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Abstract
Nonparametric varying coefficient models are useful for studying the time-dependent effects of
variables. Many procedures have been developed for estimation and variable selection in such
models. However, existing work has focused on the case when the number of variables is fixed or
smaller than the sample size. In this paper, we consider the problem of variable selection and
estimation in varying coefficient models in sparse, high-dimensional settings when the number of
variables can be larger than the sample size. We apply the group Lasso and basis function
expansion to simultaneously select the important variables and estimate the nonzero varying
coefficient functions. Under appropriate conditions, we show that the group Lasso selects a model
of the right order of dimensionality, selects all variables with the norms of the corresponding
coefficient functions greater than certain threshold level, and is estimation consistent. However,
the group Lasso is in general not selection consistent and tends to select variables that are not
important in the model. In order to improve the selection results, we apply the adaptive group
Lasso. We show that, under suitable conditions, the adaptive group Lasso has the oracle selection
property in the sense that it correctly selects important variables with probability converging to
one. In contrast, the group Lasso does not possess such oracle property. Both approaches are
evaluated using simulation and demonstrated on a data example.
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1. Introduction
Consider a linear varying coefficient model with pn variables

(1.1)

where yi(t) is the response variable for the ith subject at time point t ∈ T, T is the time
interval on which the measurements are taken, εi(t) is the error term, xik(t) is the covariate
variable with time-varying effects, βk(t) is the corresponding smooth coefficient function.
Such a model is useful in investigating the time-dependent effects of covariates on responses
measured repeatedly. One well known example is longitudinal data analysis (Hoover et al.
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(1998)) where the response for the ith experimental subject in the study is observed on ni
occasions, and the observations at times tij : j = 1, . . . , ni are correlated. Another important
example is the functional response model (Rice (2004)), where the response yi(t) is a smooth
real function, although only yi(tij), j = 1, . . . , ni are observed in practice. In both examples,
the response yi(t) is a random process and the covariate xi(t) = (xi1(t), . . . , xip(t))′ is a p-
dimensional vector of random processes. In this paper, we investigate the selection of the
important covariates and the estimation of their relative coefficient functions in high-
dimensional settings, in the particular case , under the assumption that the number of
important covariates is “small” relative to the sample size. We propose penalized methods
for variable selection and estimation in (1.1) based on basis expansion of the coefficient
functions, and show that under appropriate conditions, the proposed methods can select the
important variables with high probability and estimate the coefficient functions effciently.

Many methods have been developed for variable selection and estimation in varying
coefficient models (1.1). See, for example, Fan and Zhang (2000) and Wu and Chiang
(2000), for the local polynomial smoothing method; Wang and Xia (2008) for the local
polynomial method with Lasso penalty; Huang, Wu, and Zhou (2004) and Qu and Li (2006)
for basis expansion and the spline method; Chiang, Rice, and Wu (2001) for the smoothing
spline method; Wang, Li, and Huang (2008) for basis function approximation with SCAD
penalty (Fan and Li (2001); Fan and Lv (2010)). In addition to these methods, much
progress has been made in understanding such properties of the resulting estimators as
selection consistency, convergence, and asymptotic distribution. However, in all these
studies, the number of variables p is fixed or less than the sample size n. To the best of our
knowledge, there has been no work on the problem of variable selection and estimation in
varying coefficient models in sparse,  situations.

There has been much work on the selection and estimation of groups of variables. For
example, Yuan and Lin (2006) proposed the group Lasso, group Lars, and group
nonnegative garrote methods. Kim, Kim, and Kim (2006) considered the group Lasso in the
context of generalized linear models. Zhao, Rocha, and Yu (2008) proposed a composite
absolute penalty for group selection that can be considered a generalization of the group
Lasso. Huang et al. (2007) considered the group bridge approach which can be used for
simultaneous group and within group variable selection. However, there has been no
investigation of these methods in the context of high-dimensional varying coefficient
models.

In this paper, we apply the group Lasso and basis expansion to simultaneously select the
important variables and estimate the coefficient functions in (1.1). With basis expansion,
each coefficient function is approximated by a linear combination of a set of basis functions.
Thus the selection of important variables and estimation of the corresponding coefficient
functions amounts to the selection and estimation of groups of coefficients in the linear
expansions. It is natural to apply the group Lasso, since it takes into account the group
structure in the approximation model. We show that, under appropriate conditions, the group
Lasso selects a model of the right order of dimensionality, selects all variables with
coefficient function  norms greater than a certain threshold level, and is estimation
consistent. In order to achieve selection consistency, we apply the adaptive group Lasso. We
show that the adaptive group Lasso can correctly select important variables with probability
converging to one based on an initial consistent estimator. In particular, we use the group
Lasso to obtain the initial estimator for the adaptive group Lasso. This approach follows the
idea of the adaptive Lasso (Zou (2006)). An important aspect of our results is that p can be
much larger than n.
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The rest of the paper is organized as follows. In Section 2, we describe the procedure for
selection and estimation using the group Lasso and the adaptive group Lasso with basis
expansion. In Section 3, we state the results on estimation consistency of the group Lasso
and the selection consistency of the adaptive group Lasso in high-dimensional settings.
Proofs are given in Section 6. In Section 4, simulations and data examples are used to
illustrate the proposed methods. Summary and discussion are given in Section 5.

2. Basis Expansion and Penalized Estimation
Suppose that the coefficient function βk can be approximated by a linear combination of
basis functions,

(2.1)

where Bkl(t), t ∈ T, l = 1, . . . , dk, are basis functions and dk is the number of basis functions,
which is allowed to increase with the sample size n.

Let Gk denote all functions that have the form  for a given basis system {Bkl,
l = 1, . . . , dk}. For gk ∈ Gk, define the approximation error by

Let  be the L∞ distance between βk and Gk, and take
ρ = max1≤k≤p dist(βk, Gk).

By the definition of ρk and (2.1), model (1.1) can be written as

(2.2)

for i = 1, . . . , n and j = 1, . . . , ni. In low-dimensional settings, we can minimize the least
squares criterion

(2.3)

with respect to γkl's. The least squares estimator of βk is ,
where  are the minimizer of (2.3).

When the number of variables p or  is larger than the sample size n, however the
least squares method is not applicable since there is no unique solution to (2.3). In such case,
regularized methods are needed. We apply the group Lasso (Yuan and Lin (2006)),
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(2.4)

where λ is the penalty parameter, γk = (γk1, . . . , γkd)′ is a dk-dimensional coefficient vector

corresponding to the kth variable, and . Here Rk = (rij)dk×dk is the kernel
matrix whose (i, j)th element is

(2.5)

it is a symmetric positive definite matrix by Lemma A.1 in Huang, Wu, and Zhou (2004).

To express the criterion function (2.4), let

with Xk = (x1k(t11), . . . , x1k(t1n1), . . . , xnk(tn1), . . . , xnk(tnnn))′ and define

and . Set U = (U11, . . . , U1n1, . . . , Un1, . . . , Unnn)′ with

 for i = 1, . . . , n, j = 1, . . . , ni. Then the group Lasso penalized criterion
(2.4) can be rewritten as

(2.6)

The group Lasso estimator is .

Let w = (w1, . . . , wp′ be a given vector of weights, where 0 ≤ wk ≤ ∞, 1 ≤ k ≤ p. Then a
weighted group Lasso criterion is

(2.7)

The weighted group Lasso estimator , where  is the
minimizer of (2.7). When the weights are dependent on the data through an initial estimator,

such as , then we call the resulting  an adaptive group Lasso estimator.

3. Theoretical Results
In this section, we describe the asymptotic properties of the group Lasso and the adaptive
group Lasso estimators defined in (2.6) and (2.7) of Section 2 when p can be larger than n,
but the number of important covariates is relatively small.
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In (1.1), without loss of generality, suppose that the first qn variables are important. Let A0 =
{qn+1, . . . , pn}. Here we write qn, pn to indicate that q and p are allowed to diverge with n.
Thus all the variables in A0 are not important. Let |A| denote the cardinality of any set

 and . For any set , define

Here UA is a n × dA dimensional submatrix of the ‘designed’ matrix U. Take

 whenever the integral exists.

We rely on the following conditions.

(C1) There exist constants q* > 0, c* > 0 and c* > 0 where 0 < c* ≤ c* < ∞ such that

(C2) There is a small constant η1 ≥ 0 such that .

(C3) The random errors εi(t), i = 1, . . . , n are independent and identically distributed as
ε(t), where E[ε(t)] = 0 and E[ε(t)2] ≤ σ2 < ∞ for t ∈ T ; moreover, the tail probabilities

satisfy  for t ∈ T , x > 0, and some constants C and K

(C4) There exists a positive constant M such that  for all t ∈ T and i
= , . . . , n, k = 1, . . . , pn.

Condition (C1) is the sparse Riesz condition for varying coefficient models, which controls
the range of eigenvalues of the matrix U. This condition was formulated for the linear
regression model in Zhang and Huang (2008). If the covariate matrix X satisfies (C1), then

the matrix U also satisfies (C1) and . See Lemma A.1 in Huang, Wu, and
Zhou (2004). Condition (C2) assumes that the varying coefficients of the unimportant
variables are small in the  sense, but do not need to be exactly zero. If η1 = 0, (C2)
becomes βk(t) ≡ 0 for all k ∈ A0. This can be called the narrow-sense sparsity condition
(NSC) (Wei and Huang (2008)). Under the NSC, the problem of variable selection is
equivalent to distinguishing nonzero coefficient functions from zero coefficient functions.
Under (C2), it is no longer sensible to select the set of all nonzero coefficient functions, the
goal is to select the set of important variables with large coefficient functions. From the
standpoint of statistical modeling and interpretation, (C2) is mathematically weaker and
more realistic. Condition (C3) assumes that the error term is a mean zero stochastic process
with uniformly bounded variance function and has a sub-Gaussian tail behavior. Condition
(C4) assumes that all the covariates are uniformly bounded, which is satisfied in many
practical situations.

3.1. Estimation consistency of group Lasso
For the matrix Rk at (2.5), by the Cholesky decomposition there exists a matrix Qk such that
Rk = dkQ′kQk.
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Let Qkb be the smallest eigenvalue of matrix Qk, Qb = mink Qkb, da = maxk dk, db = maxk dk,

db = da/db, . Thus N is the number of total observations,
mn is the number of all approximation coefficients in the basis expansions. Note that for k =
1, . . . , pn, dk can increase as n increases to give a more accurate approximation. For
example, as in non-parametric regression, we can choose dk = O(nτ) for some constant 0 < τ

< 1/2. With , (C1), let

(3.1)

and consider the constraint

(3.2)

where

. Note that when q* is fixed, .

Let  represent the set of indices of the variables selected
by the group Lasso. The cardinality of Â is

(3.3)

This describes the dimension of the selected model; if q̂ = O(qn), then the size of the selected
model is of the same order as the underlying model. To measure the important variables
missing in the selected model, take

(3.4)

Theorem 1. Assume (C1)–(C4) and that η1 ≤ ρ. Let q̂ and ξ2 be defined as in (3.3) and (3.4),
respectively, for the model selected by the group Lasso from (2.6). Let M1 and M2 be
defined as in (3.1). If the constraint (3.2) is satisfied, then, with probability converging to 1

and ,

i. q̂ ≤ M1qn,

ii.

.

Part (i) of Theorem 1 shows that the group Lasso selects a model whose dimension is
comparable to the underlying model, regardless of the large number of unimportant
variables. Part (ii) implies that all the variables with coefficient functions

 are selected in the model with high
probability.

Let  be the mean of  conditional on X. It is useful to consider the

decomposition  where  and
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 contribute to the variance and bias terms, respectively. Let

, where β = β(t) = (β1(t), . . . , βpn(t))′.

Theorem 2 (Convergency of group Lasso). Let  be fixed and 1 ≤ qn ≤ n ≤ pn →
∞. Suppose the conditions in Theorem 1 hold. Then, with probability converging to one,

Consequently, with probability converging to one,

This theorem gives the rate of convergence of β(t) as determined by four terms: the

stochastic error and bias due to penalization (the first and second terms, ), the basis

approximation error (the third and fourth terms, ). Under the conditions of Theorem
1 and Theorem 2, the group Lasso is estimation consistent in model selection.

Immediately from Theorem 2, we have the following corollary.

Corollary 1. Let λ = Op(ρ(N log mn)1/2). Suppose the conditions in Theorem 2 hold. Then
Theorem 1 holds and, with probability converging to one,

 and .
Consequently, with probability converging to one,

This corollary follows by substituting the given λ value into the expression in the results of

Theorem 2 and using  by Lemma A.1 in Huang, Wu, and Zhou (2004). Note

that  can be interpreted as the best approximation in the estimation space Gk(t) to βk(t);

under appropriate conditions, the bias term  is asymptotically negligible to

the variance . For example, a special extreme case: for k = 1, . . . , pn, if βk(t) is a
constant function independent of t, then (1.1) simplifies to a high-dimensional linear

regression problem, . Thus by choosing appropriate λ,

 which is consistent with the result obtained in Zhang and
Huang (2008). If we use B-spline basis functions to approximate β(t), by Theorem 6.27 in
Schumaker (1981), for k = 1, . . . , pn, if βk(t) has bounded second derivatives and lim supn

da/db < ∞, then , thus .
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Collary 2. Suppose B-spline basis approximation, for k = 1, . . . , pn, with coefficient
functions βk(t) having bounded second derivates, limsupn da/db < ∞, and the conditions in
Corollary 1. Then

For the conditions given in Corollary 2, the number of covariates pn can be as large as

, which can be much larger than n.

4. Selection Consistency of Adaptive Group Lasso
As just shown, the group Lasso has nice selection and estimation properties. It selects a
model that has the same order of dimension as that of the underlying model. However, there
is still room for improvement. To achieve variable selection accuracy and reduce the
estimation bias of the group Lasso, we consider the adaptive group Lasso given an initial

consistent estimator . Take weights

(4.1)

so wk is proportional to the inverse of the norm of . Here we define 0·∞ = 0. Thus the
variables not included in the initial estimator are not included in the adaptive group Lasso.
Given a zero-consistent initial estimator (Huang, Ma, and Zhang (2008)), the adaptive group

Lasso penalty level λk goes to zero when  is large, which satisfies the conditions given
in Lv and Fan (2009) for a penalty function having the oracle selection property.

Consider the following additional conditions.

(C5) The initial estimator  is zero-consistent with rate rn if

and there exists a constant ξb > 0 such that  as n → ∞,

where .

(C6) If sn = pn – qn is the number of unimportant variables,

(C7) All the eigenvalues of  are bounded away from zero and infinity.

Theorem 3. Suppose that (C3), (C5)–(C7) are satisfied. Under NSC,
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Theorem 3 shows that the adaptive group Lasso is selection consistent if an initial consistent
estimator is available. Condition (C5) is critical, and is very difficult to establish. It assumes
that we can consistently differentiate between important and unimportant variables. For
fixed pn and dk, the ordinary least squares estimator can be used as the initial estimator.
However, when pn > n, the least squares estimator is no longer feasible. Theorem 1 and
Theorem 2 show that, under certain conditions, the group Lasso estimator is zero-consistent
with rate

Thus if we use the group Lasso estimator as the initial estimator for the adaptive group
Lasso, we have the selection consistent property in Theorem 3. In addition, we reduce the
dimensionality of the problem using this initial estimator. Condition (C6) restricts the
numbers of important variables and basis functions, the penalty parameter, and the smallest
important coefficient function (in the  sense). When d and θb are fixed constants and the ni,
i = 1, . . . , n are bounded, (C6) can be simplified to

which can be obtained by choosing appropriate  and initial estimator. Condition (C7)

assumes that the eigenvalues of  are finite and bounded away from zero; this is
reasonable since the number of important variables is small in a sparse model.

Using the group Lasso result as the initial estimator for the adaptive group Lasso, we then
have the following theorem.

Theorem 4. Suppose the conditions of Theorem 1 hold, and θb > tb for some constant tb > 0.
Let  for some 0 < α < 1/2. Then with probability converging to one,

For k = 1, . . . , pn, if all βk(t) are constant functions, qn and the number of observations ni for
the ith subject are fixed, then the result of Theorem 4 is consistent with the well-known

result for low-dimensional linear regression problem, . Moreover,
similar to Corollary 2, if B-spline basis functions are used to approximate the regression
coefficient functions, then we have the following.

Corollary 3. Consider B-spline basis approximation and choose da = O(n1/5). For k =
1, . . . , pn, the coefficient function βk(t) has a bounded second derivative, lim supn da/db <
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∞, and the conditions in Theorem 4 hold. If qn and ni are fixed, then with probability

converging to one, .

5. Numerical Studies
In this section, we derive a group coordinate descent algorithm to compute the group Lasso
and adaptive group Lasso estimates in varying coefficient models. For the adaptive group
Lasso, we use the group Lasso as the initial estimator. We compare the results from the
group Lasso and the adaptive group Lasso with the results from the group SCAD
(Antoniadis and Fan (2001); Wang, Li, and Huang (2008)).

5.1. The group coordinate descent algorithm
The group coordinate descent algorithm is a natural extension of standard coordinate
descent, see for example, Fu (1998) and Friedman et al. (2007). Meier, Van de Geer and
Bülmann (2008) also used a group coordinate descent for selecting groups of variables in
high-dimensional logistic regression.

Let  and  for k = 1, . . . , pn, so (2.6) can be rewritten as

(5.1)

The group Lasso estimates  of (2.6) can then be obtained as  for k = 1, . . . ,
pn.

Denote by  the objective function in (5.1). Suppose we have estimates  for  and

wish to partially optimize with respect to . The gradient at  only exists is , and
then

where  is the fitted value excluding the contribution from . With

 for k = 1, . . . , pn, simple calculus shows that the group coordinate-wise
update has the form

where  and . Then for fixed λ, the above estimator 
can be computed with the following iterative algorithm.

1.
Center and standardize Y and Ũ, such that  for j =
1, . . . , pn.

2. Initialize  and let m = 0, r = Y.
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3.
Calculate .

4.
Update .

5.
Update  and m = m + 1.

6. Repeat Steps 3-5 until convergence or a fixed number of maximum iterations has
been reached. The  at convergence is the group Lasso estimate  of (5.1).

7. Change  to the original scale corresponding to original Y and Ũ before centering

and standardization, and .

It can be seen that the idea of the group coordinate descent algorithm is simple but effcient,
every update cycle requires only O(Npn) operations and the computational burden increases
linearly with pn. If the number of iterations is smaller than pn, the solution is reached with

even less computational burden than the  operations required to solve a linear regression
problem by QR decomposition.

For the adaptive group Lasso, we can use the same coordinate descent algorithm by simple
substitution, as in (2.6) and (5.1). We use the same set of cubic B-spline basis functions for

each βk. That is, d1 = . . . = dpn ≡ d0 and . In our
application, apply the BIC criterion (Schwarz (1978)) to select (λ, d0) for the group Lasso

and  for the adaptive group Lasso. The BIC criterion is

where RSS is the residual sum of squares, df is the number of selected variables for a given
(λ, d0). We choose d0 from an increasing sequence of ten values, starting from 5 to 14; for
any given value of d0, we choose λ from a sequence of 100 values, starting from λmax to

0.001λmax with , where Ũk is the N × d0 submatrix of the
“designed” matrix Ũ corresponding to the covariate Xk. This λmax is the smallest penalty
value that forces all the estimated coefficients to be zero.

5.2. Monte Carlo simulation
We used simulation to assess the performance of the proposed procedures. Because our
main interest is in the case when pn is large, we focused on the case pn > n. We consider the
model

The time points tij for each individual subject are scheduled to be {1, . . . , 30}, each
scheduled time point has some probability to be skipped, then the number of actual observed
time points ni for diffierent subject is diffierent. This generating model is similar to the one
in Wang, Li, and Huang (2008).

The first six variables xi1, xi2, xi3, xi4, xi5 and xi6, i = 1, . . . , 100, are the true relevant
variables, and were simulated as follows: xi1(t) was uniform [t/10, 2 + t/10] at any given
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time point t; xij(t), j = 2, . . . , 5, conditioned on xi1(t), were i.i.d. from the normal distribution
with mean zero and variance (1 + xi1(t))/(2 + xi1(t)); xi6, independent of xij, j = 1, . . . , 5, was
normal with mean 3 exp(t/30) and variance 1. For k = 7, . . . , 500, each xik(t), independent of
others, was multivariate normal distribution with covariance structure cov(xik(t), xik(s)) = 4
exp(–|t – s|). The random error εi(t) was Z(t) + E(t), where Z(t) had the same distribution as
xik, k = 7, . . . , 500, and E(t) were independent measurement errors from N(0, 22) at each
time point t. The coefficient functions were

The observation time points tij for each individual were generated from scheduled time
points {1, . . . , 30}, each scheduled time point had a probability of 60% being skipped, and
the actual observation time tij was obtained by adding a random perturbation from uniform
[–0.5, 0.5] to the non-skipped scheduled time.

We consider the cases n = 50, 100, 200 with pn = 500, to see the performance of our
proposed methods as sample size increases. The penalty parameters were selected using
BIC. The results for the group Lasso, the adaptive group Lasso, and the group SCAD
methods are given in Tables 1 and 2 based on 200 replications. The columns in Table 1
include the average number of variables (NV) selected, model error (ER), percentage of
occasions on which correct variables were included in the selected model (%IN), and
percentage of occasions on which the exactly correct variables were selected (%CS), with
standard error in parentheses. Table 2 summarizes the mean square errors for the six

important coefficient functions , with standard error
in parentheses.

Several observations can be obtained from Tables 1 and 2. The model that was selected by
the adaptive group Lasso was similar to the one selected by the group SCAD, and better than
the one selected by the group Lasso in terms of model error, the percentage of occasions on
which the true variables were selected and the mean square errors for the important
coefficient functions. The group Lasso included the correct variables with high probability.
For smaller sample sizes, the performance of both methods was worse. This is expected
since variable selection in models with a small number of observations is more difficult. To
examine the estimated time-varying coefficient functions from the adaptive group Lasso, we
plot them along with the true function components in Figure 1. The estimated coefficient
functions are from the adaptive group Lasso method in one run when n = 200. From the
graph, the estimators of the time-varying coefficient functions βk(t), k = 3, 4, 5, fit the true
coefficient functions well, which is consistent with the mean square errors for the coefficient
functions reported in Table 2.
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These simulation results have the adaptive group Lasso with good selection and estimation
performance, even when p is larger than n. They also suggest that the adaptive group Lasso
can better the selection and estimation results of the group Lasso.

5.3. Identification of yeast cell cycle transcription factors
We apply our procedures to investigate the transcription factors (TFs) involved in the yeast
cell cycle, which is helpful for understanding the regulation of yeast cell cycle genes. The
cell cycle is an ordered set of events, culminating in cell growth and division into two
daughter cells. Stages of the cell cycle are commonly divided into G1-S-G2-M. The G1
stage stands for “GAP 1”. The S stage stands for “Synthesis”; is the stage when DNA
replication occurs. The G2 stage stands for “GAP 2”. The M stage stands for “mitosis”,
when nuclear (chromosomes separate) and cytoplasmic (cytokinesis) division occur.
Coordinate expression of genes whose products contribute to stage-specific functions is a
key feature of the cell cycle (Simon et al. (2001), Morgan (1997), Nasmyth (1996)).
Transcription factors (TFs) have been identified that play critical roles in gene expression
regulation. To understand how the cell cycle is regulated and how cell cycle regulates other
biological processes, such as DNA replication and amino acids biosynthesis, it is useful to
identify the cell cycle regulated transcription factors.

We apply the group Lasso and the adaptive group Lasso methods to identify the key
transcription factors that play critical roles in the cell cycle regulations from a set of gene
expression measurements which are captured at equally spaced sampling time points. The
data set we use comes from Spellman et al. (1998). They measured the genome-wide mRNA
levels for 6178 yeast ORFs simultaneously over approximately two cell cycle periods in a
yeast culture synchronized by α factor relative to a reference mRNA from an asynchronous
yeast culture. The yeast cells were measured at 7-min intervals for 119 mins, with a total of
18 time points after synchronization. Using a model-based approach, Luan and Li (2003)
identified 297 cell-cycle-regulated genes based on the α factor synchronization experiments.
In our study, we consider 240 genes without missing values out of these 297 cell-cycle-
regulated genes. Let yi(tj) denote the log-expression level for gene i at time point tj during
the cell cycle process, for i = 1, . . . , 240 and j = 1, . . . , 18. We then use the chromatin
immunoprecipitation (ChIP-chip) data of Lee et al. (2002) to derive the binding probabilities
xik for these 240 cell-cycle-regulated genes for a total of 96 transcriptional factors with at
least one nonzero binding probability in the 240 genes. We assume the following varying
coefficient model to link the binding probabilities to the gene expression levels

where βk(tj) represents the effect of the kth TF on gene expression at time tj during the cell
cycle process. Our goal is to identify the TFs that might be related to the cell cycle regulated
gene expression.

We used BIC to select the tuning parameters in the group Lasso and adaptive group Lasso.
The selected tuning parameters were d0 = 7, λ = 0.89 and λ = 1.07. The group Lasso
identified a total of 67 TFs related to yeast cell-cycle processes, including 19 of the 21
known and experimentally verified cell-cycle related TFs. The other two TFs, LEU3 and
MET31, were not selected by the group Lasso method. Using the result from the group
Lasso as the initial estimator for the adaptive group Lasso, adaptive group Lasso identified a
total of 54 TFs, including the same 19 of the 21 known and experimentally verified cell-
cycle related TFs. In addition, all of the identified TFs showed certain estimated periodic
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transcriptional effects on the cell cycle regulated gene expression, for example, MBP1,
SWI4, SWI6, MCM1, FKH1, FKH2, NDD1, SWI5, and ACE2 (Simon et al. (2001)). The
transcriptional effects of these 9 TFs are shown in Figure 2 and Figure 3 estimated by the
group Lasso and the adaptive group Lasso methods, respectively. MBP1, SWI4, and SWI6
control late G1 genes. MCM1, together with FKH1 or FKH2, recruits the NDD1 protein in
late G2, and thus controls the transcription of G2/M genes. MCM1 is also involved in the
transcription of some M/G1 genes. SWI5 and ACE2 regulate genes at the end of M and
early G1 (Simon et al. (2001)).

Moreover, the identified key TFs from both the group Lasso and the adaptive group Lasso
include many pairs of cooperative or synergistic pairs of TFs involved in the yeast cell cycle
process reported in the literature (Banerjee and Zhang (2003), Tsai, Lu, and Li (2005)).
Among the 67 TFs identified by the group Lasso, 27 of them belong to the cooperative pairs
of the TFs identified by Banerjee and Zhang (2003), including 23 out of 31 significant
cooperative TF pairs. For the 54 TFs identified by the adaptive group Lasso, 25 of them
belong to the cooperative pairs of the TFs, including 21 out of 31 significant cooperative TF
pairs. The results are summarized in Table 2.

For this data set, the binding data are only available for 96 TFs. The sample size is larger
than the number of variables. In order to see the performance of our proposed method with p
> n, we artificially added 200 more variables to this data set. We randomly chose 200 values
from the whole binding data set without replacement to add those 200 additional variables to
each gene. We repeated this process 100 times. We first looked at the results concerning the
21 known TFs, since this is the only ‘truth’ we know about this data set. The average
number of the 21 known important TFs identified was: the group Lasso 17.0 (standard
deviation 0.12), the adaptive group Lasso 14.2 (standard deviation 0.42). The group Lasso
tended to have a much higher false positive rate. The selected TFs sets after we artificially
added 200 variables had a large intersection with the ones selected using only the data set
itself. This suggests our method works well with many noisy variables in the model.

Finally, to compare the group Lasso and the adaptive group Lasso with simple linear
regression with lasso penalty, we performed simple linear regression with binding
probability as the predictors and the gene expression at each time point as the response with
lasso penalty. We found only 1 TF significant related to cell cycle regulation. The result is
not surprising, since the effects of the TFs on gene expression levels are time-dependent.
Overall, our procedures can effectively identify the important TFs that affect the gene
expression over time.

6. Concluding Remarks
In this article, we studied the estimation and selection properties of the group Lasso and
adaptive group Lasso in time varying coefficient models with high dimensional data. For the
group Lasso method, we considered its properties in terms of the sparsity of the selected
model, bias, and the convergence rate of the estimator, as given in Theorems 1 and 2. An
interesting aspect in our study is that we can allow many small non-zero coefficient
functions as long as the sum of their  norm is below a certain level. Our simulation results
indicate that the group Lasso tends to select some non-important variables. An effective
remedy then is to use the adaptive group Lasso. Compared with the group Lasso, the
advantage of the adaptive group Lasso is that it has the oracle selection property. Moreover,
the convergence rate of the adaptive group Lasso estimator is better. In addition, the
computational cost is the same as the group Lasso. The adaptive group Lasso that uses group
Lasso as the initial estimator is an effective way to analyze varying coefficient problems in
sparse, high-dimensional settings.

Wei et al. Page 14

Stat Sin. Author manuscript; available in PMC 2014 January 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In this paper, we have focused on the group Lasso and the adaptive group Lasso in the
context of linear varying coefficient models. These methods can be applied in a similar way
to other nonlinear and nonparametric regression models, but more work is needed.
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Appendix: Proofs
This section provides the proofs of the results in Sections 3 and 4. For simplicity, we often
drop the subscript n from certain quantities, for example, we simply write p for pn, q for qn.

Let ỹ = E(y) = X(t)β(t), , then . We write

, and find the rates of convergence of

.

For any two sequences {an, bn, n = 1, 2, . . .}, we write  if there are constants 0 < c1

< c1 < ∞ such that c1 ≤ an/bn ≤ c2 for all n sufficiently large, and write  if this
inequality holds with probability converging to one.

Lemma A.1. .

Proof of Lemma A.1. By the properties of basis functions and (C2), there exists

 for  such that .

Thus  with  for  and

 for k ∈ A0, such that g*(t = B(t)γ*

By the definition of ỹ,  and Lemma A.3 in Huang, Wu, and Zhou (2004), we have

Thus

. By Lemma 1 in Zhang and Huang (2008),

By (C4),
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It follows that

By Lemma A.1 in Huang, Wu, and Zhou (2004),

Since  and η1 ≤ ρ,

This completes the proof of Lemma A.1.

Proof of Theorem 1. The proof of Theorem 1 is similar to the proof of the rate consistency
of the group Lasso in Wei and Huang (2008). The only diffierence is in Step 3 of their proof
of Theorem 1, where we need to consider the approximation error of the regression
coefficient functions by basis expansion. Thus we omit the other details of the proof here.

From (2.6) and the definition of , we know

(A.1)

If , then (2.6) can be rewritten as

(A.2)

and the estimator of (A.1) can be approximated by  where  is the estimator of
(A.2).

By the definition of , we have NSC on the regression coefficient , namely,

. From Lemma A.3 in Huang, Wu, and Zhou (2004), the matrix U* satisfies
(C1). Compared with the sufficient conditions for the group Lasso problem given in Wei and
Huang (2008), the only change is in the error terms in our (A.2). From (2.2), we have
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Define

for i = 1, . . . , n, j = 1, . . . , ni. Let δn = (δn(11), . . . , δn(nnn))′, εn = (εn(11), . . . , εn(nnn))

and ρn = (ρn(11), . . . , ρn(nnn))′. By (C4), we have  for some constant C1
> 0. Define

(A.

3)

where , and bAk is a
dAk-dimensional unit vector. For a sufficiently large constant C2 > 0, also define, as Borel
sets in Rn×mn × Rn,

where m0 ≥ 0. As in the proof of Theorem 1 of Wei and Huang (2008),

. By the triangle and Cauchy-Schwarz inequalities,

In the proof of Theorem 1 of Wei and Huang (2008), it is shown that

. Since , we have for all m ≥ 0

and p sufficiently large that . Then P((U*,
εn) → 1. By the definition of λn,p, and  we have

(A.

4)

where u is defined as in the proof of Theorem 1 of Wei and Huang (2008). Since ε1(t), . . . ,
εn(t) are iid with Eεi(tij) = 0, by (C3) and the proof of Theorem 1 of Wei and Huang (2008),
we have  and
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(A.5)

From Lemma A.1 in Huang, Wu, and Zhou (2004) and (A.5), we have,

(A.6)

By the definition of ξ2 and the triangle inequality,

From Lemma A.1, (A.6) and dk ≥ 1, we have

This completes the proof of Theorem 1.

Proof of Theorem 2. From the proof of Theorem 1 and Theorem 2 of Wei and Huang
(2008),

By Lemma A.1 in Huang, Wu, and Zhou (2004), we know that,

. Then

By Lemma A.1, we know that . Thus

This completes the proof of Theorem 2.

Proof of Theorems 3 and 4. Theorems 3 and 4 can be obtained directly from Theorems 3
and 4 of Wei and Huang (2008) and Lemma A.1 in Huang, Wu, and Zhou (2004); we omit
the proofs here.
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Figure 1.
Adaptive group Lasso method. The estimated coefficient functions (dashed line) and true
coefficient (solid line) functions in one run when n = 200
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Figure 2.
Application to yeast cell cycle gene expression data. The results are from the group Lasso.

Wei et al. Page 22

Stat Sin. Author manuscript; available in PMC 2014 January 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Application to yeast cell cycle gene expression data. The results are from the adaptive group
Lasso.
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Table 3

Yeast cell cycle study. Identified cooperative pairs of TFs involved in the cell cycle process.

adaptive group Lasso group Lasso

MBP1-SWI6, MBP1-SWI6,

MCM1-NDD1, MCM1-NDD1,

FKH2-MCM1, FKH2-MCM1,

FKH2-NDD1, FKH2-NDD1,

SWI4-SWI6, SWI4-SWI6,

FHC1-GAT3, FHL1-GAT3

NRG1-YAP6, NRG1-YAP6,

GAT3-MSN4, GAT3-MSN4,

REB1-SKN7, REB1-SKN7

ACE2-REB1, ACE2-REB1,

GCN4-SUM1, GAL4-RGM1,

FKH1-FKH2, GCN4-SUM1

CIN5-NRG1, FKH1-FKH2,

SMP1-SWI5, CIN5-NRG1,

FKH1-NDD1, SMP1-SWI5

ACE2-SWI5, FKH1-NDD1,

CIN5-YAP6, ACE2-SWI5,

STB1-SWI4, CIN5-YAP6

ARG81-GCN4, STB1-SWI4,

NDD1-STB1, ARG81-GCN4,

NRG1-PHD1. NDD1-STB1,

DAL81-STP1,

NRG1-PHD1.

No. of pairs 21 23
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