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ABSTRACT

The interaction of proteins with DNA recognition
motifs regulates a number of fundamental biological
processes, including transcription. To understand
these processes, we need to know which motifs are
present in a sequence and which factors bind to
them. We describe a method to screen a set of DNA
sequences against a precompiled library of motifs,
and assess which, if any, of the motifs are statistic-
ally over- or under-represented in the sequences.
Over-represented motifs are good candidates for
playing a functional role in the sequences, while
under-representation hints that if the motif were
present, it would have a harmful dysregulatory
effect. We apply our method (implemented as a
computer program called Clover) to dopamine-
responsive promoters, sequences ¯anking binding
sites for the transcription factor LSF, sequences
that direct transcription in muscle and liver, and
Drosophila segmentation enhancers. In each case
Clover successfully detects motifs known to func-
tion in the sequences, and intriguing and testable
hypotheses are made concerning additional motifs.
Clover compares favorably with an ab initio motif
discovery algorithm based on sequence alignment,
when the motif library includes only a homolog of
the factor that actually regulates the sequences.
It also demonstrates superior performance over
two contingency table based over-representation
methods. In conclusion, Clover has the potential to
greatly accelerate characterization of signals that
regulate transcription.

INTRODUCTION

A transcription factor typically interacts with DNA sequences
that re¯ect a common pattern, or motif, characteristic of the
factor. Such a motif can be represented by a consensus
sequence or, less crudely, by a W 3 4 matrix q, where W is the

motif's size in base pairs, and each matrix element q(k,X) is
the probability of observing nucleotide X (A, C, G or T) at
position k in the motif. It is then possible to scan this matrix
along a DNA sequence, assigning a similarity score to each
W-long subsequence using a standard log likelihood ratio
formula (1). Typically, any subsequence with a similarity
score above some threshold is counted as a `match'.
Unfortunately, these matrices do not contain suf®cient
information to locate functional in vivo binding sites accur-
ately; at thresholds low enough to recover genuine binding
sites, spurious matches occur at a high rate (2). It seems that
transcription factors must be guided to their in vivo binding
sites by contextual factors such as chromatin structure and
interactions with other transcription factors, in addition to
their innate DNA binding preferences. It is widely accepted
that knowledge of transcription factor binding motifs is not in
itself adequate to elucidate transcriptional control mechan-
isms. In addition to directly investigating contextual factors,
another powerful approach to elucidating regulatory mechan-
isms is to gather DNA sequences that share a common
regulatory property, and search for motifs shared by these
sequences.

Two general ways of ®nding shared motifs can be
envisaged. The ®rst is to apply ab initio motif discovery
algorithms which search for recurring patterns of any kind.
The second is to compile a library of all previously
characterized motifs and assess whether any of these motifs
are statistically over-represented in the sequences. Even
though we expect to observe many spurious matches for
each motif, it is plausible that if a motif is functionally present
in many of the sequences, then the number of matches will be
greater than would be expected by chance. The greater
generality of ab initio methods is a double-edged sword: they
can ®nd completely novel motifs not in any precompiled
library, but the motifs must be stronger in order to be
statistically signi®cant and detectable, as compared with
library-based methods. In addition, ab initio methods tell us
nothing about which factor might bind to a predicted motif,
whereas precompiled libraries generally include annotations
of which motifs are bound by which factors, or families of
factors. Much research effort has been devoted to ab initio
motif discovery algorithms [see Frith et al. (3) for references],
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but until recently library-based methods have been neglected,
despite the promising aspects of this approach.

Several techniques for testing whether a motif is over-
represented in a target set of DNA sequences have recently
been published (4±9), and it is instructive to draw connections
among these methods, as most of them ultimately reduce to the
statistics of contingency tables. All of these methods scan the
motif matrix across the target sequences and a set of control
sequences, recording matches with similarity score greater
than some threshold. Liu et al. (4) proposed counting the
number of target and control sequences with and without a
match, and deemed the motif over-represented if matching
sequences were at least twice as frequent in the target set as the
control set. While this 2-fold excess criterion is intuitive, a
more rigorous test using the hypergeometric distribution is
available (8,10). More explicitly, the data can be cast as a 2 3
2 contingency table (Fig. 1), where A is the number of target
sequences with a match, B is the number of control sequences
with a match, C is the number of targets without a match and D
is the number of controls without a match. A chi-square test or
Fisher's exact test (the hypergeometric distribution) can be
used to test the null hypothesis that the sequences with motif
matches are evenly distributed among the target and control
sets. Elkon et al. (7) use a more intricate procedure, counting
the number of sequences with zero matches, one match, two
matches or three or more matches in the target and control
sets. These data can be cast as a 4 3 2 contingency table and
tested using a multivariate hypergeometric distribution.

The methods described above can only be applied sensibly
if all the target and control sequences have the same length,
which is not always easy to arrange. In addition, they may lose
statistical power by not counting all matches in each sequence.
Several publications have suggested counting all matches in
the target and control sequences, and two different binomial
formulas have been proposed to test for over-representation
(5,6,8,9). In fact, these data can also be cast as a 2 3 2
contingency table (Fig. 1), where A is the number of matches
in target sequences, B is the number of matches in control
sequences, C is the number of W-long segments in target
sequences that do not match and D is the number of W-long
segments in control sequences that do not match. To test the
null hypothesis, that matches are evenly distributed among the
target and control sets, we can imagine randomly drawing
A + B matching segments from a pool of A + B + C + D
segments of target and control sequences. Equivalently, we
can imagine drawing A + C target segments from a pool of
A + B + C + D matching and non-matching segments. These
two viewpoints lead to the same hypergeometric formula, but
to two different binomial approximations of it, which are
precisely those described by Sharan et al. (8) versus Aerts et al.
(5), Zheng et al. (6) and Haverty et al. (9) These methods

assume that occurrence of a match at each W-long segment is
independent, which is not quite true because the segments
overlap one another, and correlations are also introduced by
the presence of repetitive elements in DNA. For these reasons,
Zheng et al. (6) needed to treat palindromic motifs specially,
and some of their results were greatly in¯uenced by the
presence of repeats.

All the previous methods discard potentially useful inform-
ation by collapsing matrix scores at each location to a binary
quantity: above or below the threshold. They also reveal
uncertainty regarding whether to count one match per
sequence, a few matches per sequence or all matches in
each sequence. Regulatory regions of higher eukaryotes often
contain multiple binding sites for the same transcription
factor, with weaker `shadow' copies of the motif also being
observed (11). So consideration of multiple matches per
sequence seems likely to help in discovering functional motifs
by statistical over-representation. The reason for this site
multiplicity is unclear: it might indicate cooperative binding
by several factor molecules, it could constitute a mechanism
for lateral diffusion of the factor along the DNA and/or the
shadow sites might be fossils from the process of binding site
turnover (12). Here we report a novel method of combining
multiple matches per sequence, which is motivated by a
simple thermodynamic model. The matrix score ideally
re¯ects the factor's binding energy at each location; therefore
the score's exponential should be proportional to the factor's
equilibrium occupancy of that site (1). We suppose that
multiple sites simply serve to increase the total occupancy for
the sequence, which we estimate by summing the exponen-
tiated matrix score of each site. Finally, we assess whether the
estimated total occupancies of the target sequences are greater
than would be expected by chance. Thus our method
incorporates information from the matrix scores, and com-
bines information from all possible sites per sequence in a
biophysically motivated way.

MATERIALS AND METHODS

Our aim is to compare a motif matrix against a set of DNA
sequences and assess whether the motif is statistically over-
represented (or under-represented) in those sequences. The
method proceeds in two steps. We ®rst calculate a single
number, which we call the raw score, to quantify the degree of
the motif's presence in the test sequences. The second step is
to estimate a P-value for this raw score: the probability of
obtaining a raw score of this size or greater merely by chance,
computed using background sequence sets. If the P-value is
very low (e.g. <0.01), the motif is signi®cantly over-
represented in the test sequences, suggesting that it is present
for a reason, such as to perform a biological function. If the
P-value is very high (e.g. >0.99), the motif is signi®cantly
over-represented in the background sequence set. In compari-
son, it is under-represented in the test sequences, suggesting
that it is absent for some good reason, perhaps because its
presence in these sequences would be harmful to the organism.

Calculation of the raw score

The raw score calculation is simply a repeated averaging of
likelihood ratios (LRs). We begin by calculating the likelihood

Figure 1. A 232 contingency table.

Nucleic Acids Research, 2004, Vol. 32, No. 4 1373



ratio for a motif's being present at one particular location in
one sequence:

LR1�L� �
YW
k� 1

q�k; Lk�
p�Lk� 1

where W is the width of the motif, L denotes the location being
considered, Lk is the nucleotide at position k within this
location and p(X) is the background probability of observing
nucleotide X, estimated from the frequency of X in that
sequence. LR1 is the exponent of the standard motif matrix
score and is proportional to the factor's equilibrium occupancy
of this site in a simple thermodynamic model (1,13,14). The
likelihood ratio for a motif being present at any location in a
sequence S is the average of LR1 taken over all locations in S
(on both strands):

LR2�S� � 1

MS

X
L2 S

LR1�L� 2

where MS is the number of locations in the sequence. LR2(S)
is proportional to the factor's total equilibrium occupancy of
the sequence. Note that LR2(S) is a function of the length of
promoter sequence S. If S is extended to include nucleotides
that do not include the motif, LR2(S) would decrease. Thus the
user is advised to keep promoter sequences short, provided
that regions that are most likely to contain motifs have been
included. Given sets of equal-length target and control
sequences, it is possible to test for motif over-representation
by ranking the LR2 scores from both sets and applying the
Wilcoxon rank-sum test. Since the sequences are generally not
of equal length, we take a different approach.

We would now like to combine the LR2 values for each
sequence into one overall number re¯ecting the motif's
presence in the sequence set as a whole. One possibility is to
take the product of the LR2 values, which corresponds to the
hypothesis that the motif is present in every sequence.
However, this hypothesis is too strict; in realistic applications,
the motif is likely to be absent from some fraction of the
sequences owing to experimental error in gathering the
sequences or to heterogeneity of biological regulatory
mechanisms. Instead, we suppose that the motif is present in
some number i out of N sequences, where we attach equal
prior probability to i taking any value between 1 and N. There
are NCi ways of selecting i out of N sequences, and the
likelihood ratio for the motif being present in any i sequences
is the average over all of these ways:

LR3�i� � 1
NCi

X
A

Y
S2A

LR2�S� 3

In this equation, A runs over all sets of i out of N sequences.
The ®nal likelihood ratio is the average over all values of i:

LR4 � 1

N

XN

i� 1

LR3�i� 4

The raw score is de®ned to be ln(LR4). The raw score
increases when more of the sequences contain good motif
matches, and also when there are more good matches in a

sequence. It favors cases where motifs are distributed across
many of the sequences rather than concentrated in a few of
them. LR4 can be interpreted as the factor's average
equilibrium occupancy in a set of sequences.

A fast algorithm for the average of all products

On the face of it, equation 3 requires the enumeration of all
ways of selecting i out of N objects, which rapidly becomes
infeasible even for moderate values of N and i. Fortunately,
there is a recurrence relation that allows us to calculate LR3(i)
for all values of i in time proportional to N2. Let Ti j denote the
sum of all products of i terms from among the ®rst j elements
of the vector LR2. Then

Tij � LR2�j� � Tiÿ1 jÿ1 � Ti jÿ1 5

The boundary conditions are T0 j = 1 and Ti i±1 = 0. LR3(i) is
equal to Ti N/NCi. In order to avoid over¯ow errors, the division
by NCi can be folded into the recurrence formula

Ai j � �i� LR2�j� � Aiÿ1 jÿ1 � �jÿ i� � Ai jÿ1�=j 6

The same boundary conditions apply to Aij as to Tij, and LR3(i)
is identical to AiN.

Estimation of P-values

We would like to know the probability of observing a given
raw score or greater by chance, but there are multiple
meanings of the phrase `by chance'. Some examples, in
order of increasing conservatism, are the probability of
obtaining this score for randomly shuf¯ed DNA sequences,
for randomly chosen fragments of the organism's genome or
for random promoter sequences from the organism. It would
not be surprising if a motif such as the TATA box were over-
represented by one of these standards but not by another, and
the `right answer' is context dependent.

Our method provides several different ways of estimating
P-values. The ®rst is to shuf¯e the nucleotides randomly
within each sequence and calculate the motif's raw score for
the shuf¯ed sequences. This shuf¯ing and raw score
recalculation is repeated many times (e.g. 1000), and the
fraction of times that the randomized raw score exceeds the
real raw score becomes the P-value. The second approach is to
count the frequencies of the 16 dinucleotides in each sequence,
generate random sequences of the same lengths as the
originals based on these dinucleotide abundances and
recalculate raw scores as above. This technique takes into
account the reduced abundance of the CpG dinucleotide in
mammalian sequences, which is important for assessing
motifs such as E2F that contain this dinucleotide in conserved
positions (15). The third approach is to shuf¯e the columns of
the motif matrix, i.e. each vector of four numbers for A, C, G
and T is kept intact internally but the order of these vectors is
shuf¯ed. The raw scores of these shuf¯ed matrices against the
real sequences are used to obtain a P-value. Finally, a set of
background DNA sequences may be supplied to the algorithm.
This background set should be much larger than the sequence
set being studied; we typically use a whole chromosome, or a
large set of promoters from the organism. The algorithm
repeatedly extracts random fragments of the background
sequences, matched by length to the target sequences,
calculates a raw score for each set of fragments and uses
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these to derive a P-value. For the results presented in this
study, P-values were obtained using either the nucleotide
shuf¯ing or background sequence approach, with 1000
randomizations.

Multiple testing

We typically test whether each motif from a library of >100 is
signi®cantly over- or under-represented in a given sequence
set, which means that by chance alone it is likely that a few
motifs will have P-values more signi®cant than 0.01.
Nevertheless, all the P-values in this paper were obtained by
performing 1000 randomizations, since it becomes computa-
tionally tedious to do more, and motifs with P-values <0.01 or
>0.99 are listed. In practice, we ®nd many motifs with
P-values of dead zero, i.e. the raw scores were never equaled
in 1000 randomizations, which is highly unlikely to occur by
chance (Tables 1A±5). We also ®nd more motifs with
P-values <0.01 than the handful expected by chance, and in
most cases P-values were obtained relative to multiple
different backgrounds, and only motifs with signi®cant
P-values relative to all backgrounds are listed. Therefore we
are con®dent that the vast majority of motif predictions made
here are not merely due to chance.

Treatment of masked nucleotides

We learned from experience that it is necessary to treat
masked nucleotides carefully in order to avoid artefactual
results. Although not performed for the results shown here, it
is possible to mask, i.e. replace with `n', nucleotides that occur
in repetitive elements, prior to searching for over-represented
motifs. Locations that overlap masks are not counted in
equation 2. When shuf¯ing sequences, masks are left in place
and only non-masked bases are shuf¯ed. When generating
dinucleotide-based sequences, unmasked sequences are gener-
ated initially, and then masks are copied from the original
sequences to the corresponding locations in the generated
sequences. When comparing with background sets, fragments
are chosen from entirely unmasked portions of the background
sequences, and masks are copied from the target sequences as
above. These measures ensure that the control sequences
resemble the targets regarding masks.

Motif libraries

Our method requires an extensive precompiled library of motif
matrices. Two such libraries are used here: Jaspar (16), with
108 motifs, and the 428 vertebrate motifs from the Transfac
Professional database version 6.3 (17). Jaspar is in some ways
more convenient since it lacks commercial restrictions and
it attempts to be non-redundant, but the Transfac motif
collection is more extensive.

RESULTS AND DISCUSSION

We wrote a C++ program called Clover (Cis-eLement OVer-
representation), which determines which motifs from a
precompiled motif library are over- or under-represented in
a set of DNA sequences. This program is available for
downloading at http://zlab.bu.edu/clover/. Further details of
the sequence sets studied in this paper are available at
http://zlab.bu.edu/clover/sup/.

Comparison with ab initio motif ®nding

It is instructive to compare our library-based motif ®nder with
an ab initio method that performs multiple local sequence
alignment. While alignment methods can ®nd novel motifs not
in any precompiled library, library-based techniques may have
greater power to detect weak motifs in long sequences, since
they restrict the types of motif to be searched for. We tested
Clover's ability to ®nd mammalian estrogen response
elements (EREs) embedded in randomly generated DNA
sequences of varying length, using the Jaspar collection of 108
motifs. This test is particularly apt because Jaspar does not
contain an ERE; however, it contains a PPARg motif that
closely resembles an ERE (Fig. 2), in addition to six nuclear
receptor motifs that contain ERE half-sites. In real applica-
tions it is quite likely that the sequences to be analyzed will
contain motifs that are absent from the library, although the
library may contain similar motifs for related binding factors.
Jaspar's PPARg motif differs from the ERE mainly in having
strong base preferences outside the conserved region of the
ERE (e.g. the T at position 2); it also exhibits slightly stricter
preferences within the GGTCA half-sites.

Each of 15 EREs was embedded into a random DNA
sequence, and zero, 5 or 15 decoy sequences (randomly
generated sequences lacking EREs) were added. Sequence
lengths between 50 and 5000 bp were tested. For each
sequence set, the P-values of the 108 Jaspar motifs, relative to
shuf¯ing the sequences, were recorded (Fig. 3). In the majority
of cases the PPARg motif has a P-value <0.01, and is also the
most signi®cantly over-represented motif. In the remaining
cases PPARg is usually among the most signi®cant handful of
motifs, and occasionally it is surpassed by one of the other
ERE-like nuclear receptors. Only for long sequences with
many decoys does detection become less robust.

Clover compares favorably with our alignment-based
program GLAM, which was tested on the same datasets (3).
GLAM returns completely random alignments for the 5000-bp
sequence sets, and also for sequence lengths >1000 bp when
decoys are present. In many of these cases Clover ®nds ERE-
like motifs to be the most signi®cant or among the top handful
of motifs. Even when GLAM succeeds, it does not always
attach a signi®cant P-value to its alignment, meaning that we
cannot tell that it has succeeded. Thus library-based motif
®nders are promising alternatives to alignment-based methods
even when the library only contains a homolog of the motif to
be found. When Clover is given the ERE matrix (which is
constructed, in part, from the embedded EREs), it assigns it a
P-value of zero in every single case.

Comparison with contingency table based methods

For comparison, two contingency table based methods, `motif
counting' and `sequence counting', were also tested on these

Figure 2. Pictogram representations of the ERE (3) and the Jaspar PPARg
motif (C Burge and F White, http://genes.mit.edu/pictogram.html).
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sequence sets. As described in the Introduction, these methods
scan motif matrices across target and control sequences,
recording matches with score greater than some arbitrary
threshold. We used the same target sets as above (EREs
embedded in random DNA), and for each target set a control
set containing the same number of same-length random DNA
sequences was constructed (without EREs). As the names
imply, the sequence counting method counts the number of
sequences with one or more motif matches in the target and

control sets, whereas the motif counting method counts the
total number of matches in each set. For the motif counting
method we used score thresholds such that 0.1% of locations
in the control set were deemed matches, as suggested by
Haverty et al. (9). For the sequence counting method, we
chose thresholds such that 10% of sequences in the control set
contained one or more matches, similarly to Elkon et al. (7).
P-values for over-representation of counts in the target set
were calculated using Fisher's exact test.

Although the contingency table based methods tend to rank
PPARg among the top handful of most over-represented
motifs (Fig. 4), it is not ranked highest in most cases, and
never when the sequence length is >200 bp. Moreover, in most
cases motifs that do not resemble the ERE are ranked highest.
Clover's advantage in this comparison stems from incorpor-
ating motif scores rather than cutting them off at a threshold. It
should be noted that these test sets are arti®cial in that they
have only one motif per sequence which favors sequence
counting, and they lack repetitive sequences that can interfere
with the motif counting approach. The problem with real test
sets, of course, is that the correct answer is not known for
certain.

To further illustrate the method's utility, Clover was used to
predict functional DNA motifs in a diverse range of biological
systems. We chose systems of special biological or medical
interest (e.g. Drosophila segmentation enhancers, dopamine-
responsive genes), where collections of functionally similar
promoters are available, and some functional motifs are
already known so that the predictions can be checked.

Analysis of dopamine responsive promoters

In order to ®nd DNA motifs involved in transcriptional
regulation by dopamine signaling, we collected 1500 bp
human genomic sequences upstream of 23 dopamine-
responsive genes (18). Clover was used to search for
signi®cant motifs from the Jaspar library in these sequences.
P-values were obtained relative to three background datasets:
human chromosome 20, 2000-bp sequences upstream of
human genes and human CpG islands, the latter two being
derived from annotations at the UCSC genome website (19).
Several motifs are signi®cantly over-represented relative to all
backgrounds (Table 1A). The presence of the CREB motif is
consistent with previous knowledge: dopamine signaling
activates the cAMP pathway and induces transcription via
the CREB protein (20). In addition, the program makes novel
predictions that a Forkhead and a MADS-box factor may be
involved in this signaling pathway. We reiterate that Clover
makes direct predictions about binding motifs rather than
speci®c proteins.

To strengthen these results, the analysis was repeated on
sequences upstream of the orthologous genes in mouse.
CREB, MADS and Forkhead motifs are again found to be
over-represented (Table 1B), increasing our con®dence in
these predictions. Some motifs receive negative raw scores,
indicating that the sequences lack good matches for these
motifs, but nevertheless achieve low P-values relative to all
background sequence sets (Table 1A and B). This result might
be expected if the motif itself is not functionally present in the
sequences (i.e. the corresponding transcription factor does not
interact with the sequences), but a similar motif for a
homologous factor is. Another explanation is that motifs

Figure 3. Detection by Clover of ERE motifs embedded in random DNA
sequences of varying length. In all panels, the P-values of the 108 Jaspar
motifs are plotted as dots. P-values of zero were increased to 0.001 to ®t on
the log scale. Crosses indicate the PPARg motif, and circles indicate the six
other ERE-like nuclear receptor motifs. (A) Results for 15 ERE-containing
sequences with no decoy sequences. (B) Results for 15 ERE-containing
sequences with ®ve decoy sequences. (C) Results for 15 ERE-containing
sequences with 15 decoy sequences.
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derived from in vitro site selection (indicated with asterisks in
all tables), including CREB, might exhibit less variability than
the real in vivo motifs.

Analysis of sequences ¯anking LSF binding sites

In order to understand better transcriptional regulation
involving the transcription factor LSF, we searched for
signi®cant motifs in 15 (mostly mammalian) sequences
¯anking LSF binding sites. No Jaspar motifs were found to
be signi®cant, but several Transfac motifs are signi®cantly

over-represented relative to three background datasets
(Table 2). The LSF motif itself was not recovered, because
Transfac lacked a high-quality matrix for LSF (we have since
submitted an LSF matrix to Transfac) or a homolog with
similar binding properties. However, the presence of the
NFkB motif is consistent with previous knowledge: NFkB
interacts physically with LSF and can synergize with it to
activate transcription of the mouse serum amyloid A3 gene
(21). This result provides further evidence that Clover detects
functionally relevant motifs, and suggests that the LSF±NFkB

Figure 4. Detection by contingency table based methods of EREs embedded in random DNA sequences of varying length. In all panels, the P-values of the
108 Jaspar motifs are plotted as dots. Crosses indicate the PPARg motif, and circles indicate the six other ERE-like nuclear receptor motifs. (A, B, C) Motif
counting method. Length 50 sequences were not analyzed because the number of possible locations is <1000 for some motifs, making the 0.1% threshold
criterion impossible. (D, E, F) Sequence counting method. (A, D) Results for 15 ERE-containing sequences with no decoy sequences. (B, E) Results for 15
ERE-containing sequences with ®ve decoy sequences. (C, F) Results for 15 ERE-containing sequences with 15 decoy sequences.
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interaction may be more widespread than previously thought,
since the serum amyloid A3 gene was not among the 15
sequences that we collected. The discovery of SRF, AP-1 and
Oct motifs in these sequences suggests that these factors may
also be involved in regulation by LSF.

Analysis of muscle regulatory regions

To validate Clover's ability to detect functional motifs more
comprehensively, in a more extensively studied system, we
applied it to a well characterized set of 27 muscle regulatory
regions from mammals and birds (22), using the Jaspar
database. Four motifs known to function in these sequences,
MEF2, Myf, TEF-1 and SRF (22), are found to be over-
represented with P-values of zero relative to all backgrounds

(Table 3). The Myf and TEF-1 motifs were constructed from
in vivo binding site compilations, very likely including sites
within these 27 sequences, and so their recovery is perhaps not
surprising. On the other hand, the MEF2 and SRF motifs were
constructed from in vitro site selection data, and so their
recovery constitutes further evidence of Clover's ability to
detect functional motifs. Interestingly, Forkhead and SOX-
family motifs are over-represented with equally strong
signi®cance, hinting at undiscovered regulatory in¯uences
on these sequences. Separate studies support the involvement
of Fox and Sox factors in gene regulation in muscle: Sox15
can speci®cally inhibit activation of muscle-speci®c genes
(23), and mice lacking myocyte nuclear factor/Foxk1, a
Forkhead family member, exhibit atrophic skeletal muscles

Table 1A. Signi®cant Jaspar motifs in sequences upstream of human dopamine responsive genes

Motif Raw score P-value relative to
Human chrom. 20 Human promoters Human CpG islands

*HFH-2 Forkhead 40.1 0 0.002 0.004
*HFH-3 Forkhead 29.2 0 0.002 0.005
*MEF2 MADS 13.1 0 0 0.007
*AGL3 MADS 11.8 0 0 0
*SRF MADS 7.55 0 0 0
*Agamous MADS 6.59 0 0 0.004
*CREB bZIP 0.0429 0.003 0.002 0.009
*bZIP910 bZIP ±0.00662 0 0 0.001

Table 1B. Signi®cant Jaspar motifs in sequences upstream of mouse dopamine responsive genes

Motif Raw score P-value relative to
Mouse chrom. 19 Mouse promoters

*Pax-4 paired-homeo 24.8 0.004 0.007
Broad-complex_1 Zn-®nger 22.2 0 0.002
*SQUA MADS 17 0 0
*SRF MADS 15.9 0 0
*MEF2 MADS 12.7 0 0
*AGL3 MADS 11.9 0 0
*Agamous MADS 5.68 0 0
*Brachyury T-BOX 3.01 0.002 0.001
Broad-complex_2 Zn-®nger 2.68 0.001 0.006
*FREAC-7 Forkhead 1.65 0.001 0.007
*Athb-1 homeo-ZIP 0.912 0.001 0.009
cEBP bZIP ±0.185 0.002 0.005
*CREB bZIP ±0.241 0 0
*S8 homeo ±0.48 0 0.006
*HLF bZIP ±1.8 0 0.009
*bZIP910 bZIP ±1.82 0 0.001

Motifs indicated with an asterisk are derived from in vitro site selection experiments.

Table 2. Signi®cant Transfac motifs in sequences ¯anking LSF binding sites

Motif Raw score P-value relative to
Human chrom. 20 Human promoters Human CpG islands

V$NFKB_C 7.08 0.002 0.002 0.001
V$NFKB_Q6 5.61 0.007 0.006 0.008
V$OCT1_B 4.96 0.007 0.002 0.008
V$AP1_Q2 4.44 0.008 0.004 0.003
V$SRF_C 3.57 0.003 0.003 0.009
V$SRF_01 2.98 0 0 0.007
V$OLF1_01 ±3.4 0.997 0.993 0.992
V$PAX5_01 ±3.41 0.996 0.994 0.993
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and impaired muscle regeneration after injury (24). Thus the
method predicts previously known motifs and plausible novel
candidates with high con®dence.

Analysis of liver regulatory regions

A compilation of 16 liver regulatory regions from mammals
and birds (25) was also analyzed using the 428 Transfac
motifs. Most of the over-represented motifs are hepatic
nuclear factors (HNF1, 3, 4 and 6) (Table 4), which are
known to be important for liver-speci®c gene regulation. The
motif for the Xenopus Forkhead domain 3 (XFD3), which is
the Xenopus homolog of HNF-3b, is constructed from in vitro
site selection experiments, again providing independent
evidence that Clover detects biologically relevant motifs. A
number of motifs are very signi®cantly under-represented in
these liver sequences, with P-values of 1 (i.e. the raw scores
were always exceeded in random fragments of the background

sequences). We propose that the presence of these motifs in
liver regulatory regions would be detrimental. Some of the
under-represented motifs are GC rich (MZF1, SPZ1, AP2 and
MAZR). Although the liver sequences do have a slightly lower
GC content (42.7%) than any of the background sets, the
difference in GC content from human chromosome 20
(44.1%) is minimal and unlikely to generate such under-
representation. The signi®cance of this unexpected
under-representation of sites remains to be experimentally
determined. In the case of the muscle initiator sequence,
whose binding protein(s) has not yet been identi®ed, we
hypothesize that its absence in liver-speci®c regulatory
regions (i) prevents inappropriate expression of these genes
in muscle and/or (ii) prevents inappropriate repression of these
genes in liver, if one role of the `muscle initiator element' is
actually to repress expression of muscle-speci®c genes in
non-muscle cells.

Table 3. Signi®cant Jaspar motifs in muscle regulatory regions

Motif Raw score P-value relative to
Human chrom. 20 Human promoters Human CpG islands

*MEF2 MADS 30.1 0 0 0
Myf bHLH 29.5 0 0 0
*AGL3 MADS 20.3 0 0 0
*SQUA MADS 17.2 0 0 0
TEF-1 TEA 15.1 0 0 0
*SRF MADS 13 0 0 0
*FREAC-7 Forkhead 12 0 0 0
*MZF_1-4 Zn-®nger 11.9 0.005 0.005 0.009
*SRY HMG 11.2 0 0 0.002
*Agamous MADS 9.4 0 0 0
Broad-complex_2 Zn-®nger 6 0 0 0.006
*SOX17 HMG 5.91 0 0 0
*Sox-5 HMG 5.21 0 0.001 0.003
TBP TATA-box 4.33 0 0.001 0.001

Motifs indicated with an asterisk are derived from in vitro site selection experiments.

Table 4. Signi®cant Transfac motifs in liver regulatory regions

Motif Raw score P-value relative to
Human chrom. 20 Human promoters Human CpG islands

V$HNF1_01 32 0 0 0
V$HNF1_C 25.5 0 0 0
V$HNF3ALPHA_Q6 8.38 0.001 0.002 0
V$HNF4ALPHA_Q6 7.23 0.001 0 0.001
V$HNF4_01 5.77 0.003 0.001 0.002
V$HNF3B_01 5.76 0.001 0.004 0.003
V$COUP_01 4.9 0.004 0.002 0.002
*V$XFD3_01 4.05 0.004 0.004 0.009
V$POLY_C 4.03 0.005 0.002 0.004
V$HNF6_Q6 3.66 0.001 0.001 0.005
V$AP1_Q2 3.46 0.01 0.006 0.004
V$IPF1_Q4 2.28 0.005 0.002 0.006
*V$MZF1_01 ±3.03 0.995 0.999 1
*V$SPZ1_01 ±3.78 1 1 1
V$AP2_Q6 ±4.03 0.996 1 1
V$MUSCLE_INI_B ±4.07 0.998 0.999 1
V$CACCC_Q6 ±4.29 0.992 0.994 0.999
V$MINI20_B ±4.31 1 1 1
V$MINI19_B ±4.34 0.999 1 1
*V$PAX4_01 ±4.66 0.997 0.997 0.999
*V$MAZR_01 ±6.07 0.998 1 1

Motifs indicated with an asterisk are derived from in vitro site selection experiments.
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Analysis of Drosophila segmentation enhancers

Finally, we analyzed 19 Drosophila regulatory regions active
in the embryonic segmentation process (26). There is previous
evidence that the transcription factors Bicoid, Caudal,
Hunchback, KruÈppel and Knirps regulate these sequences
(26). Consistent with this evidence, the Hunchback motif is
signi®cantly over-represented, and although KruÈppel is absent
from Jaspar, the KruÈppel-like factor Gklf is recovered
(Table 5). We also discover that HMG-IY (recently renamed
HMGA), Dorsal/REL and Ets motifs are highly over-
represented. The relevant HMGA protein may well be
Lilliputian, which appears to regulate fushi tarazu and
huckebein (27), both segmentation genes although not
among the 19 analyzed here. Dorsal and the Ets factors
Pointed or Yan, which are active in the Drosophila embryo
(28), are also good candidate factors for regulating these
sequences. Furthermore, Snail, Engrailed and Forkhead motifs
are under-represented. These crucial embryonic enhancers
clearly undergo stringent selection to avoid unwanted regu-
latory interference from other transcription factors. For
instance, it would seem evolutionarily advantageous to
exclude binding motifs for the Snail repressor, since Snail is
activated by Dorsal and would counteract the desired
activation by Dorsal of these genes (29).

SUMMARY

We propose that our method for ®nding over-represented
motifs opens a door to the reverse genetics of regulatory
elements. In every regulatory system that we examined, some
previously known motifs were recovered and a manageable
number of novel candidate motifs were identi®ed. Screening
sequences against a precompiled motif library is superior to ab
initio motif discovery algorithms in cases where functional
motifs are likely to be present in the library: it has greater
power to detect weak motifs, it is less prone to be misled by
repetitive elements and accurate estimates of statistical
signi®cance are more readily available. Nonetheless, ab initio
methods will always be useful for studying novel types of

regulatory mechanism. The ability to ®nd over-represented
motifs in regulatory regions should greatly assist methods that
predict regulatory regions by ®nding clusters of speci®c motifs
in DNA sequences (26,30±36). Previously, the main bottle-
neck with such methods was ignorance of which motifs cluster
with one another to form the various types of regulatory
region. The power of the motif library screening approach
obviously depends on the coverage and accuracy of the motif
library that is used. The tools are now in hand to obtain
accurate motif models for every transcription factor in a
genome (37,38); our understanding of gene regulation is
poised for a quantum leap when such comprehensive libraries
become available.
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