSeqs represent CLEC2D and three RefSeqs represent NPM1.

• The table entries for each probe set (row) identify the probes that match the
RefSeqs (columns). For example, all 11 probes in probe set 220132_s_at match
NM_013269.

• The level of hybridization to probe set 200063_s_at provides a consistent estimate
of the composite expression for RefSeqs NM_002520 and NM_199185 of NPM1.
The expression of RefSeq NM_001037738 is completely 'transparent' to this probe
set. However, the expression of RefSeq NM_001037738 is reflected in the
hybridization of probe set 221923_s_at.

• In contrast, if we are using probe set 221691_x_at to measure the expression of
transcripts of NPM1, the level of hybridization to the probe set could reflect cross-
hybridization with RefSeqs of CLEC2D.

Some probes in a probe set do not match the target transcripts – Several probes within a
probe set may not match any of the transcripts for the gene that Affymetrix had originally
designated for the probe set. The expression levels measured by those probes do not reflect
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the composite expression of the transcripts of the intended gene and will introduce an
inconsistency in the quantitation algorithms.

• Probes 7 and 8 of 221691_x_at do not target NM_199185 that represents NPM1,
but they do target all three transcripts for CLEC2D.

• Therefore, the expression levels measured by 221691_x_at do not consistently
reflect the composite expression of the RefSeqs of the intended gene.

4.2. Tools, resources, and studies using Affymetrix probe sequence data
After the probe sequence information was made public by Affymetrix, several recent papers
made use of it for improving accuracy and cross-platform consistency (17, 18, 31-33, 63,
64). Table 4 provides an overview of tools, resources, and studies on incorporating probe
sequence data into microarray data analysis.

The first tool available to use for redefining chip definition files (CDFs) is by Gautier et al.
(64) Recognizing the need to incorporate the latest genomic knowledge into microarray data
analysis, they developed an open-source tool, an R package “altcdfenvs” which was
integrated into the microarray data analysis flow through Bioconductor, an R software
system for computational biology and bioinformatics (65). Only sequences in RefSeq were
used and the mapping was done using “matchprobes”, a method in altcdfenvs utilizing the
standard C library string. The package has been used by DeCook et al. to generate
alternative chip definition files (CDFs) to remove unwanted probe pairs (66). Carter et al.
(18) also utilized the tool to redefine Affymetrix probe sets by sequence overlap with cDNA
microarray probes for the purpose of reducing cross-platform inconsistencies in cancer-
associated gene expression measurements. In Carter's study, probes targeting identical
transcript sequence regions were shown to give substantially stronger concordance than
probes that target identical contiguous transcript molecules at different sequence regions.
The study suggests that discrepancies between different platforms are caused by improper
cross-platform probe matching. Recently, a web resource, AffyProbeMiner, was developed
by Liu et al. to provide pre-computed redefined CDFs as well as software for generating
redefinitions (67). Additionally, a web interface is also available. In AffyProbeMiner, probes
are grouped into a set if they are mapped to a consistent set of transcripts or genes based on
a collection of complete CDSs (CCDSs) obtained from GenBank and RefSeq.

Besides these tools, there are several resources distributing redefined CDFs. One is the work
of Dai et al. which provides extensive resources for re-analyzing GeneChip data based on
redefining CDFs (33). They reorganized probes on more than a dozen popular GeneChips
into gene-, transcript- and exon-specific probe sets utilizing up-to-date genome, cDNA/EST
clustering, and single nucleotide polymorphism information. The redefined CDFs were
originally available for human, mouse, and rat chips. Recently, several other chips were
added. Another resource is by Harbig et al. that used BLAST to match probes with
documented and postulated human transcripts and redefined about 37% of the probes on the
“U133 plus 2.0” array (31). They found that the original Affymetrix annotation was
compromised because of the potential for cross-hybridization with splice variants or
transcripts of other genes containing matching sequences. More than 5,000 probe sets were
shown to hybridize with multiple transcripts. They proposed a sequence-based identification
method and redefined probes to the most closely-related RefSeq sequences. Another
resource distributing redefined CDFs is AffyProbeMiner (67), redefined CDFs according to
Entrez genes and complete CDSs (CCDSs) are downloadable from its website.

Several other studies aimed to improve the consistency among different generations of
GeneChips (17, 63). For example, utilizing the probe sequence information, Elo et al.
verified probes according to NCBI mRNA sequences by searching all PM probes against the
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mRNA sequences using BLAT v. 26 (68). Probes mapped to the same gene according to
Entrez GENE were grouped as an alternative probe set. Then they compared a method called
probe-level expression change averaging (PECA) to RMA and MAS5 and found that PECA
provided better agreement of differentially expressed genes between different generations of
GeneChips. Kong et al. used sequence information to increase the compatibility between
different generations of GeneChips by filtering probes that were not consistent with their
annotations according to the human genome build (17).

4.3. Some statistics of Affymetrix probes
We downloaded all probe sequence information as well as CDFs for each gene expression
Affymetrix chip. We obtained the mapping results of several human chips with the current
human genome build. We then verified that probes in Affymetrix chips were designed
towards 3’UTR end.

Since Affymetrix human arrays were designed using previous version of human genome
build, some of the probes may fail to be matched to the current human genome build.
Additionally, some of the probes may correspond to multiple locations in the genome. We
mapped all sequences in four of the human arrays (U95Av2, U133A, U133B, U133Plus2) to
the current human genome build (March, 2006) and then categorized the mapping results
into four categories: no exact matching (i.e., 0), unique exact matching (i.e., 1), matching to
two locations (i.e., 2), and matching to more than two locations (i.e., >2). Figure 2 shows the
results of mapping probes in several Affymetrix human arrays to the current human genome
build (March 2006 release). For all chips, the number of probes which can be mapped
uniquely to the current genome build is around 80% (March, 2006). However, around
7-10% of the probes failed to be mapped to the current genome and the remaining 7-10%
probes were mapped to multiple segments in the genome.

Probes in traditional Affymetrix chips are skewed towards the 3’ UTR end. Figure 3 shows
the distribution of probes for 51 gene expression Affymetrix chips. The X-axis denotes the
distance to the 3’UTR end and the Y-axis denotes the percentage of probes. From Figure 3,
we can see that probes in all chips were skewed towards the 3’ UTR end. Such skewed
distribution makes it very difficult to disambiguate differential expression of different splice
forms of the same gene.

5. Comparison Analysis of Different Remapping Methods
Probes in Affymetrix were selected based on the most up-to-date genomic knowledge
available at the time of fabrication. As accuracy and completeness in our knowledge of
genomic sequences increase, the sequence knowledge used to select those probes may be
incorrect now and annotations for them need to be corrected. As we have shown, probes can
be regrouped according to different conditions such as genes, transcripts, UniGene clusters,
or complete CCDSs. Using two chip types, U95Av2 and U133A, we performed a study to
compare different types of redefined CDFs with respect to overlapping among different
generations and cross-generation consistency.

5.1. Redefinition used
We downloaded a recent version (version 7) of three types of redefined CDFs of U95Av2
and U133A from the resource website developed by Dai et al.(33), namely UniGene-based,
ENTREZ GENE-based, and RefSeq-based. All redefined probe sets in Dai's redefined CDFs
contain at least three probe pairs. For UniGene-based redefinition, all PM probes in a probe
set must match continuously on the genomic sequence in the same direction with only one
perfect match for each probe in the most current genome assembly and all PM probes in the
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probe set must also correspond to the same UniGene Cluster. Probes with more than one
perfect hit on the corresponding genomic sequence were removed. In ENTREZ GENE-
based and RefSeq-based redefined CDFs, one probe can appear in multiple probe sets. We
also assembled redefined CDFs through AffyProbeMiner web site (August 4, 2006) where
probes were grouped based on CCDSs (CCDS) (67). To be consistent, we required all probe
sets in the redefined CDFs according to CCDSs contain at least three probe pairs. However,
probes mapped to multiple CCDSs were kept in CCDS-based redefinition.

We calculated percentages of probes included in the redefined CDFs as well as percentages
of probe sets overlapping between U95Av2 and U133A.

5.2. Data set
For the cross-generation consistency, we used the public data sets from the microarray
studies of Yeoh et al. and Ross et al. (69, 70). The data set contained expression data from
patients with different leukemia subtypes A total of 360 patient samples were hybridized to
U95Av2 arrays and 132 of the same samples were also hybridized to U133A arrays. We
selected 40 samples for our analyses, which were hybridized to both array types and and
represented two genetically distinct leukemia subtypes: 20 TEL-MEL1 samples and 20 MLL
samples.

5.3. Consistency assessment
The comparison study of assessing the consistency across U95Av2 and U133A was
conducted in two different ways. One way is to look at the correlation of the gene expression
values after redefinition within each pair. A high correlation indicates good consistency
between the two platforms. For each of the leukemia subtype, we used RMA to obtain the
gene expression values and computed the correlation of the gene expression values for genes
that appear in both platforms (U95Av2 and U133A) (71). Another way is to assess the
agreement between different platforms when selecting differentially expressed genes
between two different subtypes. We computed the proportion of common selected genes
among the top K differentially expressed from the two platforms. A high proportion of
common genes indicate good agreement between the platforms. We used SAM to select
differentially expressed genes (72). We implemented the data analysis using a microarray
analysis platform, Bioconductor (http://www.bioconductor.org)(65).

5.4. Comparison outcome
Figure 4 shows the comparison of the four types of redefined CDFs between U95Av2 and
U133A according. For each of the three types of Dai, over 95% of probe sets in U95Av2
were overlapped with around 65% of those in U133A. Around 70% of probes were included
in the redefined CDFs in both chips of Dai's redefined CDFs. For CCDS-based CDFs,
81.7% in U95Av2 were overlapped with 53.9% in U133A. Around 80% of probes were
included in the redefined CDFs.

The cross-generation consistency results are presented in Figure 5 and Figure 6. Figure 5
shows the boxplot of the correlation. As one can see, using the correlation as a measure of
consistency, the REFSEQ and CCDS annotations give better results than ENTREZ Gene
and UniGene. From Figure 6a, ENTREZ Gene has better performance if the number of top
selected genes is less than 100 when using the proportion of common selected genes among
the top K differentially expressed genes as the measure of consistency. However, when the
number of top selected genes was over 100, ENTREZG, UniGene, and REFSEQ tended to
exhibit similar performance. Comparing to ENTREZG, UniGene, and REFSEQ, the
redefinition according to CCDs tends to have poor consistency between different platforms.
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The biology behind DNA microarray suggests that expression levels measured from
experiments are on transcript level, not gene level. With the estimation of 30-99% genes
exhibiting alternative splicing, DNA microarrays should be designed to permit delineation
of differential expression of different transcripts representing alternative splice variants.
However, probes in the traditional Affymetrix chips are skewed towards the 3’ UTR end.
Such distribution makes it hard to differentiate splice variants. Luckily, the new generation
of microarrays has been designed to have such power. For example, the probes in ExonHit
microarrays are uniformly distributed along the entire lengths of genes (73). Among the four
redefinition methods, UniGene and ENTREZ Gene represent gene-level analysis while
REFSEQ and CCDS represent transcript-level analysis. REFSEQ and CCDS have better
consistency when using the correlation of common targets between different generation as
the consistency measure. CCDS are more comprehensive but less accurate comparing to
REFSEQ with respect to splice variants since it contains complete coding sequences from
GenBank without expert curation.

Most microarray experiments were conducted to identify differentially expressed transcripts.
When using the proportion of common selected targets among the top K differentially
expressed targets as the measure of consistency, percentages of common targets in different
generations tended to be highly related to the results. For example, according to UniGene,
ENTREZG, and REFSEQ, about two thirds of the redefined probe sets in redefined CDFs
for U133A are paired with redefined probe sets for U95Av2. They tend to have similar
results when K, the number of top selected genes considered, is at least 100. However, only
half of the probe sets in CCDS-based CDFs for U133A are paired with those for U95Av2.
Consequently, the proportion of common top selected genes tends to be smaller. The
correlation between the proportion of common top selected genes and the percentage of
common genes for redefined CDFs for U133A is over 95% when K is at least 100. Figure 6b
shows the results when taking the percentage of common targets for redefined U133A CDFs
into consideration. We can see that different redefinition methods tend to have similar
agreement between U95Av2 and U133A when the number of top selected genes considered
is at least 100.

6. Conclusion
In this paper, we have reviewed probes and probe sets used in DNA microarrays. Successful
microarray applications begin with selecting proper probes that have high specificity and
sensitivity. For cDNA spotted microarray, sequence-verification of clones before spotting is
also important. Currently, various probe design tools can be used to select high quality
probes based on our current genomic knowledge.

Our review and study suggest that the original Affymetrix probe set definition is problematic
in many aspects according to the current genomic knowledge. The probe set definition issue
is of critical importance, as it can dramatically influence the interpretation and
understanding of expression data derived from microarray experiments when using
Affymetrix. With several resources available, it is possible to re-analyze microarray data
using redefined probe sets and enhance the accuracy of microarray data analysis. Therefore,
we recommend to re-interpret existing microarray data with more accurate an dup-to-date
genomic knowledge.
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Abbreviations

CCDS complete coding sequence)

3’ UTR 3’ untranslated region of mRNA

5’ UTR 5’ untranslated region of mRNA 5’

RMA Robust Multi-array Average or Robust Multi-chip Average

SAM Significant Analysis of Microarrays

CDF Chip Definition File
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Figure 1.
(I) Effect of probe length on the coefficient of variation (CV) in the hybridization signal
using different length probes for the same genes. (II) Effect of the number of probes per
gene on measurement bias.
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Figure 2.
The mapping results of four Affymetrix human chips to the human genome build (March
2006).
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Figure 3.
The distribution of probes regarding to the distance to the 3’UTR end for 51 Affymetrix
gene expression chips when mapping to complete CDS sequences.
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Figure 4.
Statitistics of four three redefined CDFs for two array chips: U95Av2 and U133A: UniGene-
based redefinition, Entrez-Gene redefinition, CDSs-based, and RefSeq redefinition: (a)
Venn-diagram of overlapping between two chips, and (b) percentage of probes included in
the redefined probe sets.

Liu et al. Page 19

Front Biosci (Elite Ed). Author manuscript; available in PMC 2014 January 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
The RMA intensity correlation between technical replicates for two data sets (TEL-AML1
and MLL) on two array generations: U95Av2 and U133A.
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Figure 6.
The agreement of U95Av2 and U133A assessed using the proportion of the common top
differentially expressed genes between two subtypes (TEL-AML1 and MLL). The bottom
figure is the result after removing the difference caused by the different percentages of
number of common genes in different redefined CDFs. UG stands for UniGene and
ENTREZG represents ENTREZ GENE.
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Table 1

Probe resources and probe types for some commercial platforms.

Company Organisms Resources Probe Types

Agilent

Human
Mouse
Rat

LifeSeq
RefSeq
Genbank NIEHS, TRC, PG, Refseq, Ensembl,
RIKEN
NIA Mouse Gene Index

60-mer per target

Human
Mouse
Rat

LifeSeq
UniGene Spotted cDNA

Affmertix
Human
Mouse
Rat

UniGene 11 to 20 (PM, MM) pairs of 25-mers
Per target

CodeLink
Human
Mouse
Rat

UniGene
RefSeq
dbEST
LifeSeq

30-mer per target

Applied Biosystems genome survey
array

Human
Mouse
Rat

GenBank
Refseq
Celera Genomics
In-house transcripts
Mouse Genome Sequencing Consortium
Genome Sequencing and Annotation

60-mer per target

MVG catalog array
Human
Mouse
Rat

GenBank
RefSeq 50-mer per target

Stanford Functional Genomics
Facility Arrays

Human
Mouse

IMAGE CGAP clone set
RIKEN full-length cDNA clones
NIA 15K Clone set

Spotted cDNA
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