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Abstract
In conjunction with the recent American Chemical Society symposium titled “Docking and
Scoring: A Review of Docking Programs” the performance of the DOCK6 program was evaluated
through (1) pose reproduction and (2) database enrichment calculations on a common set of
organizer-specified systems and datasets (ASTEX, DUD, WOMBAT). Representative baseline
grid score results averaged over five docking runs yield a relatively high pose identification
success rate of 72.5 % (symmetry corrected rmsd) and sampling rate of 91.9 % for the multi site
ASTEX set (N = 147) using organizer-supplied structures. Numerous additional docking
experiments showed that ligand starting conditions, symmetry, multiple binding sites, clustering,
and receptor preparation protocols all affect success. Encouragingly, in some cases, use of more
sophisticated scoring and sampling methods yielded results which were comparable (Amber score
ligand movable protocol) or exceeded (LMOD score) analogous baseline grid-score results. The
analysis highlights the potential benefit and challenges associated with including receptor
flexibility and indicates that different scoring functions have system dependent strengths and
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weaknesses. Enrichment studies with the DUD database prepared using the SB2010 preparation
protocol and native ligand pairings yielded individual area under the curve (AUC) values derived
from receiver operating characteristic curve analysis ranging from 0.29 (bad enrichment) to 0.96
(good enrichment) with an average value of 0.60 (27/38 have AUC ≥ 0.5). Strong early
enrichment was also observed in the critically important 1.0–2.0 % region. Somewhat
surprisingly, an alternative receptor preparation protocol yielded comparable results. As expected,
semi-random pairings yielded poorer enrichments, in particular, for unrelated receptors. Overall,
the breadth and number of experiments performed provide a useful snapshot of current capabilities
of DOCK6 as well as starting points to guide future development efforts to further improve
sampling and scoring.
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Pose identification; Pose rescoring; Docking; Virtual screening; Enrichment; ROC curves;
Scoring; Sampling; Rmsd; Symmetry

Introduction
Despite the many challenges [1, 2] computational docking has emerged to become a useful
part of drug discovery and design [3-5]. And, with the advent of ever faster computers,
publicly available databases of purchasable compounds [6], and numerous software choices
[7], more and more research groups are embarking on virtual high throughput screening
projects to identify potentially useful lead molecules. These facts make continued validation
and refinement of docking software and associated protocols all the more important. In
particular, it is important to gauge how well a given procedure can accurately generate and
score known ligand binding poses [8] and rank-order known inhibitors versus property-
matched decoys [9].

DOCK was the first widely used docking program [10] and its usefulness in drug discovery
applications is well established [1-3, 5, 11]. Notably, the basic methodology established by
Kuntz and coworkers in the early 1980s is still in use today. Briefly, orientations of the
ligand relative to a receptor binding cavity are searched using a negative surface image of
the target. The image is generated by filling the solvent accessible receptor surface with
overlapping spheres and selecting a subset of the spheres to represent the binding site [10].
Ligand atoms and spheres are geometrically matched to sample rigid-body orientational
space [12], and conformational space of the ligand is sampled in the presence of the receptor
binding site via the anchor-and-grow incremental construction approach [13]. The quality of
a binding geometry (termed pose) is typically determined using a physics-based energy
score. The most computationally efficient such score is grid score which uses a simplified
molecular mechanics force field [14].

Recent versions, starting with DOCK5, [15] have been written in C++ and designed to be
modular allowing for relatively straightforward inclusion of different sampling methods and
scoring functions. The extensibility of the modular platform was first demonstrated in
DOCK6 [16] by the addition of several scoring functions which incorporate solvation effects
using Generalized Born Surface Area (GB/SA) [16-18] or Poisson-Boltzmann Surface Area
(PB/SA) [19] models. Receptor flexibility, conjugate gradient minimization, and molecular
dynamics (MD) simulation capabilities using the full Amber molecular mechanics force
field were also incorporated [16, 20]. DOCK6.4 included modifications to the internal
energy and anchor-and-grow routines which improves ligand sampling, [8] and in DOCK6.5
a new footprint-based scoring function [21] was added which calculates intermolecular
energies and hydrogen bonds on a per-residue basis. The two latter versions were
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extensively validated using the SB2010 database consisting of 780 protein–ligand
complexes derived from the protein databank [8]. A more detailed description of the
enhancements to the sampling behavior introduced starting in DOCK6.4, and a comparison
with earlier DOCK versions, will be presented in a future manuscript.

In addition to its off-the-shelf utility, DOCK is designed to be a learning tool and a platform
for exploring new docking methods. Ligand growth trees and growth statistics enables users
to “look under the hood” of the docking engine, and online tutorials [22, 23] as well as
extensive pose validation [8] and enrichment databases [9] are all geared to make the
program more robust, easier to use, and ultimately more useful. It is important to note that
DOCK source code has always been distributed with the program, and many users over the
years have successfully modified the code for their own purposes.

The current manuscript describes docking results which were obtained in the context of
preparing for a symposium titled “Docking and Scoring: A Review of Docking Programs”
held at the Spring 2011 Meeting of the American Chemical Society. Organizers of the
symposium invited groups to present their results using two popular validation testsets,
Astex [24] and DUD [9], so that performance could be gauged across a wide variety of
programs. Specifically, groups were asked to report: (1) pose identification statistics
(scoring and sampling success rates) using the Astex database consisting of all viable
dockable sites in each of the 85 pdb entries, and (2) enrichment statistics (ROC curves,
AUC, etc.) using the standard DUD database consisting of 40 systems or a subset of 13
systems using actives from the WOMBAT [25] database. The nature and type of
experiments and statistics to be reported were provided to the participants prior to the
meeting. In addition, the participants were asked to use receptors that had been re-refined
and provided by the organizers. The results presented here represent the combined efforts of
two DOCK development groups (Rutgers University and Stony Brook University) and in
some cases, both groups independently performed similar experiments, but under slightly
different conditions to gauge noise and reproducibility. Continued refinement and testing of
new docking methods is essential for the field to move forward as a whole; thus we applaud
the organizers efforts and feel that group participation in these and related activities is
important.

Theoretical methods
Pose identification

For the first primary experiment, pose identification, two criteria are examined (1) Docking
Success is observed when the top scoring pose is within 2 Å heavy atom root-mean-square
deviation (rmsd) of the crystal ligand, and (2) Sampling Success (or minimum rmsd) is
observed when there exists in the top 32 poses a conformation within 2 Å of the crystal
ligand. When native-like poses are sampled, but the top scoring pose is not within 2 Å, this
is referred to as a Scoring Failure. Figure 1a–c shows representative examples for a ligand
docked to a target in which a computed rmsd indicates a success, a near success, and a
failure in comparison to the crystallographic reference. It is important to note that methods
for examining docking accuracy depend on the rmsd algorithm. Historically, in many
computational chemistry programs, such as DOCK and Amber, computation of rmsd
assumes there is a single one-to-one correspondence between selections of atoms being
compared (atom 1 with atom 1, atom 2 with atom 2, etc.). In this manuscript such
calculations are referred to as standard rmsd. However, some ligands may transform under
symmetry operations into physically indistinguishable objects. More commonly, local
operations, such as rotation about an individual bond, may produce indistinguishable objects
(i.e. phenyl group, t-butyl group, etc.). Thus, ideally, rmsd should be corrected to properly
account for symmetry equivalent atoms. In this report, the Hungarian matching algorithm
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[26, 27] was used for computing symmetry corrected rmsd. Figure 1d shows a representative
example in which standard rmsd indicates a failure (6.96 Å) but symmetry corrected rmsd is
a success (0.48 Å). As highlighted by the lively discussion at the recent Spring 2011 ACS
meeting a number of research groups are incorporating symmetry corrected rmsd in their
docking calculations; however the exact procedures used are, for the most part,
unfortunately not well documented. More discussion, comparison, and robust evaluation of
symmetry corrected rmsd in the literature, especially with regards to docking, would be
welcome. A related issue involved challenges with using organizer supplied data for rmsd
calculations in which ligand references had different atom orderings and atom names
compared with the molecules to be docked. To address this issue, an iterative four step
mapping algorithm (see supplementary material, Figure S1) was used to find the maximum
common substructure [28] between two ligands, regardless of order, so that standard and
symmetry corrected rmsd could be computed.

In addition to standard rmsd and symmetry corrected rmsd, in which the deviates are
differences of Cartesian coordinates of corresponding atoms, the receptor flexibility
component of this study also employs the intramolecular-distance-based rmsd, termed here
drmsd (Eq. 1):

(1)

Here, c and c′ are two conformations of a molecule with N atoms and Dij is the N × N
distance matrix of all the intramolecular distances. In drmsd, the deviates are differences of
corresponding interatomic distances. This measure is independent of the translational and
rotational molecular degrees of freedom and derived entirely by comparing internal
distances within a molecule.

Enrichment metrics
For the second primary experiment, enrichment, receiver operating characteristic (ROC)
curves are used to evaluate how well methods favorably rank known active molecules
compared with a large number of decoys [30]. In ROC curves, the True Positive Rate (TPR
= TP/P) is plotted versus the False Positive Rate (FPR = FP/N), where TP is the number of
True Positives, P is the total number of Positives (actives), FP is the number of False
Positives, and N is the total number of Negatives (decoys). Figure 2 shows ROC curve
examples representative of good enrichment (panel a), random enrichment (panel b), and
poor enrichment (panel c). Quantitatively, the total area under the curve (AUC) of a ROC
plot provides a measure of global enrichment. In a practical sense however, good early
enrichment is reasonably expected to be more important for prioritizing compounds
identified by virtual screening of large ligand libraries. The example in Fig. 2c illustrates
ROC curve behavior with poor total enrichment but strong early enrichment. Several
methods for assessing early enrichments have been reported [31]. In this report, we use four
very specific definitions (%TPR, %FPR, %AUC, and FE) to assess early enrichment as
outlined below.

For early enrichment, we report %TPR, and %FPR for different percentages (0.1, 1.0, 2.0)
of the ranked database. Transforming to percentages yield scaled values which are much
more readable for very early enrichments (i.e. not near zero). Percentages yield %FPR and
%TPR in the range [0, 100]. We also report %AUC for early enrichment which is in the
range [0, 10,000]. We feel %AUC is a more meaningful metric to gauge early enrichment
since the values involve the area and not a single point on the ROC curve. When reporting
total AUC we report unscaled values. The panel in Fig. 3a illustrates the relationship
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between %FPR (Xε), %TPR (Yε), and the % of database ranked (ε = 0.1, 1.0, 2.0) for three
different values. It should be noted that, the %FPR and the % of database screened are not
necessarily equal. However, under most conditions, when P < < N this is in fact a reasonable
assumption (Xε ≈ ε).

The fourth early enrichment metric used here is termed fold enrichment, recently employed
to assess the footprint-based scoring function [21], and defined as FE = AUC/AUCran. This
quantity facilitates comparison with random behavior and is a very intuitive measure. Using
the approximation Xε ≈ ε when 0.1, 1.0, and 2.0 % of the database are kept then 2,000, 200,
and 100 are the best possible (FEmax) fold enrichment values (Fig. 3c, d). It is important to
note that for FE it is only meaningful to compare values calculated at the same percentage of
the database but not between different percentages.

Scoring functions
The main body of this work employed three physics-based scoring functions, termed grid
score, Amber score, and LMOD score, to rank order docked poses. PB/SA scoring was also
examined (see supplementary material). It is important to note that no additional
parameterization, i.e., beyond that of the predetermined molecular mechanics
parameterization, was performed, nor was there any tuning of the scoring functions for
individual systems.

Grid score—Grid score consists of intermolecular non-bonded van der Waals (VDW) and
Coulombic energies (scaled by a distance-dependent dielectric) between the ligand and
receptor [14]. The van der Waals components are generalized, and the exact attractive and
repulsive exponents used are specified in the next section. Although grid generation is an
expensive calculation, it is a one-time upfront cost and used to pre-compute the potential
energy of the receptor to speed up the calculations while docking. Calculating the
intermolecular interaction energy directly on the receptor is O(N*M) compared to O(N) on
the grid, where N is the number of ligand atoms and M is the number of receptor atoms.

Amber score—Amber score is a simple MM-GB/SA approach that does not explicitly
treat entropic effects [20]. A number of papers using MM-GB/SA and related MM-PB/SA
methods have focused on docking [32-37]. The Amber score binding energy is calculated as
EComplex − (EReceptor + ELigand), where EComplex, EReceptor, and ELigand are MM-GB/SA
energies as approximated by the Amber force field. Amber score enables all or a part of the
ligand-receptor complex to be flexible by defining a movable region in the DOCK input.
Only atoms in the movable region are allowed to move during minimization and MD
simulation. The movable region options are nothing, ligand, distance, everything and NAB
[38] atom expression. So for example, for the nothing option no minimization or MD
simulation occurs. For distance movable, the ligand and any receptor residues within a
specified distance from the ligand are movable. If any atom is within the cutoff distance then
the whole residue is selected. The ligand is represented by the active site sphere list, and
thus the movable receptor residues are well defined and independent of any particular ligand
molecule. Due to the size and nature of this investigation only the nothing, ligand, and
distance movable regions were used.

LMOD score—LMOD score operates on the same basic principle as Amber score, but uses
the LMOD [39, 40] method instead of MD. LMOD (short for LowMODe) is a way of
exploring conformational space by following low-frequency vibrational modes. This can in
principle be more efficient than MD since high-frequency motions (e.g. bond stretching,
angle bending, individual side-chain movement) tend to complicate the overall energy
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landscape and frustrate searches, while low-frequency motions (i.e. motions in which the
movement of many atoms are correlated) are usually of greater interest.

Briefly stated, the LMOD procedure involves (1) calculation of low-mode eigenvectors, (2)
perturbation of the starting structure by uphill movement along a randomly chosen low-
mode eigenvector until a barrier is crossed, (3) minimization of the perturbed structure, (4)
return to step 2 and follow a different mode. Once all modes of a structure have been
followed, a new structure is chosen from a pool of previously found minimum energy
structures and the procedure is repeated. The LMOD score binding energy is calculated as
EComplex − (EReceptor + ELigand). The calculation of EComplex with LMOD score involves an
initial minimization using a conjugate gradient method followed by the LMOD procedure
itself. Both the ligand and all residues within 6.0 Å of the ligand are allowed to move; all
other atoms are frozen. EReceptor and ELigand are calculated using final structures obtained
from LMOD with no further minimization.

One drawback of LMOD is that it is more computationally demanding than MD. For
comparison, the initial iteration of LMOD is about 40 times slower than 1,000 steps of MD.
It should be noted that this LMOD cost does include the most computationally demanding
part of the method, which is initial calculation of the eigenvectors of the system; subsequent
iterations will not be quite as expensive. Due to the high computational cost, in this study
LMOD score was only used to rescore a subset of poses for certain systems.

Computational details
Structure preparation

This study employed five basic types of structural preparations (termed ASTEX PDB,
ASTEX SUP, ASTEX AMB, DUD PDB, and DUD SUP) as outlined in Table 1, to create
the basic structure files to setup docking, rescoring, and/or enrichment experiments. For
specific details regarding each of the five definitions, including why the different
preparations were performed and challenges encountered, please consult the supplementary
material. Briefly, for the pose identification experiments employing systems contained in the
Astex dataset, both single site and multi site sets were prepared. Single site preparations
employed the first occurrence of each dockable site and were constructed from the raw pdb
coordinates (ASTEX PDB) using protocols consistent with the recently described SB2010
database [8]. Multi site preparations employed all dockable sites in each entry and were
constructed from re-refined coordinates supplied by the organizers (ASTEX SUP). In
addition, a preparation required for Amber score calculations was generated using organizer
supplied coordinates (ASTEX AMB). For enrichment studies employing DUD, as before,
one set was derived from the raw pdb coordinates (DUD PDB). Another set was derived
using organizer supplied structures (DUD SUP) in which hydrogen atoms were added to the
receptors from the original DUD database [9].

Detailed protocols
DOCK specific parameters—Regardless of which of the protocols was used to prepare
the initial receptor and ligand structures for docking, a number of other steps are required to
prepare the binding site(s) prior to running actual DOCK calculations. Setups typically
involve a number of accessory programs including DMS, SPHGEN, sphgen_cpp,
sphere_selector, SHOWBOX, and GRID which are available with the standard DOCK
distributions available on the UCSF website (http://dock.compbio.ucsf.edu/). The two
research groups participating in this work, denoted in this manuscript as SB (Stony Brook
University) or RU (Rutgers University), used somewhat different binding site preparation
protocols as noted below.
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The first step involved in preparing the binding sites is the calculation of the solvent
accessible surface of each receptor, without hydrogen atoms, using a probe radius of 1.4 Å
with the program DMS. A negative image of the surface is then generated as a set of
overlapping spheres [10] using the programs SPHGEN or sphgen_cpp. A subset of spheres
near the crystallographic ligand is then selected with the aid of the program sphere_selector
or an in-house perl script. For receptors with multiple binding sites each site is prepared
separately. Preparation of the docking grids is then performed and follows a two step
procedure. Firstly, a box around the binding site is constructed with the accessory program
SHOWBOX. The box includes the selected spheres and a protocol dependent margin.
Secondly, the actual grids are computed with the accessory program GRID using a 0.3 Å
grid spacing, a 9,999 Å distance cutoff, and a 4r distance dependent dielectric constant. For
the SB group, selected spheres were within 8 Å from ligand heavy atoms of the crystal
structure and for computing the energy grids an 8 Å box margin and 6–9 VDW exponents
were used. For the RU group, selected spheres were within 10 Å from the ligand and energy
grids employed a 5 Å box margin and 6–12 VDW exponents. Otherwise, all preparation
steps were the same for both groups. It should be noted that the optimal set of parameters to
use in docking is still an active area of research. The protocols and parameter options
presented here represent two reasonable starting points.

For actual docking runs, the RU group used DOCK6.5 in conjunction with docking the
ASTEX SUP data set while the SB group used a soon to-be-released version termed
DOCK6.6 and docked both the ASTEX SUP dataset and the ASTEX PDB data set. For
rescoring with Amber Score and LMOD, the RU group converted docked ASTEX SUP
results into the required ASTEX AMB formats. Figure 4 graphically outlines the overall
rescoring procedure. In addition, the SB group performed enrichment studies using DUD
PDB and DUD SUP.

Enrichment datasets—DUD [9] consists of forty protein structures (39 from the PDB
and one homology model, denoted here with the name MODL) divided into six families as
shown in Table 2: Metalloenzyme (N = 4), Nuclear Hormone Receptor (N = 8), Kinase (N =
9), Folate Enzyme (N = 2), Serine Protease (N = 2), and finally a miscellaneous family
called “Other Enzymes” (N = 14) the same breakdown as in [9]. Table 2 lists for each entry,
the associated pdb code, the DUD system name, number of active ligands, number of
decoys, number of WOMBAT active ligands (if applicable), and the so-called semi-random
pairings for which the DUD receptors were combined with actives and decoys developed for
a different system. The WOMBAT set [25] consists of active small molecules for 13 of the
DUD systems. Two WOMBAT sets did not correspond to any DUD receptor and were not
used. For another set, active ligands for Estrogen Receptor alpha were a mix of both agonist
and antagonists. However, DUD distinguishes between agonist and antagonist receptors thus
WOMBAT runs for Estrogen Receptor are not included. In summary, the DUD SUP
datasets consist of 40 DUD and 10 WOMBAT sets of active compounds which were used
with the 40 supplied receptors. For DUD PDB, two receptors 1L2I and 1AH3 were excluded
owing to structural problems in the PDB coordinates. Therefore, the DUD PDB datasets
consist of 38 DUD and 9 WOMBAT sets of active compounds, with corresponding DUD
decoy ligand sets, with 38 corresponding receptors.

For each PDB code in DUD, the organizers also prepared alternative non-native pairings
(termed semi-random pairings) which was described as a way to perform “null hypothesis”
testing. Unrelated proteins would be expected to yield enrichments no better than random
(null hypothesis). However, due to the fact that the semi-random pairings actually involve
structurally related proteins (Table 2), good enrichment may not be unexpected for certain
pairings. Metalloenzyme and Other Enzymes groups represent collections of unrelated
proteins.
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Enrichment calculations—For a given molecule (active or decoy) that is docked to a
target it is important to note that a final answer may not always be obtained [41, 42]. Such
occurrences necessitate a decision as to how subsequent ROC curve analysis should be
performed. For the current study, this was generally not problematic as on average a viable
3-D pose was returned for 99 % of the molecules (see Supplementary Material Tables S6–
S7). From a practical standpoint, there are at least three possible ways of generating ROC
curves (see Supplementary Material Figure S2 for a graphical representation) when not all
molecules yield a ranked answer: (1) Generate ROC curves by ignoring molecules for which
an answer was not obtained. In this case the number of actives (P, positives) and decoys (N,
negatives) employed become Pdocked and Ndocked. (2) Generate ROC curves by using the
initial number of actives and decoys (Pinitial and Ninitial). In this instance ROC curves may
not always reach TPR = 1, FPR = 1. (3) Generate ROC curves by assuming perfect, none, or
random enrichment for the molecules which do not yield a final answer. In this scenario
ROC curves always reach TPR = 1, FPR = 1. In the current manuscript, ROC curves (and
accompanying AUC values) were generated using method 3 (Pinitial and Ninitial) and using
the reasonable assumption of random enrichment for missing molecules.

Amber score specific parameters—The calculation of each of the three energies
required by Amber Score uses the same scheme: minimization with a conjugate gradient
method is followed by MD simulation with a Langevin thermostat, another minimization,
and a final energy evaluation that includes the surface area term. Amber score is
implemented with the NAB toolkit [38] and is interfaced with the DOCK input, but it is
currently implemented only for rescoring. Key default parameters [20] include 100 cycles of
pre-MD-minimization, 3,000 steps of MD simulation at 300 K, 100 post-MD-minimization
cycles, and a 0.01 minimization convergence criterion for the root-mean-square of the
components of the gradient. The modified Onufriev-Bashford-Case GB/SA implicit solvent
model [43] was used with a non-bonded cutoff of 18 Å. The surface area term is derived
using the linear combinations of pairwise overlap algorithm [44].

LMOD score specific parameters—The LMOD procedure was run using the NAB [38]
toolkit from AmberTools 1.5. The procedure used the same topology and final coordinates
from Amber score (nothing moveable). The ligand and all residues within 6.0 Å of the
ligand were fully flexible, and the GB Hawkins-Cramer-Truhlar implicit solvent model [45]
was used with a cutoff of 99 Å. An initial minimization of 100 steps using a conjugate
gradient method (XMIN, also implemented in NAB) was performed. A total of five low-
frequency modes were then computed by LMOD for each structure. LMOD was run for
three iterations, with three randomly selected low-modes used to drive LMOD moves. The
final coordinates of the lowest energy structure found using this procedure were then used to
obtain the separate receptor and ligand structures, and calculate the overall interaction
energy.

Results and discussion
Pose reproduction using grid-based docking

Grid success rates—Table 3 displays the baseline docking and sampling success rates
(≤2 Å), using grid-based scoring, for the different preparation protocols and numbers of
binding sites. Both standard and symmetry corrected rmsd values are shown. For standard
rmsd, there is an equal chance that any native-like poses generated, which are geometrically
and energetically equivalent (some with rmsd >2 Å), could be picked as the top-scoring pose
thus explaining the poorer results. With symmetry corrected rmsd this element of chance is
removed and all equivalent native-like poses will have similar rmsd values. Figure 5 shows
representative examples of eight molecules rescued using symmetry. Here, for system 1tz8
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the effect is especially dramatic while for the other systems rescues were already relatively
close to the 2 Å cutoff. As a general observation, symmetry-corrected rmsd yields
improvement in success of ca. 5 % (see Table 3). However, the improvement is only ca. 2 %
for sampling since symmetrical alternate poses are likely part of the sampled ensemble. For
simplicity, all further discussion and analysis in this manuscript will present and employ
symmetry corrected rmsd values.

Initial docking tests showed that when using different random seeds there could be variation
of up to 5 % in success and sampling rates. Unique random seeds influence energy
minimization, which in turn affects ligand growth. To partially address the issue of statistical
noise, the data in Table 3 represents averages over five docking runs performed using
different random seeds (1,000, 2,000, 3,000, 4,000, and 5,000). However, with the exception
of Table 3, unless otherwise stated, results in the manuscript employ one DOCK run with
the default random seed of 0.

For docking to the single sites (N = 84), the averaged SB/ASTEX PDB results (Table 3a)
show a DOCK success rates of 76.4 % and sampling success rates of 94.1 %. The higher
sampling success suggests substantial room for improvement if a more accurate scoring
function were used to rank-order the poses. Docking to single sites using organizer supplied
data yields a success rate of 70.3 % for the SB/ASTEX SUP runs (Table 3c) which is
somewhat higher than the 65.2 % result for the RU/ASTEX SUP runs (Table 3d). Likely
reasons for the lower success rates obtained using SB/ASTEX SUP or RU/ASTEX SUP
versus SB/ASTEX PDB include potential ligand bias or differences in the receptor
preparation (i.e., raw vs. refined).

The SB/ASTEX PDB results were obtained using crystallographic ligand poses as starting
coordinates for docking which can favorably impact results given that bond lengths and
angles are biased towards the binding site. Previous work by the SB group [8] showed a 2–9
% variation in success when using different energy minimization protocols and/or force
fields to prepare ligands before docking. Interestingly, this is comparable to the difference
obtained here of ~6 % between the SB/ASTEX PDB and SB/ASTEX SUP single site data
(Table 3a vs. c). To explore the effects of removing potential ligand bias, additional SB/
ASTEX PDB runs were performed in which ligands were rotated/translated roughly 30 Å
from each binding site and subjected to a short energy minimization (1,000 steps, ε = 4r
dielectric) and molecular dynamics (10 ps) simulation prior to docking (Table 3b). These
calculations employed Amber11 with the General Amber Force Field (GAFF). As shown in
Table 3b, this causes a relatively minor drop in success from 76.4 to 74.2 % (Table 3a vs. b).
In any event, given the relatively small number of systems (N = 85, N = 147) used in this
study relatively small differences in protocols are likely to have a greater than desired
impact on overall success rates. For example, an increase or decrease in success for only
4/85 molecules changes the results by ca 5 %. For this reason, future studies should employ
much larger databases (or cross-docking experiments) to assess pose reproduction success.

For the multi site set, the SB/ASTEX SUP results (Table 3e) yield 72.5 % in comparison to
the RU/ASTEX SUP runs (Table 3f) which yield 66.0 %. Interestingly, data from the multi
site SB runs show slight improvement relative to the analogous single site runs (72.5 vs.
70.3 %) which is likely a function of the fact that docking to different sites in the same
protein can yield different docking outcomes. Differences in Table 3 between SB and RU
groups are also likely a function of differences in setup protocols (see supplementary
material) or DOCK-specific parameters (see Theoretical methods). The most significant
difference between the SB and RU groups is the choice of van der Waals exponents (6–9 or
6–12 respectively) used in preparation of the docking grids. The softer 6–9 exponents used
by the SB group, which are known to smooth out the energy landscape as a pseudo-mimic of
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receptor flexibility, likely explains why higher success rates in sampling are obtained for the
SB group across the board (Table 3). Other possibilities include slight differences arising
from different computer architectures or DOCK versions used (6.5 vs. 6.6). Additional multi
site analysis is presented in Table S1.

Grid rmsd distributions and statistics—Table 4 contains more detailed rmsd
statistics, using the top scoring pose, for the same protocols used in Table 3 (symmetry-
corrected rmsd only). For each set, statistics here are based on only a single DOCK run
(random seed 0). The SB/ASTEX PDB results are the lowest at 1.5 Å (mean) and 0.6 Å
(median) reflecting the high 76.4 % success observed above in Table 3a. The min or max
rmsd is not representative of the entire set, but rather highlights extreme cases (Table 4). A
minimum rmsd of 0.1–0.2 Å serves as a sanity check that at least a few very low rmsd poses
are being recovered to preclude systemic errors in the set. The maximum possible rmsd (12
Å [SB] or 15 Å [RU]) is bounded by the dimensions of the active sites, and these are defined
by the spheres (only spheres within 8 Å [SB] or 10 Å [RU] of the native ligands are
retained) and the grid box (margins and spheres). Poses are oriented to the spheres, and if a
pose exceeds a grid boundary then the pose is pruned. The mean rmsd is an alternative
measure of success which is not dependent on the hard 2 Å cutoff. However, a mean rmsd of
less than 2 Å is only recovered for the ASTEX PDB set. The mean rmsd value as a success
metric is affected by docking failures with high rmsds, where in practice a 4 Å failure may
be no worse than a 15 Å failure. The standard deviations are in the range 2.1–2.9 Å. The
median rmsd is likely the most representative metric in Table 4, since it is not affected
detrimentally by extreme values like the mean rmsd value. The organizers noted that 25/85
systems had significant structural problems or ligands with alternate conformations, and
they requested an analysis of the impact of these issues on the results. No significant impact
was found; see Table S2 for further details.

Rmsd spectrum plots—As an alternative way to characterize docking outcomes, not
based solely on a hard 2.0 Å cutoff, spectrum plots for symmetry corrected rmsds are shown
for SB/ASTEX PDB (single site, Fig. 6a) and SB/ASTEX SUP (multi site, Fig. 6b) results.
These indicate docking outcome (docking success = blue, sampling failures = red, scoring
failures = green) as a function of a variable rmsd cutoff used to define success. For each
rmsd cutoff, the percentage of all three possible outcomes adds up to 100 %. This kind of
analysis allows the decoupling of sampling and scoring failures in pose reproduction studies.
At an rmsd cutoff of 0 Å, all poses produced are determined as sampling failures, and this
rapidly decreases as the cutoff approaches more generous and realistic values. For the SB
ASTEX/PDB set, at the 1 Å mark 62 % rmsd success rates are reached, compared to 76 %
success rates reached at the 2 Å mark. Interestingly, for the SB ASTEX/SUP set, at the 1 Å
mark 49 % rmsd success rates are reached, compared to 68 % success rates reached at the 2
Å mark. This discrepancy probably arises from the use of unbiased starting coordinates in
the ASTEX SUP, where bond angles and torsions are reconstructed from scratch using 2D
structures. Overall, based on the general shape of the spectrum plots, and the point at which
docking success, sampling failures and scoring failures all begin to intersect, a 2 Å
definition of success appears to be reasonable.

The effect of clustering—For reporting sampling success, the organizers requested that
the ensemble size be at most 32 docked poses. An upper limit of 5,000 was selected for
ensemble size, with clustering via either a 1 Å cutoff (RU) or a 2 Å cutoff (SB) and the 32
best-scored poses were retained for reporting sampling success. As shown in Table 5 for the
RU/ASTEX SUP runs, sampling success for the ensemble of 32 extracted from the clustered
pool of poses is substantially better (83.5 %) than that without clustering (78.8 %) and
begins to approach the maximum ensemble size (89.4 %). Over all systems, the actual
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maximum ensemble sizes were in the range of 40 to 2,361, with a mean of 430 and a median
of 251 for the ASTEX SUP/RU set. It is important to note that the clustering cutoff and the
number of poses retained affect the pose diversity of the ensemble available for rescoring
and that clustering in DOCK is performed with standard rmsd calculations.

Rescoring with Amber score
Poses sampled using grid score were subsequently rescored with three variants of Amber
score (see Fig. 4) to determine if a potentially more accurate function could be used to
identify native-like poses (Table 6). Here, the three Amber score types are distinguished by
their allowable movable regions, (nothing, ligand, and distance) sampled during the energy
minimizations and molecular dynamics. Thus, the sequence of movable regions in Table 6
from nothing → ligand → distance is one of increasing flexibility, and a simple paradigm
for Amber rescoring is that movability enables relaxation with respect to the Amber force
field and ultimately accommodation of the induced fit binding model. For each site an
ensemble of ligand poses (Table 5, ensemble size all and clustering cutoff none) were
obtained via the RU/ASTEX SUP protocol from the DOCK run with the default random
seed of 0. As a baseline, grid score yields a docking success of 68.0 % and a sampling
success of 89.4 % for this run. Here, sampling success provides a soft upper limit, since
additional sampling is being performed. Docking successes are included in Table 6 for rmsd
(sym) but not drmsd (see Theoretical methods) because a 2 Å cutoff is not appropriate for
this metric.

Nothing movable protocol—Rescoring with Amber score nothing movable yields a
docking success of 67.3 % (Table 6b), which is close to grid score’s 68.0 % (Table 6a). This
is a strict single point rescoring: no ligand flexibility and no minimization or additional
sampling is performed. Here, 16 binding sites are rescued by rescoring and 17 sites that are
successes for grid score are failures for rescoring. This indicates that the two scoring
functions (grid vs. Amber score nothing movable) have system dependent strengths and
weaknesses which should be explored. The 1.00 Å median observed here is almost equal to
the 0.92 Å in grid score, but the 3.26 Å mean is substantially different from the 2.16 Å in
grid score, indicating that some docking failures for the rescoring are more severe (see
Supplementary Material for a comparison with PB/SA rescoring, Tables S3–S4).

Ligand movable protocol—Rescoring with Amber score ligand movable (Table 6c)
yields a docking success of 69.4 % which is slightly better than grid score’s 68.0 % (Table
6a). However, grid score has a somewhat narrower distribution of top scored rmsds; for
example, the mean and median are 2.16 and 0.92 Å for grid score but 2.88 and 1.07 Å for
Amber score ligand movable. This is a flexible ligand rescoring, but the sampling successes
are equal because 1yvf and 2br1 are successes for ligand movable but failures for grid score
and 1w1p sites 1 and 2 are failures for ligand movable but successes for grid score. With
regards to docking success, 19 binding sites are rescued by rescoring, and 17 different sites
that are successes for grid score are failures for rescoring. Again, the two functions (grid vs.
ligand movable) correctly rank different systems from among the 147 total. In comparison
with nothing movable (Table 6b), there are 8 successes that are failures with ligand
movable, and 11 nothing movable failures that are successes with ligand movable. The mean
rmsd for ligand movable (2.88 Å) is somewhat smaller than that for the nothing movable
protocol (3.26 Å) although there is a slight increase in median rmsd (1.07 Å from 1.00 Å
respectively). Thus, ligand flexibility reduces the severity of some of the nothing movable
docking failures, but the distribution of top scored poses shifts to higher rmsds.

Distance movable protocol—For the distance movable region option, the receptor-
ligand distance threshold was initially set to 2 Å. However, this was insufficient to guarantee
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at least one movable receptor residue for every binding site: 26 sites required a 2.1 Å
threshold, five required 2.2 Å, and one required 2.3 Å. Table 7 contains various statistics for
the numbers of receptor residues showing that for the final thresholds used at least one
residue (Min column) and at most seven residues (Max column) were movable. The large
maximum value of 2,778 is from 1of6 which is composed of eight chains and has eight
binding sites. The numbers of movable residues are small compared to the total numbers of
residues. An alternative subset, termed computationally inexpensive subset (defined below),
with an extended distance movable cutoff (3 Å) was also examined.

Amber score distance movable, with a docking success of 56.5 % (Table 6d), performs
poorly compared to the other Amber scores as well as to grid score. Because the intent of the
small distance threshold (2–3 Å) is to enable a relaxation of the few residues close to the
binding site, the following analysis focuses on comparing the distance movable results to the
ligand movable results. Interestingly the maximum rmsd for this protocol goes from 15.25 to
39.18 Å (Table 6a vs. d) which is an indication that some poses within the distance movable
ensemble have drastically changed from their original starting coordinates. With regards to
sampling success, there is little difference: 1mzc and 1t9b are failures for distance but
successes for ligand. On the other hand, for docking success 5 sites are successes for
distance movable but failures for ligand movable and 24 sites are failures for distance but
successes for ligand. The distribution of top scored poses shifts to much higher rmsds: the
mean and median for distance movable are 4.26 and 1.46 Å respectively compared to 2.88
and 1.07 Å for ligand movable (Table 6). These poorer docking successes (Table 6d) and
rmsd statistics are the opposite of what would be expected for a more rigorous methodology
for estimating scoring and may indicate that the current relaxation models are overly
simplistic.

One possible explanation is that there is significant movement of the movable receptor
residues, which necessarily affects the binding site. In that case the coordinate-based rmsds
of the ligands might be unfair measures of binding pose reproduction because a given ligand
might need to translate or rotate to follow a deformable active site. To remove rigid body
effects and examine how different Amber score protocols might influence just the internal
ligand geometries, drmsd values (see Theoretical methods) were also computed as shown in
Table 6e–h. Interestingly, despite being the protocol potentially allowing the largest
movement overall (including greater ligand variation), Amber score distance movable yields
the second smallest drmsd range (0.04–2.45 Å). Further, the mean drmsd of 0.49 Å for
distance movable, although the largest, is similar to those of the other Amber score methods.
Thus, the distance movable protocol does not show a substantially larger variation in ligand
internal geometry, and consequently, rigid body motion is the most likely cause of the lower
success rates (56.5 %). On the other hand, the fact that grid score has the smallest drmsd
range (0.04–2.30 Å) and the smallest mean (0.41 Å) indicates that the different allowable
movable region protocols have more severe docking failures.

Previous work on RNA-ligand complexes [16] studied the effect of systematically
increasing the distance threshold; however, no overall improvement in docking success was
found. To examine how increasing site flexibility would affect the present results,
calculations for a subset of binding sites (N = 9) using an extended distance threshold of 3 Å
were performed (Table 8). Termed the computationally inexpensive subset, this refers to the
nine systems (1n2v, 1oq5, 1pmn, 1tow, 1tt1, 1uou, 1x8x, 1y6b, 1yqy) with the fastest
runtimes from the 2 Å experiments. Table 7 indicates that a 3 Å threshold includes at least
28 residues and at most 54 residues in the movable region. However, despite the increased
size of the movable region the success rates become worse (Table 8). This is a challenging
subset for docking success; only four of nine are successful for ligand movable, three for 2
Å distance movable, and only two for 3 Å distance movable. Note that the sampling success
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is the same for all three scores. Structure 1oq5 looks like it might be rescued by a further
increase in the movable region because its rmsd drops from 14.24 to 2.67 Å when the
threshold increases from 2 to 3 Å, but an additional run using a threshold of 4 Å yielded a
worse top scored rmsd of 3.89 Å. This behavior is typical of that seen in the previous work
[16].

Although the ligand movable results (69.4 %) are on par with the baseline grid score results
(68.0), surprisingly, none of the more sophisticated Amber rescoring methods yield
significantly enhanced success rates (Table 6). No single explanation is apparent but there is
a long list of potential contributors including: (1) initial coordinates that have not been
relaxed and equilibrated with the Amber force field, (2) the very short minimization/MD/
minimization protocol applied in this study, (3) the strengths and weaknesses of the
particular GB solvation model used, and (4) more fundamental issues, such as, the use of an
implicit solvent approach, the neglect of entropic terms, and even the use of an empirically
derived Hamiltonian. The good news is that this benchmarking study opens the door to
detailed investigations of these sources of error.

Rescoring with LMOD score
At this time, the high computational expense associated with the LMOD procedure
precluded application to all of the 85 systems (and their associate docked ensembles) studied
in this manuscript. To keep costs tractable, LMOD was used to rescore only a subset of
systems (N = 19, ~32 poses each) from the Amber score nothing moveable protocol (see
Fig. 4). Ideally, all 85 systems with their complete ensemble of poses should be evaluated.
Although LMOD score does not depend on Amber score and could be used to rescore results
from grid score directly, the structures from Amber score nothing movable were used for
two reasons: (1) like Amber score, LMOD score requires Amber-type topology and
coordinates, so using those already generated for Amber score cut down on preparation time,
and (2) since Amber score nothing movable does not allow movement of the receptor or
ligand, the starting structures are the same as those used in grid score, so that LMOD score
is rescoring of grid score, not Amber score. The systems chosen for LMOD rescoring were
pdb codes 1gm8, 1ke5, 1l2s, 1nv2, 1oq5, 1pmn, 1sj0, 1tow, 1tt1, 1uml, 1uou, 1v0p, 1v48,
1x8x, 1xoz, 1y6b, 1yqy, 1ywr, and 1z95 (systems picked at random, see supplemental
material). For each system the top ten scored poses, the top ten lowest ligand rmsd poses,
and additional poses with higher rmsds were included to ensure the results would not be too
biased towards low-rmsd structures. The number of initial poses ranged from 23 to 40
(average 32) as shown in Table S5. It should be noted that for some systems, some poses in
the ensemble are identical given that clustering was not used during the docking. Table 9
gives an overview of scoring and sampling successes of LMOD score in comparison to
Amber score and grid score. For comparison purposes, the same initial set of starting poses
was used in all experiments.

Encouragingly, for this dataset, LMOD (scoring = 57.89 %, sampling = 89.47 %)
outperforms both Amber score nothing movable (scoring = 52.63 %, sampling = 84.21 %)
and grid score (scoring = 47.37 %, sampling = 84.21 %) in terms of both scoring and
sampling success (Table 9). And, the average rmsd of the top scored pose from LMOD score
(2.08 Å) is lower than either grid score (2.68 Å) or Amber score (5.45 Å). In particular, for
1sj0 use of LMOD leads to both sampling and docking success (Table 9) where Amber
score and grid score do not (see discussion below). In addition, LMOD achieves a docking
success for 1xoz, 1uml and 1uou. There are only four cases in which Amber score and/or
grid score achieved docking success where LMOD did not (1n2v, 1tow, 1x8x, and 1yqy).
For 1n2v and 1tow Amber score was successful, for 1yqy grid score was successful, and for
1x8x both Amber and grid score were successful. An additional important observation is the
fact that LMOD is often able to find a lower energy conformation beyond the initial energy
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minimization (100 steps of conjugate gradient). Across all poses from all structures (607
total), LMOD sampling was able to find a lower energy conformation than the starting pose
72 % of the time. The median individual LMOD success rate (# of poses with LMOD
success for system/# poses evaluated for system) among all systems was 77 %.

As noted above, LMOD outperforms Amber score and grid score for 1sj0 in both sampling
and scoring. Neither Amber score nor grid score were able to locate a pose with an rmsd of
less than 2.0 Å which illustrates the potential superior sampling power of the LMOD
method. Figure 7 makes the point graphically, showing ligand rmsd (Å) plotted versus score
(kcal/mol) for each pose evaluated using all the functions. Despite none of the starting poses
having an rmsd < 2.0 Å, LMOD not only finds two poses with low rmsd (0.75 and 0.81 Å)
but also ranks them correctly as shown in Fig. 7 (black to red circles connected by purple
lines). In particular, LMOD resulted in a range of low energy conformational space being
sampled (ca –55 kcal/mol and 0.75 to 2.3 Å rmsd) although the poses originated from a
group of three identical poses (ca +45 kcal/mol and 3 Å rmsd). In general, after rescoring
with LMOD score the lower rmsd poses obtain better scores, while the high rmsd poses are
either scored very poorly or do not have their score change that much.

In some cases, a scoring failure can occur due to an outlier. For example, LMOD score has a
docking failure for 1oq5 because the rmsd of the top pose is 3.87 Å (Table 9); however, the
next top 4 scored poses all have rmsds less than 2.0 Å. In order to examine the effects of
potential outliers on the results for each scoring method, the average ligand heavy-atom
rmsds for the top five scored poses were calculated (Table 10). Here, docking failures using
LMOD for systems 1yqy and 1x8x are likely caused by outliers, as the average of the top
five scored rmsds are less than 2.0 Å for both. Overall, LMOD score generates lower
average rmsds for top-ranked poses for 10 out of the 19 structures, in some cases
significantly so (1oq5, 1sj0, 1uou, and 1xoz). Amber score generates lower average rmsds
for 5 structures, and grid score generates lower average rmsds for 4 structures; these
numbers are consistent with the docking success percentages reported in Table 9.

In general LMOD score yields top 5 average rmsds that are lower than or comparable to
Amber and grid score; only in the case of 1tow does LMOD perform significantly worse
than Amber score or grid score. The overall average improvement using LMOD score (2.03
Å) versus Amber score (5.22 Å) is likely due to more efficient sampling of the
conformational space of the ligand/protein complex given that the underlying energy
function is the same. The fact that LMOD tends to find low energy conformations beyond
initial minimization combined with the fact that the ligand rmsd tends to show improvement
shows that rescoring poses with LMOD can improve both scoring and sampling success.
Although the high computational cost of LMOD currently prevents its use as a sole scoring
function, based on the data in Tables 9, 10 and Fig. 7, the method shows great promise when
used as a tool for rescoring.

Enrichment studies
Global enrichment statistics (total AUC)—Table 11 shows the overall global
enrichment results (AUC values) for both the native and semi-random pairing using receptor
structures derived from the protein databank (PDB) or supplied by the organizers (SUP)
using actives and decoys from DUD or actives from WOMBAT. AUC values for individual
systems are shown as bar plots in Fig. 8. The results for the native pairings yield, in the case
of the DUD PDB runs (Fig. 8a; Table 11), individual AUC values which range from 0.29
(bad enrichment) to 0.96 (good enrichment). For the DUD SUP results the max AUC value
at 0.90 is not as high (Fig. 8b; Table 11). Interestingly, both receptor preps using DUD
actives and decoys yield nearly identical average AUC values of 0.60 and 0.59. This is a
somewhat surprising result as the different preps use different partial charge assignments
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(FF99SB [46] vs. Gasteiger [47]), hydrogen orientation, and protonation states of the
receptor (as discussed further below). For the WOMBAT results, average enrichment for the
native pairings is worse than random (DUD PDB = 0.45, DUD SUP = 0.42). And, min AUC
values are significantly lower (0.13 and 0.16) than the corresponding DUD values (0.29 and
0.21). This is likely a function of the fact that two of the WOMBAT ROC curves (pde5 and
ppar) perform significantly worse than random, a phenomenon not generally seen in the
other ROC curves, as is discussed in more detail in the subsequent subsection (see ROC
Curve Analysis). In addition, the much smaller WOMBAT dataset size (~10) vs. DUD (~40)
exacerbates this difference.

As expected, results from semi-random experiments (Table 11; Fig. 8c, d) show average
AUC values which are consistently worse than random (avg AUC < 0.50). However, as
discussed further below, for many semi-random pairings good cross-enrichment is observed,
especially for receptors within the same protein family. This is reflected in the relatively
high max AUC values which are in the range 0.84–0.85 (Table 11) although they are lower
than the native pairing (0.90–0.96). For DUD actives, average AUC drops from the higher
0.59–0.60 for the native pairing to 0.46–0.48 for the semi-random pairing. However, for
WOMBAT actives, average AUCs are only marginally higher for the native pairing (0.42–
0.45), compared to the semi-random pairing (0.39–0.40). This could be due to the fact that
7/10 of WOMBAT semi-random pairings are between proteins in the same family. As with
the native pairings, there is striking agreement for the semi-random set, between DUD PDB
and DUD SUP results, despite differences in the two different structure preparations.

Individual AUC values and group-based analysis (heatmaps)—Figure 8 shows
bar plots of individual AUC values, comprising the total values in Table 11, for all pairings
for both structure preparations. Here, the plots are sorted by descending total AUC using the
DUD PDB native pairing results. Figure 9 shows a matrix representation of the data
(heatmap) for the DUD PDB results which facilitates, for example, determining if a related
group (or family) yields good or poor enrichment. Similar results are seen for the DUD SUP
runs (Figure S3). In Fig. 9, receptors are labeled according to the pdb code (and group) on
the y-axis and ligands are labeled according to the DUD system name on the x-axis. The
entries in Fig. 9 indicate native pairings (diagonal elements) and semi-random pairings (off
diagonal elements). Red = worse than random (AUC < 0.5), green = greater than or equal to
random (AUC ≥ 0.5), and white = non-paired systems. See Supplementary Material (Table
S8) for a detailed breakdown of systems which fall into the different categories (better,
equal, or worse than random). Figure 9 groupings highlight the fact that many of the so
called semi-random pairings are in fact not random but are pairings between related protein
structures. Thus, for many semi-random pairings, good enrichment would not be
unexpected. Exceptions would likely include the “other enzyme” group, and to a lesser
extent the metalloenzyme group. Ideally, experiments using all receptors paired with all
active-decoys sets should be performed (entire matrix) to derive better statistics.

As evident by the median value of 0.56 (27/38 have AUC ≥ 0.5) for the DUD PDB results in
Table 11, most systems yield better than random enrichment (green squares) for the native
pairings occurring on the diagonal: metalloenzymes = 3/4, nuclear hormone receptor = 4/7,
kinase = 4/9, folate enzyme = 2/2, serine protease = 3/3, other enzymes = 11/13. For the
analogous off-diagonal experiments the median AUC value 0.48 (15/38 have AUC ≥ 0.5)
indicates a roughly even split between good and bad enrichment: metalloenzymes = 3/4,
nuclear hormone receptor = 3/7, kinase = 2/8, folate enzyme = 1/2, serine protease = 2/2,
other enzymes = 1/11, misc pairings = 3/4. Importantly, off-diagonal elements for the “other
enzymes” group, consisting of mostly unrelated proteins, yields poor enrichment which is to
be expected. This group is probably the most useful overall as an actual null hypothesis test
set for evaluating virtual screening.
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Of all the groups evaluated, the serine protease group yields the best overall enrichment
(5/5) for the five pairings evaluated (3 diagonal, 2 off-diagonal). Cross-enrichment was also
observed for serine proteases in the original DUD manuscript (Table 2 in Ref [9]). This is
not surprising given that trypsin, factor Xa and thrombin are very similar proteins. In fact,
trypsin has been successfully used as a template for developing thrombin and factor Xa
inhibitors [48, 49]. Interestingly, while the trypsin receptor (1bju) with HIV protease actives
(hivpr) shows no enrichment (1bju-hivpr pairing, Figs. 8c, d, 9) the use of the HIV protease
receptor (1hpx) with trypsin actives (trypsin) does show enrichment (1hpx-trypsin pairing,
Figs. 8c, d, 9).

In contrast to serine protease, the kinase group shows poor native and semi-random
enrichment. An interesting observation is that epidermal growth factor receptor (egfr)
ligands show enrichment with the heat shock protein (1uy6) receptor while the converse
pairing (1m17-hsp90) is worse than random enrichment for both preparations (Figs. 8a–d, 9,
S4). However, since the 1uy6-hsp90 native pairing also had sub-random enrichment (Figs.
8a, b, 9) this result may not be unexpected if the set of actives and decoys dominate
enrichment behavior as discussed below. Surprisingly, when thymidine kinase is paired with
purine nucleoside phosphorylase actives, and vice versa, (1kim-pnp and 1b8o-tk pairings,
Figs. 8c, d, 9), these two unrelated systems enrich one another. The authors of the original
DUD paper also noted that these two enzymes yielded cross-enrichment (Table 2 in ref [9])
in addition to thymidine kinase being a promiscuous target.

System-specific analysis: DUD PDB versus DUD SUP preparations—Although
the overall average AUC (0.59, 0.60) for native pairings is essentially the same, examination
of the individual results in Fig. 8a, b reveals that there can be differences in enrichment
depending on which structure preparation (DUD PDB vs. DUD SUP) is used. The DUD
PDB prep starts with raw pdb files from scratch (see Theoretical methods) while the DUD
SUP structures, with the exception of hydrogens added by the organizers, were from the
original DUD database [9]. Examples include the good enrichment seen for system 1a8i but
only when using the DUD SUP receptor prep (Fig. 8a vs. b, 0.43 vs. 0.75). Examination of
the glycogen phosphorylase receptor in this system show that the DUD SUP prep contains
active site waters in the binding site (Fig. 10b) which are absent in the DUD PDB prep. The
known actives may use the water-mediated interactions to their advantage although a more
detailed study should be performed to determine the actual importance. For certain systems,
binding site water is known to play critically important roles. Another, more subtle example
is shown in Fig. 10a for 1hw8. Here, the native pairings appear to favor the DUD PDB
receptor prep (Fig. 8a vs. b, 0.42 vs. 0.21) although the average AUC values are both below
random. The hmg coa reductase receptor in this system has four chains, labeled A-D in the
original pdb structure, with four occupied binding sites. For the DUD PDB prep, the binding
site used was at the interface of chains A-B in contrast to the DUD SUP prep which was at
the interface of chains C-D. Differences between the two sites (see Fig. 10a) involve a
conformational change of methionine and alternate orientations of two cysteine thiol
hydrogens which appear to favor the DUD PDB prep. These structural differences are likely
a result of a nearby co-factor originally present in the C-D site.

Differences are also observed for systems 1f0r and 1a4g. For factor Xa (1f0r), protonation
state differences of a histidine near the binding site could influence the computed
enrichments (DUD SUP = 0.78, DUD PDB = 0.62). For neuraminidase (1a4g), electrostatics
are known to be especially important [50], thus the use of dramatically different charge
models (F99SB [46] vs. Gasteiger [47]) would likely influence the results (DUD PDB =
0.85, DUD SUP = 0.59). Finally, although differences in a binding site environment would
normally be expected to affect enrichment, for some systems this is not always observed.
For example, for catechol o-methyl transferase in 1h1d, high enrichment is observed using
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both preps (AUC 0.85, 0.87) despite the fact the DUD SUP prep is missing part of the co-
factor (S-adenyl methionine, SAM) included in the DUD PDB prep. Overall, the results
highlight how use of different receptor sites or structure preparations, and by analogy
alternative crystallographic coordinates of the same receptor can influence enrichment.
Similar results were observed in the multiple binding site breakdown presented in Table S2.

ROC curve analysis—Figures 11a shows standard ROC curves for the native DUD
pairings (see Figure S4 for semi-random pairings). The curves are sorted from high to low
according to total AUC using SB/DUD PDB data with SB/DUD PDB shown in black and
SB/DUD SUP shown in gray. These comparisons allow, at a glance, which systems yield
overall good, reasonable, poor, or early enrichments. Most of the curves have strikingly
similar shapes despite the fact that two different structure preps were evaluated. In contrast,
1hw8 and 1a8i show dramatically different shaped ROC plots which ultimately lead to the
larger differences discussed above. Systems with poor overall enrichment may still have
good early enrichment which is characterized by relatively steep upward sloping curves
starting on the lower left hand corner of the ROC plots which then decrease as more and
more of the database is covered. Although the left part of the curve will be above the
random line the right part of the curve may approach the random (1m17, 1kv2) or even dip
below (1hpx, 1o86). This phenomena, interestingly, seems especially true for kinases 2src,
1vr2, 1xp0, and 1agw. Indirectly, the inherent plasticity of kinase binding sites could
adversely affect enrichment due to known induced fit effects which can be ligand dependent.
For example, the few actives which might favor a particular kinase conformation could be
scored favorably but in absence of receptor flexibility the remaining pool of actives might
not yield favorable scores thus accounting for the observed early, but not global, enrichment.
Other systems with short lasting early enrichment include MODL (based on a homology
model) and 1sr7. For DUD vs. WOMBAT native pairings two systems in particular, 1xp0
and 1fm9, stand out as having significantly different ROC curves (Fig. 11b). The ROC curve
for 1fm9 shows good enrichment behavior when using DUD but a sub-random curve with
WOMBAT. For 1xp0, although the overall DUD results are not much better than random,
the WOMBAT results are always sub-random. Additional analysis would be required to
determine the cause of these enrichment differences.

Comparing native versus semi-random—An interesting observation is that a given
ligand set (actives + decoys) can yield similarly shaped ROC curves in two receptors
suggesting that shape, in some instances, can be driven by properties inherent in the ligand
set. Two examples of this phenomenon are the kinase pair egfr and hsp90 (Fig. 12a) and the
serine proteases pair fxa and thrombin (Fig. 12b). The egfr ligand set shows strong early
enrichment with both receptors. Conversely, the hsp90 ligand set yields curves that are
slightly below random. As previously mentioned, fxa and thrombin have strong enrichment
with the DUD SUP performing better than DUD PDB for all four combinations. On the
other hand, this observation does not appear to hold when the receptors are unrelated. As an
example, hivpr (1hpx) more strongly enriches the trypsin ligands than its cognate ligands
(Fig. 12c). Conversely, the trypsin receptor (1bju) performs worse than random for the hivpr
ligands as noted above in the heatmap discussion. More studies are needed to explore these
issues in greater detail. For completeness, Figure S4 contains ROC curves for all semi-
random pairings and may be used to aid in making additional comparisons.

Early enrichment—Table 12 lists average early enrichment statistics, in terms of 0.1, 1.0,
and 2.0 % of the database examined, using several metrics including %TPR, %FPR, %AUC,
and FE (see Theoretical methods for definitions). Which is the best metric for quantifying
early enrichment is still an active area of research. Here, to help gauge enrichment, values
for the expected random and best possible cases are also reported. Results from the 0.1 %
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bracket are reported at the request of the organizers but in some cases may be too small to be
meaningful considering the small number of molecules contained in some DUD datasets.
Analysis presented below is focused on results obtained using DUD at 1.0 and 2.0 % of the
database. WOMBAT data is provided for completeness.

Importantly, average early enrichment is always significantly better than the hypothetical
random results. For example, comparison of FE values using DUD PDB native pairings
(Table 12) yields: 9.99 (1.0 %), and 10.09 (2.0 %). This is an order of magnitude
improvement over random FE (1.0) regardless of the theoretical maximum which will
decrease as larger percentages of the database are examined (Fig. 3; Table 12). The much
better than random FE results in these early regions mirror the visual trends seen in the ROC
curves shown above (Fig. 11) and should favorably benefit virtual screening efforts. The
same trends are observed for the other three metrics (%TPR, %FPR, %AUC) with the
computed enrichments being consistently better than random.

A comparison of results using the two different structure preps similarly shows consistently
improved early enrichments for the DUD PDB prep. For example, %TPR values for DUD
PDB versus DUD SUP yield: 15.14 versus 13.02 (1.0 %) and 20.40 versus 17.33 (2.0 %).
Similar trends are observed for %AUC: 4.99 versus 4.17 (1.0 %) and 20.19 versus 17.45
(2.0 %) as well as FE: 9.99 versus 8.34 (1.0 %) and 10.09 versus 8.72 (2.0 %). In addition,
%FPR values are lower, which is desirable: 0.56 versus 0.62 (1.0 %), and 1.43 versus 1.52
(2.0 %). Overall, use of the DUD PDB prep appears to yield better early enrichment results
despite the overall average AUCs being the same at 0.60 and 0.59 (Table 11). Finally, the
native pairings yield higher early enrichment values compared to the semi-random pairings
which is to be expected. For example, native versus semi-random DUD PDB %AUC results
yield 4.99 versus 3.53 (1.0 %) and 20.19 versus 12.49 (2.0 %). The %TPR results for these
runs yield the same trend: 15.14 versus 8.58 (1.0 %) and 20.40 versus 11.47 (2.0 %).

Conclusions
The primary goals of this study were to evaluate the performance of the DOCK6 program
for (1) pose identification and (2) database enrichment. The reported results represent the
combined effort of two DOCK development groups and were generated as a result of
participating in the recent symposium titled “Docking and Scoring: A Review of Docking
Programs” held at the Spring 2011 Meeting of the American Chemical Society.

Pose identification success was examined using the standard DOCK grid scoring function
(Tables 3, 4, 5), three variants of the Amber scoring function (Tables 6, 7, 8), and the new
LMOD scoring procedure (Tables 9, 10). Systems for docking and scoring were derived
from the single site (N = 85) or multi site Astex database (N = 147) with structure
preparation protocols employing organizer supplied coordinates (ASTEX SUP) or those
downloaded from the protein data bank (ASTEX PDB). For select experiments, two
different docking protocols (RU, SB) were employed. Not surprisingly, use of different
docking protocols, preparation procedures, and in particular, different scoring functions,
yield different results.

As a baseline, the SB/ASTEX SUP grid score results (five run average, multi site set,
organizer supplied structures, Table 3e) yields a symmetry corrected rmsd success rate of
72.5 % which should be comparable across different docking programs and platforms
employed in the symposium. The analogous sampling success rate for the same docking
runs is much higher at 91.9 % which indicates substantial room for improvement should a
more accurate scoring function be used. Additional pose identification analysis includes
evaluation of ligand starting conditions (Table 3), the effects of ligand symmetry (Table 3;
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Fig. 5), multiple binding site analysis (Table S2), rmsd statistics (Table 4), rmsd spectrum
plots (Fig. 6), and the effects of clustering (Table 5). A potential problem regarding pose
identification statistics is the relatively small number of systems used (N = 85 pdb codes).
To minimize noise the current results are based on averages obtained over five independent
docking runs using different random seeds. A recommendation is that future work should
make use of much larger publically available datasets such as SB2010 (N = 780 systems).

Rescoring grid-based results with potentially more accurate Amber scoring protocols
yielded generally lower success rates (Table 6). However, use of the ligand only movable
protocol yielded a slightly improved success rate (69.4 %) as the comparable grid results for
the same ensemble (68.0 %). Interestingly, although the numerical value was similar, the
group of sites ranked successfully was different suggesting that the grid and Amber score
functions have system dependent strengths and weaknesses which should be explored.
Immediate future work planned will address relaxation with the Amber force field by
starting with the larger MD-ready SB2010 dataset, and the protocol and the general
treatment of systems will be examined by employing the NAB atom expression feature for
specifying movable receptor residues to a few specific targets. Alternatively, receptor
flexibility could be introduced through use of multiple-docking grids which is currently
under investigation.

Testing of a new scoring procedure based on low mode sampling (LMOD score) was also
examined (Table 9, 10; Fig. 7). Encouraging results were obtained with LMOD score (57.89
%) when compared to grid score (47.37 %) or Amber score (52.63 %) when using the same
starting ensemble of structures for a subset of 19 Astex systems although given the relatively
small dataset size employed more comprehensive studies should be performed. An
important feature of LMOD is the ability to sample large regions of conformational space
relatively quickly which can lead to improvements in both scoring and sampling.
Representative results for system 1sj0 shows the potential utility of the method for
generating multiple low-energy poses, with native-like rmsds, starting from a single high-
energy structure with a non-native-like rmsd (Fig. 7). Additional LMOD studies are planned.

To evaluate the ability of DOCK6 to enrich actives versus decoy molecules, the standard
DOCK grid scoring function was used to screen 38-40 systems (Table 11; Fig. 8, 9)
contained in the DUD database using either organizer supplied receptor coordinates (DUD
SUP) or the protein data bank (DUD PDB). In addition to the standard DUD sets a subset of
10 systems employing WOMBAT actives was studied. DUD PDB results (Fig. 8a; Table 11)
using native pairings yield AUC values obtained from ROC curve analysis (Fig. 11) ranging
from 0.29 (bad enrichment) to 0.96 (good enrichment) with an average AUC of 0.60 (27/38
have AUC ≥ 0.5). ROC curve analysis visually indicates good early enrichment for most
systems which was quantified using several metrics including, %TPR, %FPR, %AUC, and
FE, at 0.1, 1.0, and 2.0 % of the database examined (Table 12). In particular, at 1.0, and 2.0
% an order of magnitude improvement over random FE (1.0) is observed for the DUD PDB
native pairing results. Overall, the early enrichment trends are encouraging and consistent
with previous studies [1-3, 5, 11] in which DOCK was used to successfully identify active
lead molecules through virtual screening.

As expected, analogous DUD PDB results for semi-random pairings show a lower average
AUC (0.48). However, appreciable enrichment is observed among groups of related
receptors (Fig. 9). In contrast, the miscellaneous other enzyme group, comprised of
unrelated receptors, shows only 1/11 systems with AUC > 0.5. Some system specific
analysis revealed possible contributors to differential enrichments according to which of the
two receptor preparation protocols was used (DUD PDB vs. DUD SUP protocols). Observed
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differences include alternate side chain conformations, numbers of binding site waters,
partial atomic charges, and protonation states.

In summary, the breadth and number of validation experiments presented here is notable and
the results and analysis provide a useful starting point for future work to improve both
sampling and scoring in DOCK. It is worth repeating that the baseline grid results were
determined using only a simple two-term scoring function, and the same DOCK protocols
were used for pose identification and enrichment. No fine tuning was performed to tweak
parameters or scoring for any particular system or class of systems. Nevertheless, although
such a simple function yields remarkably good results, there is clearly room for
improvement. Community efforts are especially welcome in this regard since they attempt to
provide a level field for comparing various production versions of docking software using a
common set of validation tests. Participation provides an opportunity for development
groups to share knowledge, thus facilitating the incorporation of new features, for example
symmetry corrected rmsd which was previously missing from DOCK. While the best
metrics for quantifying success and enrichment may continue to be debated, continued
participation in activities such as these is important to help drive the field forward.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Representative docked ligand poses (green) in comparison to a crystallographic reference
(red) showing a success (a), near success (b), and a failure (c) using a 2.0 Å rmsd definition
of success. d How a pose classified as failure using standard rmsd can be recovered using a
symmetry corrected algorithm. Figure generated using UCSF Chimera [29]
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Fig. 2.
Representative examples of ROC curves showing good (a), random (b), and poor (c) global
enrichments
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Fig. 3.
a Schematic showing possible enrichments at 0.1, 1.0, and 2.0 % of the database scanned
and b–d maximum Fold Enrichment (FE) values at each of these points. FE = AUC/AUCran
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Fig. 4.
Flowchart showing pose-rescoring protocols using three variants of Amber score and
LMOD score
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Fig. 5.
Eight complexes are displayed where accounting for symmetry with the Hungarian matching
scheme rescues native-like poses. Red = native pose, Green = docked pose. The PDB code
and the rmsd values are displayed under each molecule. The standard rmsd is on the left and
the symmetry corrected rmsd is on the right
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Fig. 6.
Rmsd spectrum plots for a SB/ASTEX PDB and b SB/ASTEX SUP runs showing Blue =
Pose Reproduction Success, Red = Sampling Failure, Green = Scoring Failure

Brozell et al. Page 29

J Comput Aided Mol Des. Author manuscript; available in PMC 2014 January 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Score (kcal/mol) versus ligand heavy-atom rmsd (Å) for the subset of poses of system 1sj0
for which LMOD score was run; Amber score (nothing), LMOD score, and grid score
values are shown. Green lines indicate transitions from Amber score poses (black circles) to
LMOD poses (red circles). Purple lines indicate 3 transitions for which 2 yielded results <2
Å
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Fig. 8.
Bar plots showing AUC values using (a) DUD PDB native, (b) DUD SUP native, (c) DUD
PDB semi-random, and (d) DUD SUP semirandom protocols. Results sorted from high to
low using ordering from panel (a)
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Fig. 9.
Heatmaps showing enrichment study which employ SB/DUD PDB results and DUD actives
and decoys. Receptors are labeled by the pdb code and family on the y axis. Ligands are
labeled by the DUD system name on the x axis. Red = worse than random (AUC <0.5),
green = greater than or equal to random (AUC ≥ 0.5), and white = non-paired systems
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Fig. 10.
Differences between DUD PDB (red) and DUD SUP (green) structure preps for (a) 1a8i and
(b) 1hw8. Native ligands are shown in cyan. Binding site waters in the DUD SUP prep for
1a8i indicated by blue circles
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Fig. 11.
a ROC curves for the 40 DUD families. b ROC curves for the 10 Wombat families (Wombat
ligands + DUD decoys). ROC curves sorted from high to low according to total AUC using
SB/DUD PDB data with SB/DUD PDB in black and SB/DUD SUP in gray
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Fig. 12.
ROC curves for 3 pairs of DUD families a egfr and hsp90, b fxa and thrombin, c trypsin and
hivpr. Top panels show the native pairing. Bottom panels show the semi-random pairing
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Table 1

Structure preparation overview for Astex and DUD datasets

Preparation definition Small molecules Proteins

Charge model Program Charge model Program Comments

(1) ASTEX PDB AM1BCC MOE, antechamber FF99SB LEAP Built from PDB.
Validated SB2010 protocol.
MD ready (N = 84).

(2) ASTEX SUP AM1BCC Chimera FF99SB Chimera Built from supplied structures.
Two DOCK protocols (SB, RU).
Not MD ready (N = 147)

(3) ASTEX AMB AM1BCC DOCK FF94 DOCK Built from supplied structures.
Employed DOCK Amberize scripts.
MD ready (N = 147).

(4) DUD PDB FF99SB LEAP Rec from PDB, SB2010 protocol.
Lig from DUD
MD ready (N = 38)

(5) DUD SUP Gastig MOE Rec from supplied structures.
Significant atom name problems.
Not MD ready (N = 40)
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Table 2

DUD systems and semi-random matching information

Protein family PDB
name

DUD name No. ligands No.
decoys

No.
WOMBAT

Semi-random
pairing

Pairing
description

Metallo-enzymea 1O86 ace 49 1,797 ada

(N = 4) 1NDW ada 39 927 ace

1H1D comtb 11 468 pde5

1XP0 pde5 88 1,978 101 comt

Nuclear Hormone Receptor 2AO6 ar 79 2,854 56 rxr

(N = 8) 1L2Id er_agonist 67 2,570 83c mr

3ERT er_antagonist 39 1,448 83c ppar

1M2Z gr 78 2,947 pr

2AA2 mrb 15 636 er_agonist

1FM9 ppar 85 3,127 43 er_antagonist

1SR7 pr 27 1,041 gr

1MVC rxr 20 750 ar

Kinase 1CKP cdk2 72 2,074 190 pdgfrb

(N = 9) 1M17 egfr 475 15,996 81 hsp90

1AGW fgfr1 120 4,550 src

1UY6 hsp90 37 979 egfr

1KV2 p38 454 9,141 60 vegfr2

MODL pdgfrb 170 5,980 cdk2

2SRC src 159 6,319 fgfr1

1KIM tkb 22 891 pnp Unrelated

1VR2 vegfr2 88 2,906 p38

Folate Enzyme 3DFR dhfr 410 8,367 gart

(N = 2) 1C2T gart 40 879 dhfr

Serine Protease 1F0R fxa 146 5,745 125 thrombin

(N = 3) 1BA8 thrombin 72 2,456 fxa

1BJU trypsin 49 1,664 hivpr Unrelated

Other Enzymesa 1EVE ache 107 3,892 hmga

(N = 14) 1AH3d alr2 26 995 42 ampc

1XGJ ampc 21 786 alr2

1Q4G cox1 25 911 sahh

1CX2 cox2 426 13,289 88 na

1A8I gpb 52 2,140 hivrt

1HPX hivpr 62 2,038 trypsin Unrelated

1RT1 hivrt 43 1,519 120 gpb

1HW8 hmga 35 1,480 ache

1P44 inha 86 3,266 parp

1A4G na 49 1,874 cox2
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Protein family PDB
name

DUD name No. ligands No.
decoys

No.
WOMBAT

Semi-random
pairing

Pairing
description

1EFY parp 35 1,351 inha

1B8O pnp 50 1,036 tk Unrelated

1A7A sahh 33 1,346 cox1

a
Proteins in these groups are unrelated, and not expected to cross-enrich

b
The very small number of ligands makes evaluating enrichment statistics at 0.1 % problematic (<1 ligand)

c
ERα ligands not used for WOMBAT studies

d
DUD systems not used in DUD PDB prep
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Table 3

Pose reproduction success rates for Astex single and multi sites

Sitea Size Groupb Sourcec Docking success (%) Sampling success (%)

stdd syme std sym

a single (x) 84 SB ASTEX PDB 72.4 76.4 91.2 94.1

b single (m) 84 SB ASTEX PDB 66.0 74.2 91.7 94.1

c single (o) 85 SB ASTEX SUP 62.8 70.3 89.4 90.3

d single (o) 85 RU ASTEX SUP 61.4 65.2 83.5 85.9

e multi (o) 147 SB ASTEX SUP 66.3 72.5 91.2 91.9

f multi (o) 147 RU ASTEX SUP 62.4 66.0 85.3 87.3

a
Single = first site in pdb, multi = all viable sites, single (x) = crystallographic starting ligand coordinates, single (m) = minimized starting ligand

coordinates, single (o) and multi (o) = organizer supplied ligand coordinates

b
SB Stony Brook Group, RU Rutgers University Group

c
ASTEX PDB = built from PDB, ASTEX SUP = built from supplied structures

d
std standard pairwise rmsd

e
sym symmetry corrected rmsd using Hungarian matching algorithm. All results averaged over five DOCK runs using different random seeds
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Table 4

Rmsd statistics for Astex single and multi sites

Sitea Size Groupb Sourcec rmsd (Å)

Min Max Mean SD Median

Single (x) 84 SB ASTEX PDB 0.14 12.31 1.53 2.05 0.61

Single (m) 84 SB ASTEX PDB 0.21 13.16 1.88 2.23 0.96

Single (o) 85 SB ASTEX SUP 0.21 13.44 2.32 2.68 1.15

Single (o) 85 RU ASTEX SUP 0.24 15.25 2.29 2.72 1.03

Multi (o) 147 SB ASTEX SUP 0.21 13.44 2.23 2.64 1.03

Multi (o) 147 RU ASTEX SUP 0.24 15.25 2.16 2.61 0.92

a
Single = first site in pdb, multi = all viable sites, single (x) = crystallographic starting ligand coordinates, single (m) = minimized starting ligand

coordinates, single (o) and multi (o) = organizer supplied ligand coordinates

b
SB Stony Brook Group, RU Rutgers University Group

c
ASTEX PDB = built from PDB, ASTEX SUP = built from supplied structures
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Table 5

Pose reproduction statistics for different clustering protocols using grid scoring for the single site set (N = 85)

Ensemble sizea Clustering cutoff Rmsd (Å) Sampling success (%)

Min Max Mean SD Median

32 None 0.16 8.54 1.36 1.59 0.68 78.8

32 1 Å 0.21 8.50 1.23 1.41 0.72 83.5

All None 0.16 6.38 0.97 0.98 0.61 89.4

All 1 Å 0.21 6.38 1.03 0.96 0.68 88.2

a
Data from RU/ASTEX SUP docking runs. Single site set
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Table 6

Astex pose reproduction statistics of the rmsds of the top scored poses

Score Sourcea Rmsd (Å)

Type Min Max Mean SD Median Success (%)

a Grid ASTEX SUP sym 0.24 15.25 2.16 2.61 0.92 68.0

b Nothing ASTEX AMB sym 0.21 18.46 3.26 4.41 1.00 67.3

c Ligand ASTEX AMB sym 0.18 17.21 2.88 4.06 1.07 69.4

d Distance ASTEX AMB sym 0.15 39.18 4.26 5.49 1.46 56.5

e Grid ASTEX SUP drmsd 0.04 2.30 0.41 0.36 0.32

f Nothing ASTEX AMB drmsd 0.04 2.97 0.45 0.44 0.35

g Ligand ASTEX AMB drmsd 0.02 3.11 0.48 0.50 0.30

h Distance ASTEX AMB drmsd 0.04 2.45 0.49 0.46 0.31

a
Data from RU/ASTEX SUP docking runs and RU/ASTEX AMB rescoring runs. Multi site set (N = 147)
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Table 7

Astex pose reproduction statistics of the numbers of receptor residues for the multi site set and a
computationally inexpensive subset of nine binding sites

Residue cutoff Count Min Max Mean SD Median Mode

~2 Å movablea 147 1 7 2.6 1.6  2 1

All residuesa 147 131 2,778 822 615 622 2,778

~2 Å movableb  9 1 6 1.8 1.6  1 1

3 Å movableb  9 28 54 41.9 7.7  42 None

All residuesb  9 131 515 350 117 344 None

a
All sites in the set

b
Computationally inexpensive subset (see text for definition)
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Table 8

Astex pose reproduction rmsds of the top scored poses for a computationally inexpensive subset of nine
systems

System rmsd (Å)

Ligand Distance 2 Å Distance 3 Å

1n2v  1.44  1.49 10.92

1oq5 13.27 14.24  2.67

1pmn 14.64  7.34  9.39

1tow  1.10  0.62  1.28

1tt1  0.89  0.89  1.07

1uou 14.72 14.16 16.46

1x8x  0.29 10.46 12.70

1y6b  2.79  2.98  6.07

1yqy 12.98 11.13 11.46
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Table 9

RMSD of the top scored ligand pose and number of poses with rmsd less than 2.0 Å for grid, Amber, and
LMOD score for select poses from a subset of 19 systems, along with overall scoring and sampling success
percentages

System N poses Top scored pose rmsd (Å)a No. of poses with rmsd < 2 Åb

Grid Amber LMOD Grid Amber LMOD

1gm8 26  3.02  3.16 2.96  4  4  1

1ke5 34  0.41  0.34 0.49 15 15 16

1l2s 33  0.74  0.74 1.33 13 13 15

1n2v 26  2.19  1.91 2.75 15 15  7

1oq5 40  3.93 14.60 3.87 10  5  5

1pmn 30  7.77 15.25 4.45  0  0  0

1sj0 23 11.67 11.67 0.75  0  0  2

1tow 25  0.65  0.65 6.35  5  5  5

1tt1 34  1.03  0.51 0.75 15 15 15

1uml 30  2.04 12.48 1.41  4  4  4

1uou 40  2.56 15.09 0.79 10  6 18

1v0p 23  0.74  1.55 1.57 19 19 19

1v48 40  0.92  0.95 0.47 20 20 22

1x8x 34  0.64  0.64 3.72 18 18 22

1xoz 30  6.99  6.60 0.24  4  4  4

1y6b 30  2.75  3.07 2.76  0  0  0

1yqy 31  0.47 13.40 3.84 10 10 10

1ywr 36  2.09  0.51 0.69 18 18 22

1z95 40  0.40  0.48 0.27 20 20 23

No. of success  9 10 11 16 16 17

% success 47.37 52.63 57.89 84.21 84.21 89.47

a
Rmsd < 2.0 Å indicates docking success

b
Number of poses in the top 32 with rmsd < 2.0 Å (>0 indicates sampling success). All results from RU/ASTEX SUP docking (grid) runs and RU/

ASTEX AMB rescoring (Amber, LMOD) runs. Amber score used nothing movable protocol
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Table 10

Average ligand rmsd (Å) and standard deviation for the top 5 scored poses according to grid, Amber, and
LMOD scores

Structure Avg rmsd (Å)

Grid Ambera LMOD

1gm8  3.13 ± 0.09  3.11 ± 0.08 2.96 ± 0.00

1ke5  0.38 ± 0.04  0.34 ± 0.04 0.47 ± 0.04

1l2s  1.05 ± 0.17  1.12 ± 0.20 1.32 ± 0.02

1n2v  1.97 ± 0.15  1.61 ± 0.22 2.64 ± 0.22

1oq5  3.90 ± 0.05 15.19 ± 0.36 1.75 ± 1.06

1pmn  7.43 ± 0.95 11.79 ± 2.49 7.09 ± 1.59

1sj0 11.80 ± 0.26 11.80 ± 0.26 1.79 ± 0.84

1tow  2.56 ± 2.39  2.87 ± 2.72 5.94 ± 0.49

1tt1  0.86 ± 0.23  0.86 ± 0.23 0.70 ± 0.25

1uml  1.88 ± 0.15 10.63 ± 2.13 2.91 ± 1.19

1uou  2.57 ± 0.03 14.29 ± 0.41 0.88 ± 0.10

1v0p  1.27 ± 0.44  1.38 ± 0.32 1.47 ± 0.32

1v48  0.75 ± 0.15  0.99 ± 0.06 0.71 ± 0.20

1x8x  0.58 ± 0.11  0.52 ± 0.12 1.26 ± 1.23

1xoz  7.09 ± 0.26  6.87 ± 0.62 1.36 ± 0.64

1y6b  2.89 ± 0.14  2.97 ± 0.18 2.90 ± 0.13

1yqy  0.50 ± 0.07 11.82 ± 1.41 1.65 ± 1.10

1ywr  1.18 ± 0.72  0.52 ± 0.02 0.52 ± 0.13

1z95  0.40 ± 0.01  0.45 ± 0.03 0.30 ± 0.03

Overall avg  2.75  5.22  2.03

a
Amber score with nothing movable protocol
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Table 11

Global enrichment (total AUC) for native and semi-random pairings

AUCa Native pairing Semi-random pairing

DUD lig WOMBAT lig DUD lig WOMBAT lig

PDB SUP PDB SUP PDB SUP PDB SUP

Avg 0.60 0.59 0.42 0.45 0.48 0.46 0.39 0.40

SD 0.17 0.17 0.17 0.16 0.18 0.17 0.15 0.15

Median 0.56 0.56 0.41 0.50 0.48 0.46 0.41 0.44

Max 0.96 0.90 0.60 0.61 0.84 0.85 0.61 0.62

Min 0.29 0.21 0.13 0.16 0.15 0.10 0.08 0.09

a
Total AUC calculated using FPR and TPR [0, 1]
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