

NIH Public Access

Author Manuscript

Food Chem. Author manuscript; available in PMC 2015 March 01.

Published in final edited form as:

Food Chem. 2014 March 1; 146: 289–298. doi:10.1016/j.foodchem.2013.08.089.

Profiling polyphenols of two diploid strawberry (*Fragaria vesca*) inbred lines using UHPLC-HRMSⁿ

Jianghao Sun^a, Xianjin Liu^b, Tianbao Yang^c, Janet Slovin^d, and Pei Chen^{a,*}

^aU.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Food Composition and Methods Development Laboratory, Beltsville, MD 20705, United States

^bJiangsu Academy of Agricultural Sciences, Institute of Food Safety and Quality, Najing, Jiangsu Province, China

^cU.S. Department of Agriculture, Agricultural Research Service, Food Quality Laboratory, Beltsville, MD 20705, United States

^dU.S. Department of Agriculture, Agricultural Research Service, Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MD 20705, United States

Abstract

Phenolic compounds in the fruits of two diploid strawberries (*Fragaria vesca* f. semperflorens) inbred lines-Ruegen F7-4 (a red-fruited genotype) and YW5AF7 (a yellow-fruited genotype) were characterised using ultra-high-performance liquid chromatography coupled with tandem high-resolution mass spectrometry (UHPLC-HRMSⁿ). The changes of anthocyanin composition during fruit development and between Ruegen F7-4 and YW5AF7 were studied. About 67 phenolic compounds, including taxifolin 3-*O*-arabinoside, glycosides of quercetin, kaempferol, cyanidin, pelargonidin, peonidin, ellagic acid derivatives, and other flavonols were identified in these two inbred lines. Compared to the regular octoploid strawberry, unique phenolic compounds were found in *F. vesca* fruits, such as taxifolin 3-*O*-arabinoside (both) and peonidin 3-*O*-malonylglucoside (Ruegen F7-4). The results provide the basis for comparative analysis of polyphenolic compounds in yellow and red diploid strawberries, as well as with the cultivated octoploid strawberries.

Keywords

Strawberry; Fragaria vesca; UHPLC; HRMS; Flavonoids; Anthocyanins

1. Introduction

Strawberries are an economically important horticultural crop and much research has been conducted on maximising fruit growth in the field and increasing postharvest fruit quality (Goulas & Manganaris, 2011; Reganold et al., 2010; Shin et al., 2008; Villa-Rojas, Lopez-Malo, & Sosa-Morales, 2011; Wojdylo, Figiel, & Oszmianski, 2009; Yang et al., 2010). In 2011, the worldwide production of strawberries was near 4.6 million tons and the value of

Appendix A. Supplementary data

^{*}Corresponding author. Tel.: +1 301 504 8144; fax: +1 301 504 8314. pei.chen@ars.usda.gov (P. Chen).

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.foodchem. 2013.08.089.

strawberry production in the United States valued at over \$2 billion (www.faostats.fao.org). Commercial strawberry *Fragaria* × *ananassa* is an octoploid ($2n = 8 \times = 56$) hybrid of two octoploid species, Fragaria chiloensis and Fragaria virginiana, native to America (Sun & Shi, 2008). Fragaria vesca is a widely distributed diploid $(2n = 2 \times = 14)$ species whose ancestor is believed to be an ancestral genome donor to the octoploid strawberries. The small size of the F. vesca plant, its transformability with Agrobacterium, its small genome and available genome sequence, and the existing inbred lines support F. vesca as a useful reference plant for strawberry {Shulaev, 2011 #11;Slovin, 2009 #12;Kim, 2003 #16263}. Strawberry fruits contain high levels of vitamin C, folate, and phenolic compounds, and are considered to be beneficial to human health. Thus, many studies have been done on the characterisation of these secondary metabolites, their biosynthesis, and their accumulation during fruit development (Bianco et al., 2009; Zhang et al., 2011). The phenolic compounds of regular strawberry fruits, including anthocyanins, proanthocyanindins, flavonols, flavanols, and derivatives of hydroxycinnamic and ellagic acid, are well-studied (Aaby, Ekeberg, & Skrede, 2007; Aaby, Mazur, Nes, & Skrede, 2012; Aaby, Wrolstad, Ekeberg, & Skrede, 2007; Buendia et al., 2010; Hilt et al., 2003; Kelebek & Selli, 2011; Maatta-Riihinen, Kamal-Eldin, & Torronen, 2004). However, there are not much detailed polyphenol content studies on F. versa. In a recently published study on F. versa, agrimoniin was isolated in the fruit of F. vesca and identified as the one of the main ellagitannins (Vrhovsek et al., 2012). High-resolution mass spectrometry (HRMS) has gained popularity in the last few years. HRMS instruments are being used in both quantitative and confirmative food analysis (Kaufmann, 2012). The higher resolution of HRMS provides enough resolving power to calculate the molecular formula for an analyte, so a suggested structure can be confirmed or denied. For example, HRMS can reliably differentiate between a glucosyl ($C_6H_{10}O_5$) and caffeoyl ($C_9H_6O_3$), a rhamnosyl ($C_6H_{10}O_4$) and a coumaroyl ($C_{9}H_{6}O_{2}$), which are commonly seen substituent groups in polyphenols from strawberry while these two pairs of substituent groups exhibit the same mass weights on unit mass spectrometers.

Two inbred lines, *F. vesca*, YW5AF7 and Ruegen F7-4 have yellow fruit with tan achenes and red fruit with red achenes respectively, and were specifically developed for genetic and genomic studies (Kim et al., 2003). To assist the future molecular, genetic, and genomic studies of *F. vesca*, it is necessary to perform a detailed study on the polyphenols in these two diploid lines. Thus an ultra-high-performance liquid chromatography (UHPLC) with diode array detection (DAD) and multi-stage high-resolution mass spectrometry (HRMSⁿ) detection method was established for this purpose, which leads to the identification of 67 phenolic compounds, including taxifolin 3-*O*-arabinoside, glycosides of quercetin, kaempferol, cyanidin, pelargonidin, peonidin, ellagic acid derivatives, and other flavonols.

2. Experimental

2.1. Materials

Diploid strawberry (*F. vesca*) inbred lines YW5AF7 and Ruegen F7-4, as well as octoploid strawberry (*F. × ananassa*) cv. Fort Laramie, were grown in a greenhouse with a diurnal rhythm of 16 h light and 8 h darkness following normal cultivation practices. Five fruits (octoploid) and 20 fruits (diploids) were collected from the greenhouse. The fruits at different stages were classified based upon the fruit size and colour of achenes and receptacles. *Green:* small fruit with green achene and receptacle; *turning:* fruit with white receptacles and tan (YW5AF7 and Fort Laramie) or red (F7-4) achenes; *ripe:* ripe fruit with yellow (YW5AF7) or red (F7-4 and Fort Laramie) receptacles (Figure S1). The fruit collection and extraction experiments were repeated at least three times. After harvest, all

the fruits from different stages were washed in water, cut into quarters, immediately frozen in liquid nitrogen and kept at -80 °C for future use.

HPLC-grade methanol, acetonitrile, and formic acid were purchased from Sigma-Aldrich (St. Louis, MO). Pelargonidin 3-*O*-glucoside, cyanidin 3-*O*-glucoside, peonidin 3-*O*-glucoside, ellagic acid, quercetin 3-*O*-glucuronide, quercetin 3-*O*-glucoside, kaempferol 3-*O*-glucuronide and (+)-catechin were purchased from Chromadex Inc. (Irvine, CA).

2.2. Sample preparation

One gram of each freezed-dried sample was homogenised with 50 mL of extraction solution (methanol/water/formic acid; 60:40:1 v/v/v) using an Ultra Turrax T18 Basic Disperser (IKA Werke GmbH & Co, Staufen, Germany) for 1 min on ice followed by sonication in an ultrasound bath for 15 min (Branson 3200; Branson, Danbury, CT). The homogenates were then centrifuged at 5000g for 10 min (IEC clinical centrifuge; IEC, Needham Heights, MA). The upper layer was filtered through a 0.22-µm PTFE filter, transferred into a 2-mL HPLC vial, and 2 µL was injected for UHPLC-HRMSⁿ analysis.

2.3. The UHPLC-HRMSⁿ conditions

The UHPLC-HRMSⁿ system consisted of an LTQ Orbitrap XL MS with an Accela 1250 binary pump, a PAL HTC Accela TMO autosampler, an Accela PDA detector (Thermo Fisher Scientific, San Jose, CA), and an Agilent G1316A column compartment (Agilent, Santa Clara, CA). The separation was carried out on a Hypersil Gold C_{18} column (200 × 2.1 mm, 1.9 µm particle size; Thermo Fisher Scientific, San Jose, CA) with a flow rate of 0.3 mL/min. Mobile phase A was H_2O (0.1% formic acid) and B was acetonitrile (0.1% formic acid). The linear gradient was 4–20% B (v/v) from 0 to 40 min, to 35% B at 60 min, to 100% B at 61 min, and was held at 100% B to 65 min for column washing. The column temperature was set at 60 °C and UV/Vis spectra were recorded between 200 and 700 nm. High-accuracy mass measurements were carried out under both positive and negative ionisation modes. The MS conditions were set as follows: sheath gas at 70 (arbitrary units), auxiliary and sweep gas at 10 (arbitrary units), spray voltage at 4.5 kV for positive ionisation mode and 4 kV for negative ionisation mode, capillary temperature at 250 °C, capillary voltage at 40 V for positive ionisation mode and -50 V for negative ionisation mode, and tube lens at 150 V. For FTMS, the mass range is from m/z 100 to 1500 with a resolution of 15,000, AGC target value of 200,000 and 100,000 in full scan and FTMS/MS AGC target at 1e5, isolation width of 1 amu, and max ion injection time of 750 ms; the ion trap settings used were: AGC target value of 30,000 and 10,000 in full scan and MSⁿ mode, respectively, maximum ion injection time of 200 ms. The most intense ion was selected for the datadependent scan with normalisation collision energy at 35%.

3. Results and discussions

The basic structures of the above mentioned compounds are shown in Figure S2. Since different classes of phenolic compounds exhibit absorbance maxima at different wavelengths, two wavelengths were selected for real-time monitoring: 280 nm for non-anthocyanin phenolic compounds and 520 nm for anthocyanins. HRMSn detection in both the positive and the negative ionisation modes was used to obtain information on the structural features and the conjugated forms of phenolic compounds. Identification of the phenolic compounds was based on chromatographic behaviour, UV/Vis and mass spectra, accurate mass measurements, consecutive MS²–MS⁴ analyses, and comparison with data in the literature (Buendia et al., 2010; Kelebek & Selli, 2011; Maatta-Riihinen et al., 2004; Mikulic-Petkovsek et al., 2013; Zhang et al., 2011; Zheng, Song, Doncaster, Rowland, & Byers, 2007). Seventy-four compounds, including anthocyanins, dihydroflavonols and

flavonols, flavan-3-ols, proanthocyanidins, and ellagic acid and its derivatives were identified from the two *F. vesca* inbred lines. The basic structures of the abovementioned compounds are shown in Fig. 1 and summarised in Table 1, where the compounds are numbered according to their retention times as shown in typical chromatograms (Fig. 1).

3.1. Identification of anthocyanins in F. vesca var. Ruegen F7-4

Fig. 1(A) shows the HPLC-UV (520 nm) chromatogram of Ruegen F7-4 ripe fruits (stage 3). Previous reports of anthocyanins in strawberries were used to assist in the identification of the anthocyanins in Table 1 in addition to UV and HRMSⁿ data (Aaby et al., 2007; Buendia et al., 2010; Hilt et al., 2003; Kelebek & Selli, 2011; Zhang et al., 2011).

Peak 20 with M⁺ at m/z 449.1071 (C₂₁H₂₁O₁₁, -1.53 ppm) and a product ion at m/z 287 (-162 amu, hexose moiety) was identified as cyanidin 3-O-glucoside. Peak 24, the major peak in Ruegen F7-4 with M⁺ at m/z 433.1122 (C₂1H₂1O₁₀, 1.58 ppm) and a major MS² product ion at m/z 271(-162 amu, hexose moiety), was identified as pelargonidin 3-Oglucoside. Peak **30** with M⁺ at m/z 463.1228 (C₂₂H₂₃O₁₁, 1.49 ppm) and a MS² product ion at m/z 301(-162 amu, hexose moiety) was identified as peonidin 3-O-glucoside. Peak 35 with $[M]^+$ at m/z 535.1072 (C₂₄H₂₃O₁₄, -2.0 ppm) and two major product ions at m/z 449 and 287 (-86 amu, and then -162 amu, corresponding to malonyl and glucose moiety, respectively) was identified as cyanidin 3-O-malonylglucoside. Peak 41 showed the M⁺ ion at m/z 519.1126 (C₂₄H₂₃O₁₃, -1.38 ppm) and a neutral loss of 248 amu (malonyl-hexosyl residue) for its product ion and was identified as pelargonidin 3-O-malonylglucoside. Peak 44 showed the M⁺ at m/z 549.1226 (C₂₅H₂5O₁₄, -1.38 ppm) and a neutral loss of 248 amu (malonyl-hexosyl residue) for its product ion and was identified as peonidin 3-Omalonylglucoside. Cyanidin and pelargonidin glycosides are commonly found in cultivated strawberry (F. × ananassa var. Fort Laramie), but peonidin 3-O-glucoside and peonidin 3-O-malonylglucoside were identified in F. vesca var. Ruegen F7-4 for the first time. However, YW5AF7 ripe fruits (stage 3) only contain pelargonidin 3-O-glucoside.

3.2. Identification of non-anthocyanin phenolic compounds in Ruegen F7-4 and YW5AF7

Fig. 1 (B) shows the HPLC-UV profiles at 280 nm of Ruegen F7-4 ripe fruits (stage 3). More than sixty non-anthocyanin phenolic compounds were identified. Unlike anthocyanins, the Ruegen F7-4 and YW5AF7 exhibited very similar profiles and all non-anthocyanin phenolic compounds were found in both genotypes (details discussed below). However, the phenolic profiles differed from those of cultivated strawberries previously reported in the literature (Bianco et al., 2009; Buendia et al., 2010; Kelebek & Selli, 2011; Zhang et al., 2011).

3.2.1. Dihydroflavonol and flavonols—Peak **45** exhibited UV/Vis absorption maxima at about 234 and 290 nm. The HRMS gave a deprotonated $[M-H]^-$ ion at m/z 435.0321, suggesting the formula of $C_{20}H_{19}O_{11}$ (0.33 ppm). The MS² major product ion was m/z 303 (-132 amu, pentose), the MS³ and the MS⁴ spectra of peak **45** were consistent with the MS² and the MS³ spectra of taxifolin. Hence this compound was identified as taxifolin 3-*O*-arabinoside, a compound previously reported in cultivated strawberry roots but not in fruits (Ishimaru, Omoto, Asai, Ezaki, & Shimomura, 1995). Peak **29** with m/z at 447.0927 (C₂1H₁₉O₁₁, -1.22 ppm) and a major product ion at m/z 285 (-162 amu: hexose) was identified as kaempferol 3-*O*-glucoside. Peak **46** (C₂₁H₂₀O₁₂) with [M–H]⁻ ion at m/z 463, a major MS² product ion at m/z 301, and corresponding MS³ product ions at m/z 151 and 179, was identified as quercetin 3-*O*-glucoside. Similarly, peak 54 (C₂₃H₂₂O₁₃) was identified as quercetin-acetyl-hexoside; and peaks **65** and **68** were identified as kaempferol 3-*O*-acetylhexosides.

3.2.2. Flavan-3-ols and proanthocyanidins—(+) Catechin, B type proanthocyanidin dimers, B type proanthocyanidin trimers, and B type proanthocyanidin tetramers were found in these two genetically improved strawberries using HRMSⁿ data, UV spectral data, and literature reports. Peak 14, with a deprotonated molecule ion $[M-H]^-$ at m/z 289 (C₁₅H₁₃O₆) and characteristic MS² ions at m/z 245, 205, 231, and 179, was identified as (+)-catechin. Peak 13 ($[M-H]^-$ at m/z 577.1346, $C_{30}H_{25}O_{12}$, 0.95 ppm, primary MS² ion at m/z 577, -152 amu via a characteristic fragmentation pathway by retro Diels-Alder reaction) was identified as a proanthocyanidin dimer of the B type catechin–catechin (Aaby et al., 2007). Peak 15 was identified as a B type proanthocyanidin trimer. Its $[M-H]^-$ ion was at m/z 865.1970 $(C_{45}H_{37}O_{18}, -1.82 \text{ ppm})$ and MS² ions were at m/z 695, 739, 713, 577, 425, and 287. The MS^3 ions of m/z 695 gave fragment ions at m/z 543, 451, 289, and 243. Using the fragment pattern, the sequence of this trimer was epicatechin-epicatechin-epicatechin. Peak 16 had an $[M-H]^-$ ion at m/z 1153.2596 (C₆₀H_{4s9}O₂4, -1.98 ppm) and was tentatively identified as an isomer of a B type proanthocyanidin tetramer according to its characteristic MS^2 ions at m/z865, 1135, 1027, 983, 695, 575 and 407. It was composed of four epicatechin units. Peak 19 had $[M-H]^-$ at m/z 561.1393 (C₃₀H₂₅O₁₁) and MS² ions at m/z 289, 543, and 435. The compound was identified as epiafzelechin-epicatechin. The fragmentation pathway of peak **19** was different from that of the B-catechin dimer in strawberries described in a previous study (Aaby et al., 2007). Peak 21 had $[M-H]^-$ at m/z 849.2023 (C₄₅H₃₇O₁₇), characteristic MS² ions at *m*/*z* 801, 697, 577 (base peak obtained after a loss of 272 amu), 559, 425, 407, and 287. The MS³ spectra of the MS² base peak (m/z 577) gave ions at 425, 407, and 289 (-288 amu, epi catechin) and corresponded to B type proanthocyanidin trimer of the type epiafzele-chin-epicatechin-epicatechin (Aaby et al., 2007; Hilt et al., 2003).

3.2.3. Ellagic acid and its Derivatives—Peak **39** had $[M-H]^-$ at m/z 300.9983 (C₁₄H₅O₈, -0.97 ppm) and MS² fragmentation ions at m/z 257, 229,185, and 157. It was identified as ellagic acid. The identity was confirmed with an ellagic acid reference standard. The UV/Vis spectra of peaks **30** and **37** suggested glycosylated forms of ellagic acid (*33*). Peak **30** with $[M-H]^-$ at m/z 463 (C₂₀H₁₅O₁₃) and the main MS² ion at m/z 301 (-162, hexose) was tentatively identified as an ellagic acid hexoside. Peak **37** had the $[M-H]^-$ at m/z **447** (C₁₉H₁₃O₁₂). Its main MS² product ion was at m/z 301 (MS³ ions at m/z 257, 229, and 185) and corresponded to ellagic acid. Peak **37** was identified as ellagic acid methyl pentoside. A similar compound has been previously reported in strawberries (Aaby et al., 2007).

Peak **62** (m/z 461.0725, C₂1H₁₇O₁₂, -0.107 ppm) is the major compound observed in the HPLC-DAD profiles for both Ruegen and YW5AF7. The maximum UV absorptions were at 243 nm and 375 nm. The characteristic MS² product ion at m/z 315 (-146 amu, methyl pentose) and its MS³ product ions at m/z 300 and its MS⁴ product ions at m/z 272, 271, 244 confirmed the identity of methylellagic acid. Hence, Peak **62** was identified as methylellagic acid methyl pentoside. Peaks **57** and **64** had the same m/z (461.0725) and exhibited similar fragmentation behaviour to that of peak **62**, except that the relative abundance of product ion at m/z 315 was different. These two compounds were tentatively identified as methylellagic acid methyl pentoside isomers. Peaks **61** and 67 had [M–H]⁻ ions at m/z 519 (C₂₃H₁₉O₁₄) with the MS² product ions corresponding to kaempferol glucoside (m/z 315) after the loss of the acetyl and hexosyl moieties (162 + **42** amu). They were identified as methylellagic acid 3-*O*-acetyl-hexosides. Similarly, Peak 56 (m/z 447.0563) was identified as methylellagic acid 3-*O*-pentoside. Similar compounds (methylellagic acid-pen-tose conjugates) have been previously reported (Aaby et al., 2007).

Peaks **5**, **6**, **8**, **9**,**17**, **26**, and **36** were identified as ellagitannins. Ellagitannins are hydrolysable tannins, since they are esters of hexahydroxydiphenic acid (HHDP: 6,6'-

dicarbonyl-2,2',3,3',4,4'-hexahydroxybiphenyl moiety) and a polyol, usually glucose, and in some cases gallic acid, which are commonly found in strawberries (Aaby et al., 2007; Kelebek & Selli, 2011; Vrhovsek et al., 2012). Typical losses during fragmentation of ellagitannins are galloyl (152 amu), HHDP (302 amu), galloyl-glucose (332 amu), HHDPglucose (482 amu), and galloyl-HHDP-glucose (634 amu). Recent research found that agrimoniin is one of the most abundant ellagitannins and sanguiin H-6 and lambertianin C are minor compounds in both *F. vesca* and *F. ananassa* D. (Vrhovsek et al., 2012). However, we did not find any of these three compounds in our two strawberry lines. Peak 8 had a $[M-2H]^{2-}$ ion at m/z 957.0535 (its isotopic distribution suggests it to be a doublecharged ion), implying the formula of $C_{82}H_{52}O_{55}$. Fragmentation of the double-charged ions gave single-charged MS² product ions at m/z 1557, 1224, 1099, 1096, 943, 930, 451, and 301. Thus Peak **8** has two more oxygen atom substituted in the structures than that of sanguiin H-6/agrimoniin. Similarly, Peak **9** ($C_{82}H_{52}O_{56}$) had three more oxygen atoms substituted in the structure in comparison to literature reports for sanguiin H-6/agrimoniin (Aaby et al., 2007; Vrhovsek et al., 2012).

Peak **5**, with $[M-H]^-$ at m/z 783 (C₃₄H₂₃O₂₂) and MS² fragmentations at m/z 481 (-302 amu, loss of HHDP) and 301 (-482 amu, loss of HHDP-glucose) was identified as bis-HHDP-glucose, previously reported in strawberries (Aaby et al., 2007). Peak **36** was identified as galloyl-bis-HHDP-glucose with $[M-H]^-$ at m/z 935 and MS² product ions at m/z 633 -02 amu, loss of HHDP) and 301 (332 amu, loss of galloyl glucose).

Peak **26** had an $[M-H]^-$ at m/z 635 (C₂₇H₂₃O₁₈), and a major MS² product ion at m/z 465 (-170 amu, gallic acid). The MS³ ion of m/z 465 was at m/z 313 (-152 amu, loss of galloyl unit). The ion at m/z 313 could be further fragmented into an MS⁴ product ion at m/z 169. Peak **26** was identified as tri-galloyl-glucose.

Peak **36** had a $[M-H]^-$ ion at 935.0771, and ions at m/z 633,m/z 463 and m/z 301 in the MS2 to MS3 specta, indicating the structure of galloyl-bis-HHDP-glucose.

3.2.4. Other compounds—Peak **12** ($C_7H_8O_6$) was identified as benzoic acid with the main MS² ion at *m/z* 143 (loss of CO₂). It was reported previously (Russell, Scobbie, Labat, & Duthie, 2009). Peak **32** was identified as a ferulic acid hexose derivative with [M–H]⁻ at *m/z* **449** and MS² ions at *m/z* 355, 329, 287, 269, and 193 (base peak 355) (Aaby et al., 2007). The major MS³ ion of *m/z* 355 was at *m/z* 193 (loss of a hexose unit). The fragmentation patterns were in agreement with previously published data (Aaby et al., 2007). Possible composition of Peak **32** could be ferulic acid, hexose, and a C₆H₆O group. Peak **1** (C₁₂H₂₂O₁₂) was identified as hexosyl-hexose and it is the sugar form that widely exists in fruits and vegetables (Kallio, Hakala, Pel-kkikangas, & Lapvetelainen, 2000). Peaks **2** and **3** (C₆H₈O₇) were tentatively identified as citric acid and its isomer (Kelebek & Selli, 2011). Peak **7** (C₁₂H₁₈O₈) was tentatively identified as furaneol glucoside, a compound previously reported in detached ripening strawberry fruits (Roscher, Bringmann, Schreier, & Schwab, 1998). Peak 11 (C₁₁H₁₂O₂N₂) was identified as tryptophan, which was reported in Chilean strawberry *F*. × *chiloensis* ssp. chiloensis (Cheel et al., 2005).

3.3. The chemical differences of F. vesca Ruegen F7-4 and YW5AF7 and F. × ananassa cv. Fort Laramie

The metabolite profiles of strawberry fruits are strongly affected by developmental, genetic, and environmental factors (Carbone et al., 2009). In previous publications, the difference between wild and cultivated strawberry species in the production of specific volatile terpenoid flavour components was studied using a combination of molecular and biochemical tools. The results suggest that domestication of strawberry has involved

selection for specific alleles in the cultivated species which contribute to a strongly modified flavour profile (Aharoni et al., 2004). In this investigation, we also found a significant difference between wild and cultivated strawberry species as shown by their phenolic profiles. The constituents found in octoploid strawberry F. × *ananassa* cv. Fort Laramie are shown in Fig. 2 and Table 2. The two major anthocyanins of Fort Laramie, cyanidin 3-*O*-glucoside and pelargonidin 3-*O*-glucoside, accounted for almost 100% of the total peak area in its HPLC chromatogram at 520 nm; on the other hand, there are many other anthocyanins in diploid strawberry Ruegen F7-4, such as peonidin 3-*O*-glucoside, peonidin 3-*O*-malonylglucoside, and pelargonidin 3-*O*-malonylglucoside.

The non-anthocyanin polyphenols in Fort Laramie are mainly coumaroyl-glucose, ferulic acid hexose, quercetin, and kaempferol derivatives while in Ruegen F7-4 and YW5AF7, taxifolin 3-*O*-arabi-noside, methylellagic acid rhamnoside, and ellagic acid are the major constituents. Understanding the chemical differences between cultivated strawberry Fort Laramie and wild strawberry Ruegen F7-4/YW5AF7 may help target modification of strawberries for quality improvement.

4. Conclusion

This study was the first chemical investigation to describe the phenolic composition of two diploid inbred lines, Ruegen F7-4 and YW5AF7, which will facilitate genetic and biochemical studies of the enzymes catalysing the biosynthesis of these important compounds. The UHPLC-DAD-HRMS analysis identified the presence of a variety of anthocyanins, dihydroflavonols, flavonols, fla-van-3-ols, proanthocyanidins, free and conjugated forms of ellagic acid, and ellagitannins. A total of 78 phenolic compounds were identified. The results demonstrate the differences in anthocyanin composition in Ruegen F7-4 and cultivated strawberry Fort Laramie are mainly due to peonidin 3-*O*-glucoside and peonidin 3-*O*-malonylglucoside. The identification of phenolic compounds revealed some interesting compounds newly found in strawberry. Taxifolin 3-*O*-arabinoside and methylellagic acid glycosides in Ruegen F7-4 and YW5AF7 were reported in strawberry fruits for the first time. The high diversity of the phenolic com pounds found in wild diploid strawberry samples may have potential beneficial effects for human health. Further studies should be carried out for quantification of major compounds and biochemical and genetic characterisation of biosynthetic pathways.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research is supported by the Agricultural Research Service of the U.S. Department of Agriculture and an Interagency Agreement with the Office of Dietary Supplements (ODS) of the National Institutes of Health (NIH).

References

- Aaby K, Ekeberg D, Skrede G. Characterization of phenolic compounds in strawberry (Fragaria x ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. Journal of Agriculture and Food Chemistry. 2007a; 55(11):4395–4406.
- Aaby K, Mazur S, Nes A, Skrede G. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chemistry. 2012; 132(1):86– 97.

- Aaby K, Wrolstad RE, Ekeberg D, Skrede G. Polyphenol composition and antioxidant activity in strawberry purees; impact of achene level and storage. Journal of Agriculture and Food Chemistry. 2007b; 55(13):5156–5166.
- Aharoni A, Giri AP, Verstappen FW, Bertea CM, Sevenier R, Sun Z, et al. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell. 2004; 16(11):3110– 3131. [PubMed: 15522848]
- Bianco L, Lopez L, Scalone AG, Di Carli M, Desiderio A, Benvenuto E, et al. Strawberry proteome characterization and its regulation during fruit ripening and in different genotypes. Journal of Proteomics. 2009; 72(4):586–607. [PubMed: 19135558]
- Buendia B, Gil MI, Tudela JA, Gady AL, Medina JJ, Soria C, et al. HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in 15 strawberry cultivars. Journal of Agriculture and Food Chemistry. 2010; 58(7):3916–3926.
- Carbone F, Preuss A, De Vos RC, D'Amico E, Perrotta G, Bovy AG, et al. Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits. Plant Cell Environment. 2009; 32(8):1117–1131.
- Cheel J, Theoduloz C, Rodriguez J, Saud G, Caligari PDS, Schmeda-Hirschmann G. E-cinnamic acid derivatives and phenolics from Chilean strawberry fruits, Fragaria chiloensis ssp chiloensis. Journal of Agriculture and Food Chemistry. 2005; 53(22):8512–8518.
- Goulas V, Manganaris GA. The effect of postharvest ripening on strawberry bioactive composition and antioxidant potential. Journal of the Science of Food and Agriculture. 2011; 91(10):1907–1914. [PubMed: 21520448]
- Hilt P, Schieber A, Yildirim C, Arnold G, Klaiber I, Conrad J, et al. Detection of phloridzin in strawberries (Fragaria x ananassa Duch.) by HPLC-PDA-MS/MS and NMR spectroscopy. Journal of Agriculture and Food Chemistry. 2003; 51(10):2896–2899.
- Ishimaru K, Omoto T, Asai I, Ezaki K, Shimomura K. Taxifolin 3-Arabinoside from Fragaria-X-Ananassa. Phytochemistry. 1995; 40(1):345–347.
- Kallio H, Hakala M, Pelkkikangas AM, Lapvetelainen A. Sugars and acids of strawberry varieties. European Food Technology. 2000; 212(1):81–85.
- Kaufmann A. The current role of high-resolution mass spectrometry in food analysis. Analytical and Bioanalytical Chemistry. 2012; 403(5):1233–1249. [PubMed: 22179491]
- Kelebek H, Selli S. Characterization of Phenolic Compounds in Strawberry Fruits by Rp-Hplc-Dad and Investigation of Their Antioxidant Capacity. Journal of Liquid Chromatography and Related Technologies. 2011; 34(20):2495–2504.
- Kim SH, Shin DH, Choi IG, Schulze-Gahmen U, Chen S, Kim R. Structure-based functional inference in structural genomics. Journal of Structural and Functional Genomics. 2003; 4(2–3):129–135. [PubMed: 14649297]
- Maatta-Riihinen KR, Kamal-Eldin A, Torronen AR. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). Journal of Agriculture and Food Chemistry. 2004; 52(20):6178–6187.
- Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Weber N, Veberic R, Stampar F, et al. Alteration of the Content of Primary and Secondary Metabolites in Strawberry Fruit by Colletotrichum nymphaeae Infection. Journal of Agriculture and Food Chemistry. 2013; 2:2–19.
- Reganold JP, Andrews PK, Reeve JR, Carpenter-Boggs L, Schadt CW, Alldredge JR, et al. Fruit and soil quality of organic and conventional strawberry agroecosystems. PLoS ONE. 2010; 5(9)
- Roscher R, Bringmann G, Schreier P, Schwab W. Radiotracer studies on the formation of 2,5dimethyl-4-hydroxy-3(2H)-furanone in detached ripening strawberry fruits. Journal of Agriculture and Food Chemistry. 1998; 46(4):1488–1493.
- Russell WR, Scobbie L, Labat A, Duthie GG. Selective bio-availability of phenolic acids from Scottish strawberries. Molecular Nutrition & Food Research. 2009; 53(Suppl 1):S85–91. [PubMed: 19205002]
- Shin Y, Ryu JA, Liu RH, Nock JF, Polar-Cabrera K, Watkins CB. Fruit quality, antioxidant contents and activity, and antiproliferative activity of strawberry fruit stored in elevated CO2 atmospheres. Journal of Food Science. 2008; 73(6):S339–S344. [PubMed: 19241580]

- Sun G, Shi C. The overall quality control of Radix scutellariae by capillary electrophoresis fingerprint. Journal of Chromatographic Science. 2008; 46(5):454–460. [PubMed: 18492359]
- Villa-Rojas R, Lopez-Malo A, Sosa-Morales ME. Hot water bath treatments assisted by microwave energy to delay postharvest ripening and decay in strawberries (Fragaria x ananassa). Journal of the Science of Food and Agriculture. 2011; 91(12):2265–2270. [PubMed: 21590776]
- Vrhovsek U, Guella G, Gasperotti M, Pojer E, Zancato M, Mattivi F. Clarifying the identity of the main ellagitannin in the fruit of the strawberry, Fragaria vesca and Fragaria ananassa Duch. Journal of Agriculture and Food Chemistry. 2012; 60(10):2507–2516.
- Wojdylo A, Figiel A, Oszmianski J. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. Journal of Agriculture and Food Chemistry. 2009; 57(4):1337–1343.
- Yang FM, Li HM, Li F, Xin ZH, Zhao LY, Zheng YH, et al. Effect of nano-packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4 degrees C. Journal of Food Science. 2010; 75(3):C236–240. [PubMed: 20492272]
- Zhang J, Wang X, Yu O, Tang J, Gu X, Wan X, et al. Metabolic profiling of strawberry (Fragaria x ananassa Duch.) during fruit development and maturation. Journal of Experimental Botany. 2011; 62(3):1103–1118. [PubMed: 21041374]
- Zheng Q, Song J, Doncaster K, Rowland E, Byers DM. Qualitative and quantitative evaluation of protein extraction protocols for apple and strawberry fruit suitable for two-dimensional electrophoresis and mass spectrometry analysis. Journal of Agriculture and Food Chemistry. 2007; 55(5):1663–1673.

Sun et al.

The HPLC chromatograms of anthocyanin (A, at 520 nm) and non-anthocyanin polyphenols (A, at 280 nm) from $F \times vesca$ var. Ruegen.

Sun et al.

_	
~	
_	
U	
· · ·	
-	
_	
_	
<u> </u>	
()	
-	
_	
~	
~	
0	
<u>u</u>	
=	
_	
_	
_	
CO D	
-	
0	
_ <u></u> ∺	
Ë.	
rip	
ript	

Table 1

YW5AF7.
en and
Ruege
a var.
a vesc
Fragari
from
entified
ls ide
ompounc

	Tentative identification	Hexosyl hexose	Citric acid	Citric acid isomer	Gallotannin	bis-HHDP-glucose	Unknown ellagitannin	Furaneol hexoside	Unknown ellagitannin	Unknown ellagitannin	1-O-protocatechuyl-beta-xylose
	UV λ_{max} (nm)	1	I	I	I	I	Ι	275,229	I	I	I
n and YW5AF7.	MS ² to MS ⁴ data	$\begin{array}{l} MS2[341]:\ 179(100),\ 161(18),\ 143(23),\ 119(13),\\ 113(18),\ 101(6)\ MS3[341 \rightarrow 179]:\ 161(100),\ 149(21),\\ 143(97),\ 131(27),\ 125(8),\ 119(45),\ 113(18),\ 106(12),\\ 101(8),\ 89(94),\ 87(11)MS4[341 \rightarrow 179 \rightarrow 161]:\\ 113(100),\ 101(32),\ 71(69) \end{array}$	MS2[191]: 173(100), 111(64)MS3[191 \rightarrow 173]: 155(27), 111(100)MS4[191 \rightarrow 173 \rightarrow 111]: 67(100)	MS2[191]: 173(20), 111(100)MS3[191 \rightarrow 111]: 67(100)	$\begin{split} MS2[629]: 615(31), 613(9), 601(100), 599(9)MS3[629\\ \rightarrow 601]: 573(45), 557(16), 529(6), 449(33), 439(6), 431(100), 405(15), 389(7), 387(14), 287(26), 286(13), 261(12)MS4[629 \rightarrow 601 \rightarrow 331]: 403(41), 387(62), 371(17), 369(12), 359(8), 343(9), 327(6), 312(6), 297(19), 287(100), 286(94), 285(16), 237(10), 297(19), 277(12), 216(19), 257(8), 245(6), 243(14), 227(9), 225(8), 217(27), 216(10), 215(13), 189(18), 187(7) \end{split}$	MS2[783]: 481(31), 301(100), 275(17)MS3[783 → 301]: 301(36), 300(9), 284(39), 257(100), 229(76), 201(13), 185(27)	MS2[947]: 929(100), 901(73), 883(16), 875(8)	MS2[289]: 161(100), 113(6), 101(8)MS3[289 \rightarrow 161]: 143(28), 129(22), 125(12), 113(62), 101(100), 99(13), 97(14), 89(6), 85(7), 73(10), 71(29)	MS2[957]: 1557(25), 1224(17), 1099(33), 1096(42), 1026(17), 986(8), 967(17), 943(33), 939(58), 937(25), 934(33), 932(17), 930(100), 928(17), 926(25), 922(17), 917(25), 916(17), 912(25), 911(25), 907(50), 901(17), 895(50), 872(25), 842(17), 837(8), 817(8), 814(17), 778(17), 754(25), 739(8), 731(17), 717(8), 655(42), 541(8), 493(8), 469(8), 413(8), 397(17),	MS2[965]: 1859(11), 948(16), 947(16), 942(11), 929(16), 921(11), 920(11), 916(21), 903(26), 897(11), 889(11), 887(11), 885(11), 871(21), 852(37), 823(11), 797(11), 795(11), 783(100), 781(16), 764(11), 591(11), 481(11), 479(16), 421(16)	$ \begin{array}{l} MS2[285]: 165(7), 153(100), 152(28), 109(9)MS3[285 \\ \rightarrow 1531: 109(100) \end{array} \end{array} $
/ar. Ruegei	Adduct	-[H-H]	-[H-H]	-[H-H]	-[H-H]	-[H-H]	-[H-H]	-[H-H]	[M- 2H] ²⁻	[M- 2H] ²⁻	-[H-M]
aria vesca v	Formula	C ₁₂ H ₂₂ O ₁₂	$C_6H_8O_7$	$C_6H_8O_7$	C ₂₇ H ₁₈ O ₁₈	$C_{34}H_{24}O_{22}$	$\mathrm{C}_{41}\mathrm{H}_{24}\mathrm{O}_{27}$	$C_{12}H_{18}O_{8}$	C ₈₉ H ₄₈ O ₈₀	C ₈₉ H ₄₈ O ₅₁	$C_{12}H_{14}O_{8}$
om Frag	Error (mmu)	-0.64	-0.41	-0.33	-0.96	-1.3	0.052	-0.761	-1.041	-0.428	-0.144
entified fro	m/z	341.1083	191.0193	191.0194	629.0411	783.0665	947.0433	289.0921	957.0535	965.0516	285.0611
bi sbuuc	t _R (min)	1.82	1.89	2.38	3.34	3.67	3.95	5.58	6.34	6.40	6.50
Compc	Peak no.	-	7	ŝ	4	S	9	Γ	×	6	10

_
_
U
-
-
_
<u> </u>
_
_
ล
ŏ
ğ
or
lor
or N
or N
or M
or Ma
or Ma
or Ma
or Mar
or Man
or Manu
or Manu
or Manu
or Manus
or Manus
or Manusc
or Manusc
or Manuscr
or Manuscri
or Manuscrip
or Manuscrip
or Manuscript

Tentative identification	D or L-tryptophan	2-methylaconitate or its isomer	Proanthocyanidin b1 (catechin-catechin)	(+)-Catechin*	Proanthocyanidin C1 (catechin trimer)	Proanthocyanidin tetramer	Galloyl glucose	Proanthocyanidin trimer	Unknown	Cyanidin 3- <i>O</i> -glucoside*	Propelargonidin trimer (afz-cat-cat)
$UV\lambda_{max} \\ (nm)$	280, 230	I	I	233, 280, 334	I	233, 271, 360	233, 271	233, 271	233, 271	233, 271, 514	1
MS ² to MS ⁴ data	$\begin{array}{l} MS2[203]: 186(10), 159(100), 142(15), \\ 116(37)MS3[203 \rightarrow 159]: 144(9), 132(30), 130(56), \\ 129(100), 128(42), 116(58), 115(30) \end{array}$	MS2[187]: 143(100)MS3[187 \rightarrow 143]: 99(100), 85(9)	$\begin{split} \text{MS2}[577]: 559(16), 451(46), 425(100), 407(59), \\ 299(7), 289(27), 287(11)\text{MS3}]577 \rightarrow 4251; 407(100), \\ 273(6)\text{MS4}[577 \rightarrow 425 \rightarrow 407]: 389(29), 363(6), \\ 339(14), 297(45), 285(100), 284(11), 283(28), \\ 281(88), 269(6), 256(8), 255(20), 253(17), 243(17) \end{split}$	$\begin{array}{l} MS2[289]: 247(7), 245(100), 231(7), 205(33), \\ 179(9)MS3[289 \rightarrow 245]: 227(27), 217(8), 203(100), \\ 202(7), 188(15), 187(24), 175(9), 161(17) \end{array}$	$\begin{split} MS2[865]; 848(25), 739(55), 713(39), 695(100), \\ 587(22), 577(52), 575(33), 569(9), 557(6), 543(11), \\ 451(19), 449(15), 425(17), 423(6), 413(8), 407(23), \\ 405(7), 395(0), 289(6), 287(10)MS3[865 \rightarrow 695]; \\ 407(16), 405(33), 391(11), 387(6), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(6), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(6), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(6), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(6), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(6), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(6), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(6), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(6), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(6), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(6), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(10), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(10), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(10), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(10), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(10), 363(22), 299(11), \\ 289(15), 243(33), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363(22), 391(11), 387(10), 363($	MS2[1153]: 1136(73), 1110(8), 1101(10), 1070(6), 1028(65), 1010(12), 1002(33), 991(6), 984(35), 983(20), 965(6), 917(6), 908(41), 906(8), 865(100), 863(49), 865(100), 857(12), 850(8), 847(14), 846(8), 831(20), 822(6), 814(0), 739(25), 772(6), 713(6), 713(6), 713(5), 723(6), 723(5), 723(6), 457(6), 457(6), 457(6), 457(6), 455(6), 449(12), 423(22), 407(24), 405(10), 625(12), 407(24), 405(10), 625(12), 407(24), 405(10), 625(12), 623(12), 407(24), 405(10), 625(12), 623(12), 623(12), 607(12), 602(1	MS2[331]; 313(8), 289(46), 287(7), 271(100), 235(11), 203(9), 169(24), 165(6), 127(10)	MS2[865]; 848(17), 739(62), 720(8), 713(51), 695(100), 587(20), 577(64), 575(38), 557(9), 543(19), 533(6), 525(8), 451(18), 449(15), 425(25), 423(6), 413(9), 407(18), 405(12), 395(9), 363(8), 289(9), 287(27)	$\begin{array}{l} MS2[561]; 543(42), 435(52), 425(13), 407(17), \\ 289(100), 271(11)MS3[561 \rightarrow 289]; 247(6), 245(100), \\ 205(33), 203(11), 179(12) \end{array}$	MS2[465]: 339(8), 285(100), 241(13)MS3[465 → 285]: 257(9), 243(21), 241(100), 217(19), 199(10), 149(9)	MS2[849]: 831(24), 723(100), 697(43), 695(32), 679(19), 577(95), 571(51), 559(78), 553(10), 541(9), 517(6), 451(19), 433(19), 425(22), 407(30), 397(12), 299(7), 289(15), 287(14)
Adduct	-[H-M]	-[H-H]	-[H-H]	-[H-M]	-[H-M]	-[H-M]	-[H-H]	-[H-H]	-[H-M]	[M-2H] ⁻	-[H-M]
Formula	$C_{11}H_{12}O_2N_2$	$\mathrm{C_7H_8O_6}$	C ₃₀ H ₂₆ O ₁₂	$C_{15}H_{14}O_{6}$	C ₄₅ H ₃₈ O ₁₈	C ₄₂ H ₅₈ O ₃₇	$C_{14}H_{20}O_{9}$	C ₄₅ H ₃₈ O ₁₈	$C_{30}H_{26}O_{11}$	C ₂₁ H ₂₁ O ₁₁ +	$C_{45}H_{38}O_{17}$
Error (mmu)	-0.451	-0.451	-0.569	-0.441	1.096	1.225	-0.305	-1.517	-0.465	0.952	-1.353
m/z	203.0822	187.0248	577.1346	289.0713	865.1973	1153.2596	331.1033	865.197	561.1398	447.0931	849.2023
$t_R(\min)$	6.54	6.84	7.16	8.11	8.75	90.6	9.44	9.57	9.81	10.74	11.18
Peak no.	П	12	13	14	15	16	17	18	19	20	21

NIH-PA Author Manuscript

Tentative identification	Castalin or its isomer	Unknown	Pelargonidin 3-O-glucoside*	Apigenin pentose	Trigalloylglucose	GA8-hexose gibberellin	Unknown	Ellagic acid-hexoside	Peonidin 3- <i>O</i> -glucoside [*]	Unknown	Femlic acid hexose derivative	Unknown	Unknown	Cyanidin 3-0-malonylglucoside
$UV\lambda_{max} \\ (nm)$	215, 233	232, 275	233, 271, 500	I	233, 270	I	1	I	233, 271, 512	I	I	1	I	233, 515
MS ² to MS ⁴ data	$\begin{split} \text{MS2[631]: } & 613(12), 451(100)\text{MS3[631} \to 451]; \\ & 433(79), 423(9), 407(78), 405(28), 395(10), 379(37), \\ & 377(10), 367(6), 363(8), 351(100), 337(7), 335(24), \\ & 323(21), 311(28), 307(25), 295(14), 285(88), 283(7), \\ & 165(8) \end{split}$	MS2[331]: 313(22), 312(6), 289(15), 288(6), 271(25), 253(21), 235(33), 211(14), 205(6), 203(32), 193(63), 181(11), 169(64), 161(10), 151(42), 127(100), 125(29), 113(11), 101(9), 97(9)	$\begin{array}{l} MS2[431]; 413(10), 387(6), 269(100)MS3[431 \rightarrow \\ 269]; 241(59), 225(29), 199(12), 197(7), 147(100) \end{array}$	MS2[401]; 383(18), 357(8), 356(6), 355(6), 293(9), 269(100), 233(9), 161(20)	MS2[635]: 465(100)MS3[635 → 465]: 313(100), 295(9), 235(9), 169(19)MS4[635 → 465 → 313]; 295(21), 253(41), 241(31), 223(6), 211(6), 193(17), 169(100), 151(9), 125(15)	MS2[525]: 363(100), 345(6), 179(6), 165(10)MS3[525 → 363]: 345(27), 315(19), 239(8), 221(7), 179(32), 165(100)	$\begin{array}{l} MS2[351]; \ 333(25), \ 249(100), \ 231(10), \\ 113(8)MS3[351 \rightarrow 249]; \ 231(100), \ 189(18), \ 175(18), \\ 157(7), \ 129(11), \ 115(18), \ 113(86), \ 111(21), \ 109(7), \\ 99(18), \ 95(11), \ 85(29), \ 83(21), \ 75(7) \end{array}$	$\begin{array}{l} MS2[463]: 301(100), 300(54)MS3[463 \rightarrow 301]: \\ 301(12), 284(14), 257(100), 229(21), 185(9) \end{array}$	MS2[463]: 301(100)MS3[463- > 301]: 286(100)	MS2[517]: 499(10), 471(8), 355(18), 337(46), 295(35), 265(49), 235(55), 193(100), 175(32), 160(14)	$\begin{array}{l} MS2[449]: 355(100), 329(8), 287(40), 269(28), \\ 193(13)MS3[449 \rightarrow 355]: 193(100), 192(10), \\ 165(6)MS4[449 \rightarrow 355 \rightarrow 193]: 165(100), 137(14) \end{array}$	MS2[371]: 249(100)MS3[371 → 249]: 231(87), 175(14), 113(100), 111(8), 103(7), 99(9), 95(11), 85(21)	MS2[585]: 377(100), 329(13) MS3[585 \rightarrow 377]: 329(100), MS4[585 \rightarrow 377 \rightarrow 329]: 314(100), 164(10)	MS2[535]: 287(100)MS3[535- > 287]: 287(100), 269(68), 259(28), 241(11), 241(36), 231(46), 217(6), 216(9), 213(74), 199(12), 189(16), 185(32), 175(35), 163(9), 137(17)
Adduct	-[H-H]	-[H-M]	[M-2H] ⁻	[H-H]	-[H-M]	-[H-M]	-[H-M]	-[H-M]	\mathbf{M}^+	-[H-M]	-[H-M]	-[H-M]	-[H-M]	M^+
Formula	C ₂₇ H ₂₀ O ₁₈	$C_{14}H_{20}O_{9}$	C ₂₁ H ₂₁ O ₁₁	$C^{18}H_{26}O_{10}$	$C_{27}H_{24}O_{18}$	C ₂₅ H ₃₄ O ₁₂	$C_{14}H_{24}O_{10}$	C ₂₂ H ₂₃ O ₁₁	$C_{20}H_{16}O_{13}$	$C_{22}H_{30}O_{14}$	C ₂₁ H ₂₂ O ₁₁	C ₁₆ H ₂₀ O ₁₀	$C_{27}H_{38}O_{14}$	$C_{24}H_{23}O_{14}$
Error (mmu)	-0.13	0.241	0.591	-1.272	-1.44	-0.243	0.577	-0.838	-0.188	0.028	0.227	0.417	-0.479	-0.692
z/m	631.0565	331.1026	431.0979	401.1448	635.0881	525.1964	351.1292	463.1227	463.0506	517.1552	449.1079	371.0977	585.2184	535.1075
$t_R(\min)$	11.55	12.32	13.21	13.83	13.90	14.53	14.74	14.87	14.95	15.46	15.66	16.71	17.49	18.07
Peak no.	22	23	24	25	26	27	28	29	30	31	32	33	34	35

_
=
_
_
0
-
-
-
_
ā
0
_
\sim
01
2
_
_
-
S
~
0
-
<u> </u>
-

_{nax} Tentative identification	Galloyl bis-hexahydroxydiphenoyl (HHDP)-glucose	Ellagic acid pentoside	Unknown	52, 368 Ellagic acid*	65 Ellagic acid-methyl pentoside	01 Pelargonidin acetyl hexoside	Unknown	65 Diosmetin acetylhexoside	15 Peonidin 3-0-malonylglucoside	34, 289 Taxifolin 3- <i>O</i> -arabinofuranoside	64 Quercetin 3-0-glucoside*	33, 271 Methylellagic acid hexose	33, 271 Tetramethylellagic acid hexose	33, 280 Dimethylellagic acid hexose	.33, 271 Tetramethylellagic acid hexose
UV λ _n (nm)	I	I	I	234, 2	233, 3	233, 5	I	230, 3	233, 5	217, 2	233, 3	217, 2	215, 2	215, 2	216, 2
MS ² to MS ⁴ data	$\begin{array}{l} MS2[935]: 633(100), \ 301(41) MS3[935 \rightarrow 633]: \\ 463(8), \ 301(100) \end{array}$	$\begin{array}{l} MS2[433]: \ 301(100, \ 300(32)MS3[433 \rightarrow 301]; \\ 301(49), \ 284(36), \ 273(12), \ 257(100), \ 229(67), \ 213(8), \\ 201(6), \ 185(32) \end{array}$	MS2[461]: 461(6), 453(9), 443(55), 430(6), 418(9), 417(15), 416(9), 415(30), 400(6), 399(16), 393(6), 376(6), 329(100), 299(10), 293(90), 233(49), 191(185), 161(13), 149(28)	$\begin{array}{l} MS2[301]: \ 301(34), \ 300(13), \ 284(28), \ 257(100), \\ 229(64), \ 201(13), \ 185(34)MS3[301 \rightarrow 257]: \ 229(96), \\ 213(23), \ 201(11), \ 185(100), \ 173(6) \end{array}$	$ MS2[447]: 301(100), 300(19)MS3[447 \rightarrow 301]: \\ 301(15), 284(11), 257(100), 229(29), 185(10) \\$	$\begin{split} MS2[473]: 269(100)MS3[473 \to 269]: 241(59), \\ 225(62), 224(8), 201(7), 199(9), 147(100) \end{split}$	$\begin{array}{l} MS2[623]: 608(11), 477(46), 476(8), 460(100), \\ 314(11), 313(6)MS3[623 \rightarrow 460]: 445(10), 314(35), \\ 313(100)MS4[623 \rightarrow 460 \rightarrow 313]: 298(100), 285(42), \\ 283(6) \end{array}$	$\begin{split} \text{MS2[503]: 299(100)} \text{MS3[503} \rightarrow 299]: 284(100), \\ 283(22), 255(23), 240(10), 147(11) \end{split}$	MS2[549]: 301(100)MS3[549->301]: 286(100)	$\begin{array}{l} MS2[435]: \ 303(100), \ 285(34)MS3[435 \rightarrow 303]: \\ 285(100), \ 177(11), \ 1257)MS4[435 \rightarrow 303 \rightarrow 285]: \\ 257(11), \ 243(17), \ 241(100), \ 217(13), \ 199(23), \ 175(56) \end{array}$	MS2[463]: 301(100), 300(23)MS3[463 \rightarrow 301]: 283(6), 273(16), 257(15), 229(8), 179(100), 151(63)	$\begin{array}{l} MS2[477]: 315(100)MS3[477 \rightarrow 315]: \\ 300(100)MS4[477 \rightarrow 315 \rightarrow 300]: 300(100), 283(6), \\ 272(24), 271(21), 244(53), 243(12), 228(13), 216(17), \\ 200(22) \end{array}$	$\begin{array}{l} MS2[521]: 503(9), 359(100) MS3[521 \rightarrow 359]: \\ 344(100) MS4[521 \rightarrow 359 \rightarrow 344]: 329(34), 328(8), \\ 313(100), 255(16), 203(14), 191(10), 189(52), \\ 173(11), 159(41) \end{array}$	$\begin{array}{l} MS2[491]: 476(20), 328(100), 313(9)MS3[491] \rightarrow \\ 328]: 313(100)MS4[491 \rightarrow 328 \rightarrow 313]: 298(100), \\ 285(54) \end{array}$	$\begin{array}{l} MS2[521]: 503(9), 359(100)MS3[521 \rightarrow 359]:\\ 344(100)MS4[521 \rightarrow 359 \rightarrow 344]: 329(32), 328(10),\\ 313(100), 255(16), 203(16), 191(10), 189(45),\\ 173(11), 159(45) \end{array}$
Adduct	-[H-M]	-[H-H]	-[H-H]-	-[H-H]	-[H-M]	[M-2H] ⁻	-[H-H]-	-[H-H]	\mathbf{M}^+	-[H-H]	-[H-H]	-[H-H]-	-[H-H]-	-[H-H]	[M-H] ⁻
Formula	$C_{41}H_{28}O_{26}$	$C_{19}H_{14}O_{12}$	C ₂₁ H ₃₄ O ₁₁	$C_{14}H_6O_8$	$C_{20}H_{17}O_{12}$	C ₂₃ H ₂₃ O ₁₁	$C_{27}H_{28}O_{17}$	$C_{24}H_{24}O_{12}$	$C_{25}H_{25}O_{14}$	$C_{20}H_{20}O_{11}$	$C_{21}H_{20}O_{12}$	$C_{21}H_{18}O_{13}$	C ₂₆ H ₃₄ O ₁₁	$C_{22}H_{20}O_{13}$	$C_{26}H_{34}O_{11}$
Error (mmu)	-1.357	-0.479	-0.505	-0.73	-0.499	-0.142	0.414	0.498	-1.022	-0.145	-0.609	-0.444	-1.115	-0.014	-1.235
m/z	935.0771	433.0408	461.2023	300.9983	447.0564	473.1083	623.1247	503.1189	549.1228	435.0931	463.0876	477.067	521.2017	491.0831	521.2016
t _R (min)	18.08	19.28	19.41	19.72	20.42	21.07	21.89	22.26	22.43	23.05	23.50	23.61	23.73	24.55	24.73
Peak no.	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50

Tentative identification	Unknown	Unknown	Unknown	Quercetin acetyl hexoside	Unknown	Methylellagic acid pentose	Methylellagic acid methyl pentose	Methylellagic acid acetyl hexose	Pentagalloy1 hexose	Kaempferol 3-0-hexoside	Methylellagic acid acetyl hexoside	Methylellagic acid rhamnoside	Methylellagic acid hexose
UV À _{max} (nm)	217, 233, 356	215, 233	215, 233	I	I	1	I	1	I	I	217, 233, 366	243, 375	I
MS ² to MS ⁴ data	MS2[709]: 709(7), 691(10), 665(84), 663(9), 625(8), 563(100), 545(13), 519(83), 477(18), 461(8), 447(7), 357(21), 315(46), 301(27), 300(13)	MS2[607]: 461(100)MS3[607 → 461]: 314(100), 299(6)MS4[607 → 461 → 314]: 313(31), 299(97), 286(66), 285(100), 284(21), 283(25)	MS2[567]: 567(10), 558(11), 550(7), 549(14), 545(7), 523(10), 521(40), 499(7), 359(77), 341(100), 329(87)	MS2[505]: 463(22), 301(100), 300(46)MS3[505 → 301]: 283(17), 273(29), 257(10), 229(7), 193(7), 179(100), 151(63)	$\begin{array}{l} MS3[327 \rightarrow 312]; \ 295(22), \ 284(47), \ 283(30), \ 281(48), \\ 267(100), \ 256(12), \ 253(26), \ 240(11), \ 145(30) \end{array}$	$\begin{array}{l} \text{MS2}[447]: 315(100)\text{MS3}[447 \rightarrow 315]:\\ 300(100)\text{MS4}[447 \rightarrow 315 \rightarrow 300]: 300(100), 283(12),\\ 272(24), 271(12), 244(69), 243(29), 228(33), 216(47),\\ 200(35), 188(6), 172(10)\\ \end{array}$	$\begin{array}{l} MS2[461]; \ 328(6), \ 315(100) MS3[461 \rightarrow 315]; \\ 300(100) MS4[461 \rightarrow 315 \rightarrow 300]; \ 300(19), \ 283(59), \\ 272(100), \ 271(18), \ 244(39), \ 228(40), \ 200(20), \ 172(17) \end{array}$	$\begin{array}{l} \text{MS2[519]: } 315(100)\text{MS3[519} \rightarrow 315);\\ 300(100)\text{MS4[519} \rightarrow 315 \rightarrow 300]: 300(100), 272(24),\\ 271(18), 244(67), 243(12), 228(12), 216(21), 200(12),\\ 172(6), 151(6) \end{array}$	$\begin{array}{l} \text{MS2}[939]; \ 787(8), \ 769(100), \ 617(9)\text{MS2}[939 \rightarrow 769]; \\ 725(16), \ 617(100), \ 601(37), \ 599(33), \ 511(7), \ 465(6), \\ 447(21), \ 431(11), \ 429(14), \ 403(6)\text{MS4}[939 \rightarrow 769 \rightarrow 617]; \ 465(100), \ 447(37), \ 423(18), \ 313(8), \ 295(6), \\ 211(6) \end{array}$	$\begin{array}{l} MS2[447]: 327(18), 285(92), 284(100), \\ 255(14)MS3[447 \rightarrow 284]: 255(100), 227(13)MS4[447 \\ \rightarrow 284 \rightarrow 255]: 255(12), 227(100), 211(57), 183(8), \\ 167(6) \end{array}$	$\begin{array}{l} \text{MS2[519]: } 315(100), 300(10)\text{MS3[519} \rightarrow 315];\\ 300(100)\text{MS4[519} \rightarrow 315 \rightarrow 300]; 300(100), 283(11),\\ 272(27), 271(29), 244(80), 243(17), 228(23), 216(19),\\ 200(34), 172(10) \end{array}$	$\begin{array}{l} \text{MS2}[461]: 315(100), 314(6)\text{MS3}[461 \rightarrow 315]: \\ 300(100)\text{MS4}[461 \rightarrow 315 \rightarrow 300]: 300(100), 283(17), \\ 272(36), 271(24), 244(74), 243(21), 228(23), 216(24), \\ 200(39), 172(10) \end{array}$	$\begin{array}{l} MS2[477]; 459(6), 357(23), 315(31), 314(100), \\ 299(6), 285(8), 271(7)M33[477 \rightarrow 314]; 299(18), \\ 286(36), 285(100), 271(72), 257(11), 243(24) \end{array}$
Adduct	-[H-H]	-[H-H]	-[H-M]	-[H-H]	-[H-M]	-[H-H]	-[H-H]	-[H-H]	-[H-H]	-[H-H]	-[H-H]	-[H-H]	-[H-M]
Formula	$C_{30}H_{30}O_{20}$	$C_{27}H_{28}O_{16}$	C ₂₇ H ₃₆ O ₁₃	C ₂₃ H ₂₂ O ₁₃	C ₁₉ H ₂₀ O ₅	$C_{20}H_{16}O_{12}$	C ₂₁ H ₁₈ O ₁₂	C ₂₃ H ₂₀ O ₁₄	$C_{41}H_{32}O_{26}$	C ₂₁ H ₂₀ O ₁₁	C ₂₃ H ₂₀ O ₁₄	C ₂₁ H ₁₈ O ₁₂	C ₂₂ H ₂₂ O ₁₂
Error (mmu)	-0.526	-0.638	-0.674	-0.434	-0.447	-0.599	-0.189	-0.148	-1.404	-0.115	-0.148	-0.738	-0.399
m/z	709.1252	607.1298	567.2076	505.0983	327.1234	447.0563	461.0724	519.0779	939.1095	447.0932	519.0779	461.0718	477.1035
t _R (min)	25.32	25.60	26.20	26.28	26.51	26.67	27.34	27.68	27.88	28.16	28.55	29.22	30.00
Peak no.	51	52	53	54	55	56	57	58	59	60	61	62	63

_	
_	
_	
U U	
-	
~	
C	
_	
_	
_	
_	
\sim	
_	
_	
~	
~	
$\overline{0}$	
a	
ar	
lan	
lanı	
lanu	
lanu	
lanus	
lanus	
lanus	
lanusc	
lanusc	
lanuscr	
lanuscri	
lanuscri	
lanuscrip	
lanuscrip	
lanuscript	

Peak no.	t _R (min)	z/m	Error (mmu)	Formula	Adduct	MS ² to MS ⁴ data	UV Å _{max} (nm)	Tentative identification
64	30.56	461.0725	-0.069	C ₂₁ H ₁₈ O ₁₂	-[H-H]	$\begin{array}{l} MS2[461]; 315(100)MS3[461 \rightarrow 315];\\ 300(100)MS4[461 \rightarrow 315 \rightarrow 300]; 300(100), 283(10),\\ 272(17), 271(21), 244(65), 243(18), 228(18), 216(18),\\ 200(24), 172(7) \end{array}$	217, 233, 365	Methylellagic acid hexose
65	31.81	489.1038	-0.029	C ₂₃ H ₂₂ O ₁₂	-[H-H]	$\begin{array}{l} MS2[489]: 285(100), 284(7)MS3[489 \rightarrow 285]: \\ 267(43), 257(100), 256(9), 243(6), 241(29), 240(10), \\ 239(13), 229(49), 223(10), 213(15), 211(9), 199(10), \\ 197(20), 195(9), 163(17) \end{array}$	I	Kaempferol acetylhexoside
66	32.45	341.1393	-0.107	C ₂₀ H ₂₂ O ₅	-[H-M]	$\begin{array}{l} \text{MS2}[341]; \ 326(100)\text{MS3}[341 \rightarrow 326];\\ 311(100)\text{MS4}[341 \rightarrow 326 \rightarrow 311]; \ 293(6), \ 283(100),\\ 267(12), \ 266(14), \ 252(7) \end{array}$	I	Unknown
67	34.05	519.1142	-0.214	$C_{24}H_{24}O_{13}$	-[H-M]	MS2[519]: 315(100)MS3[519 \rightarrow 315]: 300(100), 287(6), 272(6)MS4[519 \rightarrow 315 \rightarrow 300]: 272(43), 271(100), 255(66)	215, 233, 329	Methylellagic acid acetyl hexoside
×								

* Confirmed with reference standards, - weak absorbance.

Compo	i spunc	dentified	from F1	ragaria × a.	nanassa c	v. Fort Laramie.		
Peak no.	t _R (min)	z/m	Error (mmu)	Formula	Adduct	MS^2 to MS^4 data	UV λ _{max} (nm)	Possible identification
la	1.76	341.1083	-0.635	C ₁₂ H ₂₂ O ₁₁	[H-H]-	MS2[341]: 179(100), 161(20), 143(21), 131(7), 119(15), 113(19), 101(6)	I	Hexosyl hexose
2a	1.89	191.0193	-0.406	$\mathrm{C}_6\mathrm{H}_8\mathrm{O}_7$	-[H-H]	MS2[191]: 173(25), 111(100)	I	Citric acid or its isomer
3a	2.11	191.0194	-0.326	$\mathrm{C}_6\mathrm{H}_8\mathrm{O}_7$	-[H-H]	MS2[191]: 173(25), 111(100)	I	Citric acid isomer
4a	2.59	191.0194	-0.286	$\rm C_6H_8O_7$	-[H-H]	MS2[191]: 173(25), 111(100)	Ι	Citric acid isomer
5a	3.28	865.1965	-2.007	C ₄₅ H ₃₈ O ₁₈	-[H-H]	$\begin{split} \text{MS2}[865]: 848(11), 739(15), 713(29), 695(100), 587(8), 577(32), 575(28), 543(8), 451(10), 449(10), 425(11), 413(8), 407(12), 405(6), 363(6), 287(13)\text{MS3}[865 \rightarrow 695]: 677(30), 651(11), 586(15), 585(9), 543(100), 525(15), 451(37), 407(15), 405(51), 391(12), 387(7), 363(48), 299(10), 289(27), 243(46) \end{split}$	234	Proanthocyanidin trimer
6a	3.33	865.196	-2.497	$C_{45}H_{38}O_{18}$	-[H-H]	1	I	Proanthocyanidin trimer
7a	3.98	783.0670	-1.685	$\rm C_{34}H_{24}O_{22}$	-[H-H]	MS2[783]: 481(28), 301(100), 275(8)	I	bis-HHDP hexose
8a	5.39	783.0682	-0.465	$\rm C_{34}H_{24}O_{22}$	-[H-H]	MS2[783]: 481(28), 301(100), 275(81)	I	bis-HHDP Hexose
9a	5.62	289.0924	-0.511	$C_{12}H_{18}O_{8}$	-[H-M]	MS2[289]: 245(6), 161(100), 101(8)MS3[289 → 161]: 143(9), 125(9), 113(61), 101(100), 99(13), 97(11), 89(9), 85(11), 73(7), 71(30)	232, 271	Furaneol hexoside
10a	6.54	285.0614	-0.211	$C_{12}H_{14}O_{8}$	-[HM]	MS2[285]: 165(6), 153(100), 152(31), 109(7), 108(6)MS3[285 → 153]: 109(100)	231, 283	Dihydroxybenzoic acid xylose
11a	6.73	951.0743	-0.178	$C_{41}H_{28}O_{27}$	-[H-H]	MS2[951]: 907(100), 783(25)		Geraniin
12a	7.91	865.1976	-0.967	C ₄₅ H ₃₈ O ₁₈	-[H-H]	$\begin{split} \text{MS2}[865]: 847(21), 739(64), 713(31), 695(100), 677(6), 587(31), 577(57), 575(33), 543(18), 533(7), 451(21), 449(21), 425(21), 425(21), 423(8), 413(11), 407(26), 405(11), 289(10), 287(17)\text{MS3}[865 \rightarrow 695]: 677(29), 585(6), 543(100), 525(27), 451(49), 407(11), 405(28), 391(7), 387(8), 363(13), 299(9), 289(14), 243(29), 289(14), 245(29), 286(14), 245(29), 286(14), 245(14), 285(16), 285(14), 285(14), 285(16), 285(14), $	234, 278	Proanthocyanidin trimer
13a	8.98	865.1976	-0.967	C ₄₅ H ₃₈ O ₁₈	-[H-H]	$\begin{split} \text{MS2}[865]: 847(27), 739(59), 713(49), 695(100), 587(19), 577(63), \\ 575(33), 559(7), 557(6), 543(17), 533(7), 451(22), 449(22), 425(20), \\ 423(8), 413(11), 407(21), 405(10), 395(6), 289(10), \\ 287(18)\text{MS3}[865 \rightarrow 695]: 678(34), 585(6), 543(100), 542(15), \\ 525(28), 451(36), 407(8), 405(26), 391(11), 363(26), 299(9), \\ 289(23), 243(49) \end{split}$	234, 278	Proanthocyanidin trimer
14a	9.25	1153.261	-1.425	C42H58O37	-[H-H]	MS2[1153]: 1135(50), 1028(90), 1009(7), 1002(38), 1001(17), 983(85), 982(6), 965(8), 907(24), 865(100), 863(53), 857(7), 847(25), 846(11), 821(8), 739(50), 738(21), 701(32), 695(25), 694(7), 683(9), 588(6), 577(40), 575(55), 569(6), 560(11), 451(11), 449(18), 423(9), 407(26), 405(11), 395(7)	234, 278	Proanthocyanidin tetramer
15a	10.01	325.0929	-1.267	$\mathrm{C}_{15}\mathrm{H}_{18}\mathrm{O}_8$	-[H-H]	MS2[325]: 265(19), 235(7), 205(7), 187(50), 163(90), 145(100), 119(9)MS3[325 → 145]: 117(100)	219, 234, 314	Coumaroyl glucose

NIH-PA Author Manuscript

Sun et al.

NIH-PA Author Manuscript

Table 2

Peak no.	t_R (min)	2/ m	Error (mmu)	Formula	Adduct	MS ² to MS ⁴ data	UV À _{max} (nm)	Possible identification
16a	11.05	449.1074	-0.148	$C_{21}H_{21}O_{11}$	M^+	MS2[449]: 287(100)	276, 428, 500	Cyanidin 3-0-glucoside [*]
17a	11.57	849.2031	-0.563	$C_{45}H_{38}O_{17}$	-[H-H]	MS2[849]: 831(22), 724(90), 723(13), 714(7), 697(34), 695(30), 679(12), 577(100), 571(45), 559(74), 553(15), 543(10), 451(19), 433(14), 425(38), 407(25), 397(11), 289(15), 287(20)	234, 278	Epiafzelechin- $(4\beta \rightarrow 8)$ -epicatechin- $(4\beta \rightarrow 8)$ -epicatechin
18a	12.61	577.1343	-0.859	$C_{30}H_{26}O_{12}$	-[H-H]	MS2[577]: 559(15), 451(54), 425(100), 407(52), 299(10), 289(26), 287(13)	233, 278	Proanthocyanidin dimer
19a	13.32	433.1125	-0.463	$C_{21}H_{21}O_{10}$	\mathbf{M}^+	MS2[433]: 271(100)	234, 276, 428, 499	Pelargonidin 3- <i>O</i> -glucoside [*]
20a	14.87	865.1970	-1.577	C ₄₅ H ₃₈ O ₁₈	-[H-H]	$\begin{split} MS2[865]: 847(15), 739(63), 714(34), 713(17), 695(100), 677(6), 587(28), 577(60), 575(29), 569(10), 561(11), 559(8), 543(19), 451(20), 449(12), 425(29), 413(9), 407(33), 405(7), 289(7), 287(18) MS3[865 \rightarrow 695]: 677(31), 652(7), 569(23), 543(86), 525(49), 451(15), 449(11), 407(100), 405(19), 363(9), 289(12), 243(24), 562(24), 562(24), 562(26), 562($	233, 278	Proanthocyanidin trimer
21a	15.84	449.1089	0.015	$C_{21}H_{22}O_{11}$	-[H-H]	MS2[449]: 355(100), 329(12), 287(36), 269(29), 193(13) MS3[449 → 355]: 193(100), 192(12)	234, 330	Ferulic acid hexose
22a	18.18	935.0782	1.414	$C_{41}H_{28}O_{26}$	-[H-H]	MS2[935]: 633(100), $301(43)$ MS3[935 \rightarrow 633]: 463(7), $301(100)$	234, 278	Galloyl bis-HHDP Hexose
23a	19.40	433.0406	-0.659	$C_{19}H_{14}O_{12}$	-[H-M]	$\begin{split} \mathbf{MS2}[433]: 415(6), 301(100), 300(30)\mathbf{MS3}[433 \rightarrow 301]: 301(42), \\ 284(47), 257(100), 229(70), 185(27) \end{split}$	216, 234, 278	Ellagic acid pentoside
24a	19.95	300.9985	-0.45	$\mathrm{C}_{14}\mathrm{H}_{6}\mathrm{O}_{8}$	-[H-M]	MS2[301]: 301(43), 300(6), 284(29), 283(20), 273(15), 257(100), 245(9), 229(69), 213(8), 201(9), 185(39)	233, 366	Ellagic acid*
25a	20.44	447.0563	-0.559	$C_{20}H_{16}O_{12}$	-[H-H]	$\begin{split} \mathbf{MS2}[447]{:} & 301(100), 300(30)\mathbf{MS3}[447 \rightarrow 301]{:} \ 301(13), 284(11), \\ & 257(100), 229(27), 185(12) \end{split}$	234, 370	Ellagic acid deoxyhexoside
26a	21.31	447.0566	-0.289	$C_{20}H_{16}O_{12}$	-[H-M]	$\begin{array}{l} MS2[447]: 301(100), 300(30)MS3[447 \rightarrow 301]: 301(25), 300(12), 284(14), 283(40), 271(6), 257(100), 255(6), 245(7), 229(50), 185(23) \\ 185(23) \end{array}$	I	Ellagic acid deoxyhexoside
27a	22.99	477.0673	-0.204	$C_{21}H_{18}O_{13}$	-[H-M]	$\begin{split} \mathbf{MS2}[477]: \ 301(100)\mathbf{MS3}[477 \rightarrow 301]: \ 273(20), \ 257(15), \ 179(100), \\ 151(69)\mathbf{MS4}[477 \rightarrow 301 \rightarrow 179]: \ 151(100) \end{split}$	216, 233, 350	Quercetin 3-0-glucuronide*
28a	23.75	463.088	-0.219	$C_{21}H_{20}O_{12}$	-[H-H]	$\begin{split} \text{MS2}[463]: \ 301(100), \ 300(21)\text{MS3}[463 \rightarrow 301]: \ 283(8), \ 273(28), \ 257(14), \ 239(6), \ 193(8), \ 179(100), \ 151(75), \ 107(6) \end{split}$	I	Quercetin 3-glucoside *
29a	24.41	935.0782	-1.354	$C_{41}H_{28}O_{26}$	-[H-H]	MS2[935]: 918(6), 633(100), 463(7), 301(61)	I	Galloyl-bis-HHDP-glucose
30a	24.81	355.1031	-0.395	$C_{16} H_{19} O_9$	-[H-M]	MS2[355]: 337(23), 311(10), 309(100), 207(35), 147(50)	216, 233, 282	Feruloyl hexoside
31a	26.28	934.0712	-0.609	C ₈₂ H ₅₂ O ₅₄	[M-2H] ²⁻	MS2[934]: 1568(100), 1567(9), 1265(25), 1085(26), 916(31), 915(93), 897(84), 783(32), 633(41), 301(86)	233	Agrimoniin
32a	27.89	461.0725	-0.039	$C_{21}H_{18}O_{12}$	-[H-M]	$\begin{split} \text{MS2}[461]: & 285(100) \text{MS3}[461 \rightarrow 285]: & 267(42), & 257(100), & 243(8), \\ & 241(23), & 240(17), & 239(21), & 229(41), & 223(11), & 213(24), & 211(10), \\ & 199(16), & 197(16), & 195(7), & 183(7), & 163(14), & 151(8) \end{split}$	217, 233, 265, 350	Kaempferol 3- <i>0-</i> glucuronide*
33a	28.40	447.0934	0.065	$C_{21}H_{20}O_{11}$	-[H-H]	$\begin{array}{l} MS2[447]:\ 327(23),\ 301(7),\ 285(90),\ 284(100),\ 255(15)MS3[447\rightarrow 284]:\ 255(100),\ 227(13) \end{array}$	218, 233, 350	Kaempferol 3-0-glucoside

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

-
<u> </u>
_
-
\mathbf{O}
\simeq
~
<
ດງ
~
_
=
0
0
U
_
\mathbf{n}
-

NIH-PA Author Manuscript

NIH-PA

Peak no.	$\substack{t_R \\ (\min)}$	z/m	Error (mmu)	Formula	Adduct	MS ² to MS ⁴ data	UV λ_{max} (nm)	Possible identification
34a	30.33	505.0983	-0.494	$C_{23}H_{22}O_{13}$	-[H-H]	MS2[505]: 487(10), 463(25), 343(6), 301(100), 300(53)	Ι	Quercetin 3-acetylglucoside
35a	32.04	489.1039	0.031	C ₂₃ H ₂₂ O ₁₂	-[H-H]	$\begin{array}{l} MS2[489]{:} 285(100)MS3[489 \rightarrow 285]{:} 267(59), 257(100), 256(16), \\ 241(25), 240(12), 239(25), 229(57), 223(12), 213(26), 199(26), \\ 197(21), 195(10), 189(6), 165(6), 163(23) \\ \end{array}$	I	Kaempferol 3-acetylglucoside
36a	44.26	593.1299	-0.124	$C_{30}H_{25}O_{13}$	-[H-H]	MS2[593]: 447(10), 307(6), 285(100)	I	Kaempferol 3-coumaroylglucoside
* Confirm	ned with r	eference sta	ndards.					

Sun et al.