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ABSTRACT

Sequence alignments are fundamental to a wide
range of applications, including database search-
ing, functional residue identi®cation and structure
prediction techniques. These applications predict or
propagate structural/functional/evolutionary infor-
mation based on a presumed homology between
the aligned sequences. If the initial hypothesis of
homology is wrong, no subsequent application,
however sophisticated, can be expected to yield
accurate results. Here we present a novel method,
LEON, to predict homology between proteins based
on a multiple alignment of complete sequences
(MACS). In MACS, weak signals from distantly
related proteins can be considered in the overall
context of the family. Intermediate sequences and
the combination of individual weak matches are
used to increase the signi®cance of low-scoring
regions. Residue composition is also taken into
account by incorporation of several existing meth-
ods for the detection of compositionally biased
sequence segments. The accuracy and reliability of
the predictions is demonstrated in large-scale com-
parisons with structural and sequence family data-
bases, where the speci®city was shown to be >99%
and the sensitivity was estimated to be ~76%. LEON
can thus be used to reliably identify the complex
relationships between large multidomain proteins
and should be useful for automatic high-throughput
genome annotations, 2D/3D structure predictions,
protein±protein interaction predictions etc.

INTRODUCTION

Multiple sequence comparisons or alignments are one of the
cornerstones of modern molecular biology. Since their
introduction in the 1970s they have been used in a wide
range of molecular biology applications, including the iden-
ti®cation of key functional residues in a family of proteins, the
prediction of 2D/3D structural features and evolutionary
studies to de®ne the phylogenetic relationships between
organisms. All these applications predict or propagate bio-
logical information between the sequences in the multiple
alignment based on a presumed homology. The hypothesis is

that homologous sequences, i.e. sequences that have des-
cended from the same ancestor, often share the same structure
and function. In this article, the term `homologous sequences'
will therefore refer to proteins that have similar functions or
that share regions of similar structure. A fundamental step in
these so-called `homology-based' methods is the determin-
ation of the extent of homology (i.e. the extent of shared
structure/function) between the aligned sequences. Without
this initial crucial step, the subsequent applications that rely on
an accurate multiple alignment cannot be expected to yield
high-quality results.

Homology-based methods generally begin with a search for
similar proteins in the public sequence databases using tools
such as BLAST (1), PSI-BLAST (2) or domain/motif data-
bases such as Interpro (3). However, simply ®nding a medium
or weak sequence similarity to an experimentally determined
protein is not suf®cient for an accurate transfer of information
from the known protein to the unknown one (4±6). While a
direct relationship between sequence similarity and conser-
vation of protein structure has been clearly established (7±10),
the relation between fold and function is more controversial. A
number of authors have investigated the relation between
sequence similarity and protein function via the Enzyme
Classi®cation (EC) (11±13). Precise function appears to be
conserved down to ~40% sequence identity, whereas broad
functional class is conserved to ~25%. The simple transfer of
information from the most closely related hits found by a
database search has led to a number of errors, notably in
automatic high-throughput genome annotation projects. The
level of error in genome functional annotations has been
estimated to be ~5±8% for more general enzymic functions
(5,14) to >30% for speci®c functions, such as substrate
speci®city (14). More recently, Rost (15) has suggested that
the conservation of enzyme function has been overestimated
and consequently, that the percentage of errors in annotations
may have been underestimated. Local sequence similarities in
relatively short regions and/or transferring annotations for
different domains in multidomain proteins were identi®ed as
the cause of most misclassi®cations. Another study (16) also
identi®ed some common causes of questionable predictions
such as: (i) non-critical use of annotations from existing
database entries; (ii) taking into account only the annotation of
the best database hit; (iii) insuf®cient masking of low-
complexity regions (e.g. non-globular domains) in protein
sequences, resulting in spurious database hits obscuring
relevant ones; (iv) ignoring multidomain organization of the
query proteins and/or the database hits. Clearly, new
cooperative and integrative algorithms are now required in
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order to develop a comprehensive picture of the complex
relationships that exist between large multidomain proteins.

Global multiple alignments of complete sequences (MACS)
provide an ideal basis for more in-depth analyses of protein
family relationships (17). By placing the sequence in the
context of the overall family, MACS permit not only a
horizontal analysis of the sequence over its entire length, but
also a vertical view of the evolution of the protein.
Nevertheless, MACS have often been considered unsuitable
for automatic high-throughput projects because of their
unreliability in the face of complex, often non-collinear,
proteins and the relatively long calculation times required.
Fortunately, recent advances in multiple alignment algorithms
(18±20) now allow fast reliable global multiple alignment of
large families of complete sequences. However, the deter-
mination of the extent of homology between the sequences in
the multiple alignment remains a fundamental problem. The
degree to which the sequences in a multiple alignment are
related can be estimated by an analysis of positional conser-
vation (21±23) or by measuring the statistical signi®cance of
the alignment (24). Cline et al. (25) tested four different
predictors of alignment position reliability and concluded that
near-optimal alignment information was the best predictor,
removing 70% of the substantially misaligned positions.
Thompson et al. (26) used the NorMD objective function to
remove unrelated or badly aligned sequences from multiple
alignments. Errami et al. (27) analysed the agreement between
predicted secondary structures of the aligned sequences to
detect and discard unrelated sequences. Tress et al. (28) used
sequence pro®les generated from PSI-BLAST alignments to
predict reliable regions between remotely related pairs of
proteins. These methods work well when the sequences to be
compared are homologous over their full lengths, but large
multidomain proteins are becoming more and more prevalent
in the sequence databases with the arrival of numerous new
genome sequences, in particular from eukaryotic organisms.
In the face of these highly complex proteins, new more
sensitive methods are needed to detect sequences with either
full-length or partial homology to the query sequence.

Here we propose a new method, LEON (aLignment
Evaluation Of Neighbours), to predict homologous regions
in MACS with respect to a user-de®ned reference or `query'
sequence. LEON incorporates some of the latest developments
in multiple alignment analysis, including sequence clustering
(29) and the identi®cation of locally conserved motifs or `core
blocks' (30). Taking advantage of the transitive nature of
homologous relationships, information from intermediate
sequences (31,32) is used to help de®ne the conserved core
blocks for more divergent sequences. The conserved blocks
for each subfamily are then chained together to form
contiguous regions. Groups of motifs are now often used
instead of single motifs, for example in sequence searches (2)
or motif searches (33±35), because they inherently offer
improved diagnostic reliability by virtue of the mutual context
provided by motif neighbours. Finally, the amino acid
composition of the sequences is taken into account by the
incorporation of a number of algorithms for the detection of
compositionally biased segments (36±38).

The speci®city and sensitivity of the LEON method are
demonstrated in two separate large-scale tests. The ®rst
involves a large set of 106 multiple alignments which is

divided into separate training and test sets, each consisting of
53 multiple alignments. This set was based on a previous
benchmark set speci®cally designed to assess the validity of
inheriting protein function by homology (6). As all the
sequences in this test had known 3D structures, an objective
de®nition of homology could be used, i.e. that the two proteins
share at least one domain with the same 3D fold. The results
obtained by LEON for the 53 test alignments were compared
with two structural family databases, CATH (39) and MMDB
(40). The speci®city in these tests was shown to be >99%, and
the sensitivity was estimated to be ~76%. The second test set
consists of a set of 174 enzymes, constructed by selecting
representative sequences with different EC numbers. This test
set contained examples of some of the known pitfalls
encountered by homology-based methods, namely multi-
domain sequences, sequences with transmembrane regions
and sequences with low-complexity regions. The results are
compared with the manually curated protein sequence family
database Pfam (41).

In the ®nal LEON alignment, the sequences that are
predicted to be homologous to the user's query sequence are
ranked according to their similarity to the query sequence.
Sequences containing no regions with signi®cant scores are
®ltered from the alignment. The homologous regions within
each sequence are delimited and thus can be used for reliable
function annotation, fold classi®cation, 2D/3D structure
predictions, domain determination, etc.

MATERIALS AND METHODS

LEON consists of a suite of programs, all written in ANSI C.
The programs were installed and tested on a DEC Alpha 6100
computer running OSF Unix. A UNIX shell script is provided
that calls the C programs. The Secator program (http: //www-
bio3d-igbmc.u-strasbg.fr/~wicker/Secator/secator.html) is re-
quired for sequence clustering. The NCOILS program (http://
russell.embl-heidelberg.de/coils/coils.tar.gz) is also required
for the prediction of coiled-coil regions. LEON takes multiple
alignments in either MSF or FASTA format as input and
outputs a re®ned alignment in either MSF or FASTA format,
as requested by the user. The re®ned alignment contains only
those sequences predicted to contain homologous regions. The
positions of the conserved core blocks and conserved regions
are output to a formatted text ®le. The source code for LEON
is freely available from ftp://ftp-igbmc.u-strasbg.fr/pub/Leon.

Construction of the training and test sets

A ®rst test set of multiple alignments was constructed based on
a benchmark speci®cally de®ned for a previous study (6) to
assess the validity of inheriting protein function by homology.
The benchmark consisted of 106 chains from the Protein Data
Bank (PDB) database (42) sharing <25% mutual sequence
identity and included 95 enzymes and 11 non-enzymes. For
each chain in the benchmark set, a PSI-BLAST (2) search of
the PDB database was performed. In order to include a
maximum number of related sequences, but also a certain
number of unrelated sequences, 15 iterations of PSI-BLAST
were performed and the E value threshold for including
matches in the PSI-BLAST model was set to 10.0. As this
process often resulted in a large number of closely related
sequences, an automatic method was used to select a smaller
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subset of representative sequences (43). Brie¯y, the range of
E values found in the BlastP output ®le is analysed and a
signi®cance threshold is determined for the ratio of E values
between two sequence entries. Then, if the E value ratio
between two consecutive sequences is greater than the
threshold, only the ®rst sequence is selected. The result is a
non-redundant subset of sequences selected from the full set of
all sequences detected by PSI-BLAST with E < 10.0. For each
query sequence, a multiple alignment of the non-redundant
subset was constructed using DbClustal (18) and then re®ned
using RASCAL (30). The resulting 106 multiple alignments
contained a total of 11 736 sequences of known 3D structure.
The benchmark set was then divided into separate training and
test sets, each containing 53 multiple alignments.

A second test set was then constructed from the BRENDA
Enzyme Information System (44) by selecting one example
from each of the EC classi®cations at the third digit level. The
test set consisted of 174 enzymes and included multidomain
proteins as well as proteins containing transmembrane or
coiled-coil regions. For each enzyme, a BlastP search of the
SWISS-PROT/TrEMBL (45) and PDB databases was per-
formed. The automatic method described above was again
used to select a non-redundant subset of all sequences found
with E < 10.0. A multiple alignment of the non-redundant
subset was then constructed using DbClustal and re®ned using
RASCAL. The resulting 174 multiple alignments contained a
total of 11 550 full-length sequences.

Overview of the algorithm

Given a multiple sequence alignment, LEON determines, for
each sequence in the alignment, the regions that are
homologous to a speci®ed query sequence. The method
consists of four major steps, outlined in Figure 1. First, the
sequences in the multiple alignment are clustered into
subfamilies using the Secator program. Any highly divergent
or `orphan' sequences in the alignment are identi®ed and are
excluded from the subfamily clustering. Secondly, for each
subfamily, locally conserved regions or `core blocks' are
determined using the RASCAL method. Brie¯y, RASCAL
uses the NorMD objective function in a sliding window
analysis to determine locally conserved segments or `core
blocks' in an alignment. Each core block is then represented
by a Gribskov pro®le (46), based on the observed residue
frequencies in the block and the Gonnet 250 matrix (47). Core
blocks in the orphan sequences that are unclustered by Secator
are then identi®ed using sequence pro®le scores for each core
block in each subfamily. Thirdly, the core blocks speci®c to
each subfamily or orphan sequence are compared in a pairwise
fashion in order to identify all core blocks that match the query
sequence. In this way, intermediate sequences can be used to
match core blocks between the more divergent sequences and
the query. Finally, for each sequence, the conserved blocks
that match the query sequence are chained together to form
`regions' and a score is calculated for each homologous region
based on the length and score of the associated core blocks and

Figure 1. Flowchart showing the four major steps of the LEON algorithm. The input to the algorithm consists of a multiple sequence alignment, in which the
user has identi®ed a reference or `query' sequence. The ®nal result is a multiple alignment in which the sequences predicted to be homologous are ranked
according to their similarity to the query. Non-homologous sequences are excluded from the alignment.
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the composition of the sequences. Any sequences with no
homologous regions scoring higher than a threshold are
removed from the alignment. As the ®rst two steps have been
described in detail elsewhere, the following sections describe
only the ®nal two stages.

Matching core blocks between subfamilies

Pairwise pro®le±pro®le scores are calculated for all core
blocks within a subfamily with overlapping core blocks in all
other subfamilies. The raw score for two pro®les is de®ned as
the sum of the scores for each pair of aligned columns and the
calculation of the score for two columns is the same as that
used in ClustalW (48). The raw pro®le±pro®le scores are then
normalized for the length of the overlap of the two core blocks
and the similarity of the sequences within each core block. The
normalized score S for matching two core blocks bi, bj in the
ith and jth subfamilies, respectively, is calculated by

S�bi; bj� � 100 �s � f �bi; bj�
pcid � len

where s is the raw pro®le±pro®le score, len is the length of
overlap of the two core blocks, pcid is the mean percentage
identity of the sequences in the core blocks and f(bi,bj) equals
0.75 if either bi or bj overlap a segment with a biased residue
composition (see below) or equals 1 otherwise. This normal-
ization allows the de®nition of a threshold score t above which
a match between two core blocks is considered to be
signi®cant. The next step is to identify those core blocks
that match the subfamily containing the query sequence. A
core block bi matches a core block bq in the query subfamily if
either S(bi,bq) > t or a subfamily j exists for which S(bi,bj) > t
and S(bj,bq) > t.

Thus intermediate subfamilies are used to match core
blocks between the more divergent sequences and the query.
In this way even though a core block in a remote sequence
may not directly have a signi®cant score when compared with
the query, it may be linked through an intermediate whose
similarities to both the query and the remote sequence are
above the threshold.

Detection of sequence segments with biased composition

LEON incorporates several existing algorithms for the detec-
tion of compositionally biased segments and a heuristic
procedure is employed to reduce the score for core blocks that
contain these segments (see above). We use the SEG
algorithm (38) to detect low-complexity sequence segments
and the NCOILS program to detect coiled-coil regions (37).
Potential transmembrane segments are identi®ed using a
sliding-window analysis of residue hydrophobicity scores
(36). These algorithms were chosen for their ef®ciency and
simplicity of implementation. Although they may not be the
most accurate methods currently available, in the large-scale
tests performed here they have proved to be suf®cient for this
application (data not shown).

Determination of conserved regions

Once the core blocks for each sequence that match the query
have been determined, the next step is to chain the core blocks
together to form conserved `regions', provided certain

constraints are satis®ed. This step, outlined in Figure 2, is
performed individually for each sequence. First, the core
blocks for the sequence are ordered according to their position
in the sequence. Then, for each sequence, let B = b1,b2,. .. ,bn

be the set of core blocks found in the sequence that match the
query sequence. Then, let ri be the position of the ®rst residue
in the ith block, let qi be the corresponding residue in the query
sequence and let li be the length of the block. Two core blocks
bi,bj are chained together if they satisfy all of the following
constraints:

Si >; Sj > x; rj ± (ri + li) < d; qj ± (qi + li) < d

where Si is the normalized pro®le score for the ith core block
that matches the query, x is a minimum score for the core
blocks and d is a maximum length of insertion between the
two blocks. The chaining continues until all possible blocks
are chained. The score for a conserved region is de®ned as the
sum of the scores for the core blocks within the region.
Finally, regions are predicted to be homologous if they score
higher than a threshold score T and have a total core block
length >L.

Optimization of threshold parameters

The method described above includes a number of threshold
parameters, namely x, d, T and L. In order to optimize the
values used for these parameters, the LEON method was used
to detect unrelated sequences in the 53 multiple alignments
included in the training set (see Materials and Methods).
LEON was trained by comparison with the results obtained
with the CATH Protein Structure Classi®cation database (49),
which is a manually maintained high-quality database of
protein domain structure families. Proteins in the same
homologous superfamily in CATH are thought to share a
common ancestor and were therefore assumed to be true
homologues. In order to determine the optimal parameter
settings, an iterative search of a constrained parameter space
was performed. By a manual examination of the alignments in
the training set, the four parameters were limited as follows:
3 < x < 6, 30 < d < 50, 260 < T < 320, 18 < L < 24. The
four parameters were systematically modi®ed within these
limits, incrementing x,L by 1 and d,T by 10. At each iteration,
the homologous regions in the 53 training alignments were

Figure 2. Determination of conserved regions, illustrated by the chaining of
the core blocks in a subfamily of three sequences. The core blocks for each
sequence are indicated by boxes outlined in black. Core blocks scoring less
than the minimum score (x = 5) are marked with a black cross. The position
of the ®rst residue in the ith core block is denoted ri and the corresponding
position in the query is denoted qi. The length of the ith core block is indi-
cated by li. The numbers between the dotted lines indicate the number of
residues between the two adjacent core blocks. For each sequence, two core
blocks are chained if the insertion length between them is less than the max-
imum length (d = 40). The regions formed by the chaining are indicated by
grey shading.
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recalculated and compared with the CATH classi®cations. Of
all the parameter combinations tested, the settings that resulted
in a speci®city of less than 100% were immediately rejected.
The parameters corresponding to the maximum sensitivity
were then selected for use in the subsequent tests. The ®nal
threshold parameters were set to x = 5, d = 40, T = 280 and L =
21. These settings provide a speci®city of 100%, i.e. no false
positives were detected, and an estimated sensitivity of 79%
(415 of the 2035 homologous sequences in CATH were not
correctly identi®ed).

RESULTS

The algorithm developed in LEON shows some interesting
parallels with the latest gapped BLAST program. The central
idea of the BLAST algorithm is that a statistically signi®cant
alignment (HSP) is likely to contain a high-scoring pair of
aligned words. BLAST ®rst scans the database for `words'
(typically of length 3 for proteins) that score higher than a
certain threshold when aligned with some word within the
query sequence. Any aligned word pair satisfying this
condition is called a `hit'. A gapped alignment is then
generated only if two non-overlapping hits are found within a
speci®ed distance of one another. This `two-hit' heuristic was
shown to be more sensitive than the original `one-hit' method.
By default, the minimum score for the two hits is 11 and the
distance between them should not exceed 40. The threshold
scores for LEON and BLAST are not directly comparable
because they are based on different residue comparison
matrices. Nevertheless, it is interesting to note that the optimal
value of d = 40, corresponding to the maximum distance
allowed between two consecutive core blocks, is the same as
the BLAST default value determined by manual inspection of
100 000 model HSPs. The second step of the BLAST
algorithm checks whether each hit lies within an HSP with
score suf®cient to be reported, which could be compared to the

combination of the core blocks in LEON to form longer
regions. The ®nal scoring schemes of the two methods are
different, however. Gapped BLAST scores all the aligned
residues in the HSP using a residue comparison matrix, with
penalties for gap opening and extension. The score for a region
in LEON is based only on the conserved core blocks within the
region and gap costs are not needed in this approach.

Comparison with the CATH and MMDB structural
databases

The sensitivity and speci®city of the LEON method were
estimated using the test set of 53 multiple sequence alignments
from the PDB database (see Materials and Methods), which
contains only sequences with known 3D structures and
therefore provides an objective de®nition of homology, i.e.
that the two proteins share at least one domain with the same
3D fold. Table 1 shows the details of the comparison between
the LEON predictions of homology and the structural
classi®cations in the CATH manually curated database. The
speci®city of LEON in this test is 99.6% (seven of the 1845
non-homologous sequences in the tests were predicted to be
homologous to the query sequence). The sensitivity of LEON
is estimated to be 78.2%. However, 2306 or 36% of the
sequences in the test multiple alignments had not yet been
classi®ed in the CATH database, so the sensitivity of the
method could not be measured accurately. A more complete
structural classi®cation is provided in the MMDB database
(40), which is updated monthly to re¯ect the complete PDB
database. Structure neighbours of each entry in the MMDB
database are identi®ed automatically using the VAST algo-
rithm (50). A comparison of the predictions made by LEON
and by VAST is shown in Table 2. A surprising result from
this comparison was the 273 `false-positive' predictions where
LEON predicted homologous sequences which were not
de®ned as structural neighbours in the MMDB database. A
more detailed investigation showed that, in 246 of the 273

Table 1. Comparison of the results of LEON for a test set of 53 multiple alignments of the sequences detected in a search of the PDB by PSI-Blast with E
< 10

CATH
homologuesa

CATH
non-homologuesb

Sequences not yet
classi®ed in CATHc

Total sequencesd

Predicted homologues 1788 7 665 2460
Predicted non-homologues 498 1845 1641 3984

Multiple alignments were constructed using DbClustal and RASCAL.
aSequences with at least one domain in the same CATH superfamily as the query.
bSequences in CATH database with no domain in the same CATH superfamily as the query.
cSequences with known 3D structure but not yet included in the CATH database.
dTotal number of sequences in multiple alignments.

Table 2. Comparison of the results of LEON for the test set of 53 multiple alignments used in Table 1

VAST
homologuesa

VAST
non-homologuesb

Total
sequencesc

LEON homologues 2187 273 2460
LEON non-homologues 672 3312 3984

aSequences de®ned as a `structure neighbour' of the query in VAST database.
bSequences are either not de®ned as a `structure neighbour' of the query or are not in the VAST database (see
explanation in text).
cTotal number of sequences in multiple alignments.
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cases, the sequence shared >35% residue identity with another
chain that was identi®ed as a structural neighbour of the query.
This is the result of a known inconsistency in the VAST
neighbour processing protocol (T. Madej, personal communi-
cation). The true number of false positives detected by LEON
in these tests is therefore estimated to be 27 sequences, leading
to a speci®city of >99% and a sensitivity of 76.5%. We also
investigated the 672 `false-negative' predictions made by
LEON. The MMDB database includes various statistics that
describe the homologous regions found by the VAST algo-
rithm and so allows a more in-depth comparison. Figure 3
shows a breakdown of the LEON predictions, classi®ed by the
percentage residue identity of the homologous region, as
calculated by the VAST algorithm. It can be seen that all
structures predicted by VAST to contain a homologous region
with >40% identity and approximately half of the regions with
11±20% identity, were also predicted to be homologous by
LEON. Of the 429 VAST structure neighbours with 31±40%
identity, LEON failed to identify homologous regions in 70
sequences. These 70 VAST structure neighbours corres-
ponded mainly to short regions, with a mean length of 71
residues.

Comparison with the Pfam manually curated sequence
database

In order to test the accuracy of the LEON predictions for a
wide variety of different full-length proteins, a set of
representative sequences with different EC numbers at the
third-digit level was used (see Materials and Methods). The
test set consisted of 174 enzymes and included multidomain
proteins, proteins containing transmembrane or coiled-coil
regions. For each test case, LEON was used to predict
homologous regions and to detect unrelated sequences in the
multiple alignment of the complete sequences detected by a
BLAST database search. Table 3 shows details of the
comparison between the LEON predictions and the Pfam
protein domain database, which is a manually maintained
high-quality database. Of the 7646 sequences that had matches
with the query sequence in the Pfam database, LEON failed to
predict any homologous regions for 173 of them. In contrast,
104 sequences were identi®ed as having homologous regions

that had no matches to the query in Pfam. An example of one
of these `false-positive' predictions is shown in Figure 4,
which shows part of the multiple alignment constructed using
the L-lactate dehydrogenase from Escherichia coli (P33232)
as the query. Two subfamilies are included in the alignment,
one containing the query sequence which matches the Pfam
family of FMN-dependent dehydrogenases (PF01070) and the
other containing sequences (e.g. P50098) that match the Pfam
family of inosine monophosphate dehydrogenases (PF00478).
These two families were predicted by LEON to be
homologous and, in fact, they are both known to contain
domains with the same TIM barrel fold (CATH homologous
superfamily 3.20.20.90). The orphan PDB sequence, 1P0N_B,
which was also predicted to be a homologue of the query, has
not yet been classi®ed by CATH, but is de®ned in MMDB as a
structural neighbour of the ®rst subfamily (mean RMSD, 2.3;
mean % identity, 23.7) and of the second subfamily (mean
RMSD, 2.6; mean % identity, 17.7). Nevertheless, the two
families do have different functions and different enzyme
classi®cations (EC 1.1.2.3 and EC 1.1.2.05 respectively), and
an analysis of the active sites (shown in Fig. 4) described in the
SWISS-PROT entries for the proteins revealed that the
catalytic residues of the two subfamilies are not found within
the conserved core block regions de®ned by LEON.

The sensitivity of LEON in the face of complex multi-
domain proteins is illustrated by the example shown in
Figure 5. The NADH-dependent nitrate reductase (NR)
sequence from Arabidopsis thaliana (P11035) was used as
the initial query sequence for the BlastP search. NR catalyses
the ®rst step in nitrate assimilation, a pathway that is of key
importance for plant nutrition. Plant NR has been shown to
have a homodimeric structure, containing three functional
domains, heme, fad/nadh and molybdenum cofactor (51),
represented by ®ve different Pfam families. The BlastP search
detected a number of different proteins that contained one or
more of the three domains found in NR. One notable
subfamily comprised several sul®te oxidases (SUOX), the
enzyme that catalyzes the terminal reaction in the sulfur amino
acid degradation pathway. In humans, defects in SUOX
(mutations are shown in Fig. 5) are known to cause isolated
sul®te oxidase de®ciency (ISOD) (52), a very rare hereditary
metabolic disorder, which often leads to death at an early age.

Table 3. Comparison of the results of LEON for a set of 174 multiple
sequence alignments containing sequences detected in a BlastP search with
E < 10

Pfam
homologuesa

Pfam
non-
homologuesb

Sequences
with
no Pfam
matchesc

Total
sequencesd

LEON homologues 7573 104 2921 10569
LEON non-homologues 173 408 371 981

Multiple alignments were constructed using DbClustal and RASCAL.
aSequences with at least one Pfam match in common with query.
bSequences with matches in Pfam database, but with no match in common
with query.
cSequences with no matches in release 10.0 of the Pfam database.
dTotal number of sequences in multiple alignments.

Figure 3. A histogram of the number of sequences predicted by LEON to
be homologous (in black) and non-homologous (in white). The x axis repre-
sents the percentage residue identity calculated by the VAST structure com-
parison method.

Nucleic Acids Research, 2004, Vol. 32, No. 4 1303



DISCUSSION

The determination of homology is a crucial problem for a wide
range of homology-based applications and poses particular
problems in automatic high-throughput genome analysis and
annotation projects. A number of methods exist that estimate
homology based on a multiple sequence alignment (21±28).
These methods work well when the sequences to be compared
share global homology. But they generally look for features
shared amongst all or most of the sequences. For example,
when searching with a fused protein containing two domains,
A and B, many of the sequences detected will contain only
domain A and others will contain only domain B. Thus, no
globally conserved features will exist and the homology
detection methods described above will fail.

Here, we have presented LEON, a new method for the
automatic reliable estimation of the homology shared between
protein sequences based on MACS. The rationale of the
LEON method is the integration of a number of new
algorithmic ideas in a cooperative knowledge-based system.
In the context of multiple sequence alignment programs, we
showed previously that no single algorithm was capable of
providing accurate multiple alignments for all the cases
studied (53). Subsequent research (18±20) showed that the
combination of information from both local and global
alignment algorithms signi®cantly improved the quality of
multiple sequence alignments.

Using the same philosophy, LEON ®rst identi®es local
`core blocks', which may be conserved in either the complete
protein family or in clustered subfamilies. Core blocks are
compared using a sensitive pro®le scoring scheme (48) in
order to determine their similarity with the query sequence.
Information from intermediate sequences is used to help
de®ne the conserved blocks for more divergent sequences.
This technique is similar to the Intermediate Sequence Search
(ISS) method (31,32), which takes advantage of the transitive
nature of homologous relationships to successfully improve
the sensitivity of database searches. These local core blocks
de®ne single conserved motifs that may not always be
signi®cant when considered in isolation. A more global view
is obtained by chaining the core blocks together into longer

contiguous regions if they satisfy certain constraints. Although
these contiguous regions often correspond to structural
domains (e.g. Fig. 4), this is not guaranteed to be always
true. For example, a structural domain may consist of several
non-contiguous sequence segments. Another important fea-
ture is the calculation of core block scores that take into
account the composition of the sequences. It is known that
sequence segments with low residue complexity or compos-
ition bias, such as transmembrane regions or coiled-coil
regions, can give rise to spurious scores in sequence
comparisons. For example, the accuracy of the PSI-BLAST
program (2) was improved by tuning the position-speci®c
scoring system for each database sequence to the sequence's
amino acid composition (54).

The LEON algorithm was tuned using the CATH structural
classi®cation (39) as a standard of truth. The threshold
parameters used in the subsequent tests were set to provide
maximum speci®city. This is obviously important for auto-
matic genome analysis projects, where inclusion of non-
homologous proteins in the multiple alignment could lead to
erroneous functional or structural annotations. However, it is
possible for an experienced user to lower the threshold
parameters in order to achieve a higher sensitivity, at the
expense of some loss in speci®city. In a separate large-scale
test, LEON was compared with both the CATH database and
the automatic structural neighbour method VAST (50), and
the speci®city of LEON was shown to be >99%. The predicted
homologous regions therefore provide a reliable basis for the
many applications that rely on accurate multiple alignments,
e.g. functional residue identi®cation, 2D/3D structure predic-
tion or homology modelling.

Work is now in progress to incorporate LEON in the
PipeAlign protein family analysis www server (55). Future
developments will also include the integration of other
information in LEON, such as functional information in
the form of textual annotations, 2D/3D structures or
known domains from the manually curated databases. This
knowledge will be exploited for automatic re®nement of the
multiple alignments and correction of local alignment errors.
The LEON homology predictions in combination with this
high-quality knowledge-based multiple alignment will pro-

Figure 4. Part of a multiple alignment of the sequences detected by BlastP with E < 10 using the L-lactate dehydrogenase from E.coli (P33232) as the query.
Conserved columns are shaded (black, 100%; dark grey, 80%; light grey, 60%). Two subfamilies containing FMN-dependent dehydrogenases (FMN_DH) and
inosine monophosphate dehydrogenases (IMP_DH) and one orphan sequence (1P0N_B) are shown. The secondary structure elements of two representative
PDB sequences are shown above and below the alignment (coil, a helix; arrow, b sheet). Grey outlined boxes correspond to conserved core blocks. Black tri-
angles indicate active sites in the two subfamilies.
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Figure 5. Multiple alignment of the sequences detected by BlastP with E < 10, using the NADH-dependent nitrate reductase from A.thaliana (P11035) as the
query. (A) Domain organization of some of the top-scoring sequences. Domains were identi®ed in the Pfam protein family database (%id, residue percentage
identity). (B) A global multiple alignment of the full-length sequences. Residues are coloured according to the Pfam domain colouring scheme in (A). The
homologous regions predicted by LEON are outlined in black. Black triangles indicate mutations in the human sul®te oxidase enzyme (P51687) that cause
ISOD.
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vide a powerful tool for the characterization of new or
unknown proteins.

In conclusion, LEON is a fully automatic method which
reliably detects homologous regions in multiple sequence
alignments and which can be applied in a wide variety of
situations, including dif®cult cases such as distantly related
sequences, multidomain sequences or transmembrane se-
quences. It can therefore be incorporated in high-throughput
protein analysis protocols and provides a basis for reliable
cross-validation, propagation and prediction of structural/
functional information.
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