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Abstract
The clinical utility of myocardial perfusion MR imaging (MPI) is often restricted by the inability
of current acquisition schemes to simultaneously achieve high spatio-temporal resolution, good
volume coverage, and high signal to noise ratio. Moreover, many subjects often find it difficult to
hold their breath for sufficiently long durations making it difficult to obtain reliable MPI data.
Accelerated acquisition of free breathing MPI data can overcome some of these challenges.
Recently, an algorithm termed as k − t SLR has been proposed to accelerate dynamic MRI by
exploiting sparsity and low rank properties of dynamic MRI data. The main focus of this paper is
to further improve k − t SLR and demonstrate its utility in considerably accelerating free breathing
MPI. We extend its previous implementation to account for multi-coil radial MPI acquisitions. We
perform k − t sampling experiments to compare different radial trajectories and determine the best
sampling pattern. We also introduce a novel augmented Lagrangian framework to considerably
improve the algorithm's convergence rate. The proposed algorithm is validated using free
breathing rest and stress radial perfusion data sets from two normal subjects and one patient with
ischemia. k − t SLR was observed to provide faithful reconstructions at high acceleration levels
with minimal artifacts compared to existing MPI acceleration schemes such as spatio-temporal
constrained reconstruction (STCR) and k − t SPARSE/SENSE.

1. Introduction
Myocardial perfusion MRI (MPI) is a promising tool to non invasively detect and evaluate
ischemic disease. The slow nature of MRI acquisitions often makes it difficult to
simultaneously achieve high spatio-temporal resolution, good volume coverage, and high
signal to noise ratio in MPI. Moreover, the breath hold demands during MPI are often long.
This can be challenging for patients with arrhythmias, and/or impaired respiratory function,
pediatric subjects, especially during stress. Accelerating free breathing MPI acquisitions can
improve the above trade offs. In addition, acceleration can also enable high resolution
systolic imaging and ungated imaging which have shown some advantages (Shin et al.,
2010; Radjenovic et al., 2010; DiBella et al., 2012). Classical schemes to accelerate dynamic
MRI exploit the redundancy of the dynamic data in the Fourier domain (spatial-spectral or (x
− ƒ) space). Several such schemes such as k − t BLAST (Gebker et al., 2007 Dec) have been
applied to improve breath held myocardial perfusion MRI. Multi-coil variants (Kellman et
al., 2004; Plein et al., 2007), and compressed sensing schemes (Otazo et al., 2010) have also
been developed. However, the direct extension of these schemes to operate in a free
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breathing regime is not straightforward. Specifically, the modulation of the signal by
breathing motion significantly increases the temporal bandwidth, which reduces the x − ƒ
space sparsity. This often limits the maximum achievable acceleration. One approach to
address this is to use principal component models that adapt to the free breathing MPI
signal. This allows the signal to be represented by fewer coefficients when compared to the
classical model based x − ƒ approaches, hence permitting signal reconstruction at higher
accelerations. The early versions of these schemes relied on a two-step reconstruction
strategy (eg:(Liang, 2007),(Pedersen et al., 2009)). These methods first estimate the
temporal basis functions (or the principal components) from fully sampled low resolution
“training data” using principal component analysis (PCA). In the second step, they estimate
the coefficients of these temporal basis functions by fitting the model to the undersampled k-
space measurements. The main challenge with these two-step schemes is that they are
associated with trade-offs between the sampling density in central and higher k-space
regions, which manifests as a compromise between accurate modeling of temporal dynamics
and efficient suppression of spatial artifacts (Lingala et al., 2011).

The above mentioned two-step PCA-based methods have been recently reinterpreted as
heuristic algorithms to recover a low rank matrix from its undersampled measurements. This
reinterpretation has allowed the introduction of efficient single-step recovery schemes (eg.
incremented rank power factorization (IRPF) algorithm (Haldar and Liang, 2010) and the
spectral regularization framework (Lingala et al., 2011). Since these methods simultaneously
estimate the temporal basis functions and their coefficients from undersampled data, they are
capable of overcoming the trade-offs associated with earlier two step schemes. More
importantly, these algorithms are readily applicable to flexible sampling schemes such as the
use of radial or spiral trajectories, which are demonstrated to have several advantages. (Shin
et al., 2012; Adluru et al., 2009). We have shown that the joint use of the total variation
(TV) prior (as a sparsity penalty) along with the spectral prior (as a low rank penalty) further
improves the reconstructions (Lingala et al., 2011); the resulting algorithm was termed as k
− t SLR since it exploits the sparsity and low rank properties of dynamic data. Our studies in
(Lingala et al., 2011) however were based on retrospective resampling of a single coil
Cartesian MPI dataset. In this paper, we exploit the full power of the k−t SLR algorithm by
(a) extending it to account for multi-coil acquisitions and to handle different weights for TV
in space and time as done in (Adluru et al., 2009), (b) using radial k-space acquisitions, and
(c) introducing a novel augmented Lagrangian optimization framework to significantly
improve the convergence rate. To exploit the flexibility offered by radial sampling, we
customize the sampling pattern to the proposed algorithm using k − t radial sampling
experiments on multi-coil data. We use the improved k − t SLR algorithm to achieve quality
reconstructions from undersampled radial free breathing MPI datasets. Such acceleration
will enable the improvement of volume coverage. We design an experimental paradigm
wherein accelerated reconstructions are performed with the multi-coil k − t SLR algorithm
by considering subsets of the acquired radial data. The reconstructions are tested by
comparisons against the reference fully sampled datasets. We base our studies on rest and
adenosine stress datasets acquired from two normal subjects and one patient with
myocardial ischemia. We compare the k − t SLR reconstructions with STCR (spatio-
temporal constrained reconstruction) and k − t SPARSE with SENSE.

2. Theory
2.1. Low rank model representation

In first pass myocardial perfusion imaging, the temporal profiles of pixels corresponding to
specific anatomic regions (eg. myocardium, blood pool) are highly correlated. Hence, the
temporal profiles of the pixels in the dynamic dataset γ(x, t) can be expressed as a weighted
linear combination of few temporal basis functions υi(t):
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(1)

where ρi(x) represents the model coefficients and n the number of time frames. r is the
number of temporal basis functions and x = (x, y) is the spatial location. This model thus
accounts for the similarity between the time profiles of pixels in specific anatomic regions.
The above model implies that the temporal profiles of the pixels lie in a low-dimensional
space, which is equivalent to imposing a low-rank constraint on the Casorati matrix Γ
(Liang, 2007) (see Fig. 1 and Eq. 2). The columns of Γ corresponds to the images at
different time instants, while each row of Γ is the temporal profile of the corresponding
pixel:

(2)

where m denotes the number of voxels in each frame, and n is the total number of time
frames. The correlations among the pixel time series result in linear dependencies between
the rows of Γ thus resulting in the matrix having a low rank specified by r. Fig. 1 shows the
low rank model representations of fully sampled free breathing and breath held MPI
datasets. Note that the model is capable of adapting to motion induced intensity variations in
the free breathing data. Furthermore, it is also important to note that the number of basis
functions required to accurately represent the signal will increase with the motion-induced
temporal variations. The proposed k − t SLR algorithm jointly estimates the temporal basis
functions υi (t) and the spatial weights (ρi(x)) in Eq. 1 from the undersampled k − t
measurements in an iterative framework by solving a spectrally regularized problem; this
will be described in the next section.

2.2. Radial k − t SLR with parallel imaging
The undersampled radial acquisition of sensitivity weighted dynamic perfusion images can
be modeled as: b = (Γ) + n, where b is a concatenated vector containing the measured non-
Cartesian noisy k − t measurements for each coil. n is the additive white noise. Γ is the m ×
n Casorati matrix containing the dynamic data as defined in Eq. 2 (m is the total number of
pixels in a frame and n is the number of time frames). The operator  models the coil
sensitivity encoding as well as Fourier encoding on the specified radial trajectory. We
determine the radial sampling pattern that provides the best recovery with the k − t SLR
algorithm based on k − t sampling experiments using multi-coil data (section 3.3);
specifically, we employ a sampling scheme with golden ratio spacing between successive
radial rays.

We formulate the recovery of Γ as a spectral and sparsity regularized optimization problem
(Fig.2):

(3)

Here, the non-convex Schatten p-norm Φ(Γ) is the surrogate for the rank defined as:
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(4)

where σj are the singular values of Γ (elements of the diagonal matrix Σn×n) in the singular

value decomposition: . Ψ(Γ) is the spatio-temporal total variation
norm and is the surrogate for spatio-temporal smoothness of Γ defined as :

(5)

where ∇x, ∇y, ∇t are the difference operators along the x, y and t dimensions. The factor α
≥ 1 controls the relative weight of the temporal and spatial gradients, and ‖‖1 denotes the ℓ1
norm. λ1 and λ2 in Eq. 3 are the regularization parameters that control the balance between
the two norms and the data fidelity.

2.3. Fast augmented Lagrangian (AL) algorithm
The penalty terms in Eq. 3 are non-differentiable. Hence, the use of gradient based schemes
to solve Eq. 3 will result in prohibitively slow convergence. In addition, since a non-convex
spectral penalty is used, this approach can result in the solution being trapped in the local
minima of the criterion. To overcome these problems, we employ an augmented Lagrangian
(AL) optimization algorithm with continuation (Ramani and Fessler, 2011).

A variable splitting technique is used to reformulate the unconstrained optimization problem
in Eq. 3 to the constrained optimization problem in Eq. 6. This splitting enables us to
decouple the non-quadratic penalties from the quadratic data term; the complex problem is
decoupled into a sequence of simpler subproblems.

(6)

We now use the AL method to solve the above constrained optimization problem.
Specifically, the constraints are enforced using quadratic penalty terms and Lagrange
multiplier terms X and Y, as shown in the appendix. The strength of the quadratic penalty
terms are specified by β1 and β2, respectively. The main benefit in using the AL scheme is
that β1 and β2 does not have to be taken to ∞ to enforce the constraints; the algorithm
converges slowly when β1 and β2 are high. We show in the appendix that the AL scheme
simplifies to the algorithm shown below (also illustrated in Fig. 9). Note that the algorithm
involves the alternation between simple steps, which are implemented efficiently. The
pseudo code of the algorithm is given below:

Initialization: ; Σ0 is a matrix containing the
singular values of Γ0;
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 while (|costn − costn−1|/|costn| < 10−6) ; stopping rule (cost as defined in Eq. (3);

    Γn ←(A.1); regularized SENSE problem solved by conjugate gradients;

    Sn ←(A.2); singular value shrinkage;

    Tn ←(A.3); total variation shrinkage;

    Xn ←(A.4); linear update rule;

    Yn ←(A.5); linear update rule;

    if (|costn − costn−1|/|costn| < 10−1)

      β1 = β1 * 1.2, β2 = β2 * 1.2; continuation

    end

end

The algorithm employs a continuation strategy where the β1, β2 parameters are initialized to
small values, and are gradually incremented when the cost in Eq. (3) stagnates to a threshold
level of 10−1. This strategy is similar to homotopic like continuation schemes employed to
solve non convex problems (Trzasko and Manduca, 2009). We observed the continuation
scheme to be a key aspect in avoiding convergence to local minima solutions. The proposed
algorithm was implemented on a desktop system with 47 GB RAM, 24 core Intel Xenon
E5645 2.4 GHz processors, an NVDIA Tesla C2075 (5 GB RAM) graphical processing unit,
and Matlab R2012a 64 bit with Accelereyes Jacket v2.2. Jacket is a library that enables
computations on the GPU within Matlab using NVIDIA CUDA. Thanks to the fast
convergence of the AL scheme and the fast GPU computations, the reconstructions of large
multi-coil data sets (of sizes: [Nx × Ny × Nt × L : 256 × 256 × 60 × 4]) with the k − t SLR
algorithm takes about 1-2 minutes of run time. In this work we considered pre-interpolation
of the radial data onto Cartesian grid points that were within 0.5 unit of a measured sample.
This facilitated the use of Fast Fourier Transforms (FFTs) in the forward and backward
models of the iterative algorithm. We did not observe any noticeable change in the quality of
the reconstructions by using the preinterpolated data with FFTs when compared to using the
nonuniform radial data with NUFFTs, INUFFTs in the iterative algorithm, as also noted in
(Adluru et al., 2009) .

3. Materials and Methods
3.1. Multi-coil radial acquisition of free breathing myocardial perfusion data

Two normal subjects and one patient with cardiac disease were scanned at the University of
Utah, in accordance with the institutional review board. Data was acquired with a perfusion
radial FLASH saturation recovery sequence (TR/TE ≈ 2.6/1.2 ms, 3 slices per beat, flip
angle of 14 degrees, 2.3 × 2.3 × 8 mm voxel size, FOV: 280 mm2, Bandwidth 1002 Hz/
pixel) on a Siemens 3T Trio scanner (DiBella et al., 2011). 72 radial rays equally spaced
over π radians and with 256 samples per ray were acquired for a given time frame and a
given slice. These rays were acquired in an interleaved manner in subsets of 6 rays each.
The rays in successive frames were rotated by a uniform angle of π/288 radians, which
corresponded to a period of 4 across time (see Fig. 4) . Data was acquired with the Siemens
cardiac coil array and combined into four coils. For coil sensitivity estimation, the complex
valued k space measurements from each coil were averaged along time. From the resultant
time averaged image data, the complex valued sensitivity estimates were obtained by
dividing each component coil image by the root of sum of absolute squared intensities from
all the coils.

Rest data sets were acquired after a Gd bolus administration of 0.02 mmol/kg. Stress data
sets were acquired with an adenosine infusion, where 0.03 mmol/kg of Gd contrast agent
was injected after 3 minutes of infusion. A total of three rest and three stress data sets were
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used in this study. A SENSE based reconstruction with mild regularization based on spatio-
temporal total variation (TV) constraints was used to resolve residual aliasing in the
acquired data. The regularized SENSE reconstructions still contained background noise
which was denoised by using a block matching 4-D (BM4D) denoising filter (Maggioni et
al., 2011) - these denoised images formed the reference datasets.

3.2. Undersampled reconstruction with different algorithms
The acquisition described in the previous section had a compromise in the slice coverage (3
slices). In order to demonstrate that the slice coverage of such an acquisition could be
further increased, retrospective accelerated experiments were performed. Undersampled
reconstructions were performed by different reconstruction algorithms by considering
subsets of the measured data. Specifically, the performance of the k − t SLR, STCR (Adluru
et al., 2009), low rank, and k − t SPARSE/SENSE (Otazo et al., 2010) algorithms were
compared. The comparisons were done at various acceleration levels by considering
different numbers of subsets of the measured data that used 24 to 15 rays/frame. The quality
of these reconstructions were evaluated against the above reference datasets. All the
algorithms relied on the knowledge of coil sensitivities. STCR was implemented by
considering λ1 = 0 in k − t SLR. The low rank penalty based reconstruction was
implemented by considering λ2 = 0 in k − t SLR. k − t SPARSE/SENSE was implemented
by minimizing the l1 norm of the signal in the spatial-spectral (x − f) space. All the
algorithms were optimized for the regularization parameters that gave the maximum signal
to error ratio (SER) between the reconstructions and the reference data:

(7)

where n is the number of time frames. During this optimization, the SERROI metric was
evaluated only in a field of view that contained regions of the heart. This was motivated by
recent findings in (Bilen et al., 2010), and by our own experience in determining a
quantitative metric that best describes the accuracy in reproducing the perfusion dynamics in
different regions of the heart, and the visual quality in terms of preserving crispness of
borders of heart, and minimizing visual artifacts due to reconstructions. The details of
optimization of the regularization parameters in this work are described in the appendix
section.

3.3. Simulations to determine an optimal radial sampling trajectory
The quality of the reconstructed data is dependent on the specific sampling strategy. With
the objective of choosing a radial pattern that provides good recovery, the performance of
different sampling trajectories were studied. As described in section 3.1, the reference 72 ray
data sets were acquired using radial rays uniformly spaced within each frame, and uniform
rotations across frames. To simulate undersampling, subsets of the acquired data were
chosen based on the following three families of radial sampling trajectories (see Fig. 4):

i. uniform spacing of radial rays within a frame, with uniform rotations across
frames.

ii. completely random spacing of radial rays within a frame.

iii. golden ratio spacing of (π/1.618) between successive rays+.
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The performance of the low rank, STCR, k − t SLR reconstruction algorithms were
compared with each of the above sampling scenarios. The performance was studied at
different undersampling factors by considering 24, 21,18, 15 rays/frame.

3.4. Metrics used for quantitative comparison
The reconstructions of the different algorithms were quantitatively compared based on the
following three metrics (also see Fig. 7)

• Signal to Error ratio in a region of interest containing the heart (SERROI): As
described in Eq.(7), this metric gives a measure of overall accuracy in reproducing
the spatio-temporal dynamics in the regions of the heart.

• Normalized high frequency error metric (HFEN): The HFEN metric gives a
measure of the quality of fine features, edges, and spatial blurring in the images.
We adapt this metric from (Ravishankar and Bresler, 2011) which is defined as:

(8)

where LoG is a Laplacian of Gaussian filter that capture edges. We use the same
filter specifications as in (Ravishankar and Bresler, 2011): kernel size of 15 × 15
pixels, with a standard deviation of 1.5 pixels. We evaluate this metric in a square
region of interest containing the heart.

• Signal to error ratio of temporal curves in the left ventricle (SERTC): This metric
gives a measure of accuracy in reproducing the temporal dynamics in the left
ventricular blood pool and myocardium. It also quantifies temporal blurring. To
evaluate this metric consistently, the reference data sets were initially registered to
estimate the deformation maps that correspond to breathing motion. For
registration, we employed the non-rigid demons registration algorithm (Thirion,
1996) using the normalized cross correlation as the similarity metric. Starting from
the second frame, the deformations were obtained by matching the nth frame in the
moving sequence to the (n − 1)th frame of the deformed sequence. The deformation
maps were used to warp the reconstructions, after which the time intensity profiles
in the region of interest of left ventricular blood pool and myocardium region of
interests were evaluated. The SERTC metric is evaluated as:

(9)

where TC is an operator that extracts the time curves for a specified pixel in the left
ventricle; k is the total number of pixels in the left ventricle.  is an image warping
operator that applies the deformation maps corresponding to breathing motion to
the reconstructions.

+Since the rays from the 72 ray data were uniformly spaced, subsampling of rays was done such that they approximately follow the
golden angle distribution.
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3.5. Qualitative evaluation: clinical scoring
In addition to the quantitative validation, we also performed a qualitative analysis by
obtaining clinical scores from a cardiologist with 15 years of cardiac MRI experience. Image
quality and artifact assessment was performed on the reference images reconstructed from
the 72 ray acquisition, and on the k − t SLR images reconstructed from 24 ray subsampled
data. The grading scale was (5-1, highest quality to lowest quality). All the images were
presented as 4 image sets with each set containing time series of 3 slices for both stress and
rest. Image sets from a patient with decreased perfusion and from two normal subjects were
presented to the cardiologist in a blinded fashion in a random order.

4. Results
4.1. Convergence analysis

In Fig.3, the convergence behavior of the k − t SLR algorithm is shown. Here, undersampled
reconstructions were performed with golden ratio sampling using 24 rays/frame. As seen in
Fig.3, our previous implementation of k − t SLR (Lingala et al., 2011) that relied solely on
the increments of (β1, β2 towards ∞) had a slow convergence. In contrast, the proposed AL
method had a faster convergence, and did not require high values of β1, β2 for convergence.
The initial values of the continuation parameters were {β1, β2 = 103,105}, while the final
values (at convergence) with and without AL respectively were: {β1, β2 ≈ 106,108}, {β1, β2
≈ 109,1011}. From Fig.3, it can also be seen that the streaking artifacts were fully resolved
with the proposed k-t SLR algorithm.

4.2. Simulations to determine an optimal radial trajectory
The comparisons of different radial sampling methods are shown in Fig. 4. From the SER
plots, it is observed that the low rank method does not perform as well with uniform
sampling. This is expected since uniform sampling results in more repeated k-space
measurements at the same locations in k-space and has less incoherency. In contrast, the
STCR method is insensitive to the pattern, as long as the completely random pattern is not
used. When the low rank and total variation penalties are merged into k − t SLR, the golden
ratio patterns provide better results than the completely random sampling pattern or the
uniform pattern. This observation is consistent with the findings reported in the context of
standard compressed sensing (Chan et al., 2011),(Vasanawala et al., 2011). From these
simulations, the golden ratio sampling pattern was found to be optimal, and therefore was
used for undersampling in all the algorithms.

4.3. k − t SLR compared to other MPI acceleration schemes
In Fig. 5, the comparisons of MPI reconstructions using different algorithms from 21 ray
undersampled data are shown. These comparisons are from a rest acquisition on a normal
subject with breathing motion. The k − t SPARSE/SENSE method was observed to be
sensitive to the breathing motion, and yielded motion related artifacts as depicted both in the
temporal curves and the error images of Fig. 5 (b). The low rank reconstruction was more
robust to breathing motion, when compared to k − t SPARSE/SENSE. However, it had poor
temporal fidelity especially during the contrast uptake frames. This is depicted from
temporal curve blurring during contrast uptake, and also in the error images of Fig. 5(c).
STCR had better temporal fidelity, thus preserving contrast dynamics and motion. However
edge blurring and patchy artifacts were evident. The k − t SLR algorithm preserved the
temporal fidelity and had less smoothing of edges and less patchy artifacts as depicted in
Fig. 5(e). From this figure, it is also observed that the performance of k − t SLR is
comparable to that of STCR in the frames corresponding to contrast uptake. This is expected
since the presence of contrast makes the images more or less piece wise constant and the
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SNR high. However, k − t SLR provides better suppression of artifacts in the pre and post
contrast frames. Additionally, from Fig.5, it can be seen that the quantitative metrics
correlate well with the visual comparisons. Specifically in comparison to k − t SLR, the
SERTC metric were low with the k − t SPARSE/SENSE and low rank methods due to
temporal blurring, while the HFENROI metric in STCR was low due to spatial smoothing.
The SERROI metric was higher with k − t SLR than the other algorithms due to a better
overall image quality.

In Fig. 6, the comparisons of the algorithms on rest and stress data sets from a patient with
ischemia are shown. Under stress conditions, this patient exhibited a reduction in the uptake
of the contrast dynamics in the inferior wall of the myocardium. The patient was able to
breath normally during rest, however breathed heavily during stress. The reconstructions are
shown using 21 radial rays/frame. We observed similar trade offs amongst the methods.
Specifically, k − t SPARSE was sensitive to breathing, and the low rank method yielded
reduced temporal fidelity during contrast uptake. STCR showed patchy artifacts in some
frames, but was robust to motion. k − t SLR was robust to motion and had less patchy
artifacts. Similar to Fig. 5, all the quantitative metrics correlate well with the visual
observations.

Figure.7 summarizes the quantitative comparisons of all the algorithms across all the
datasets using 21 rays/frame. From this figure, it is observed that the performance of k − t
SLR was consistently better than the other algorithms across all the datasets.

4.4. Qualitative evaluation by a cardiologist
The clinical scores are presented in table 1. With the patient, the clinician was able to
identify the ischemia in the inferior myocardium wall in both the reference and k − t SLR
reconstructions (see Fig. 8). More specifically, he confidently identified reduced blood flow
in both the rest and stress scans of the reference data set. With the k − t SLR images, he
found the ischemic defect to be evident in the stress reconstruction, and border line positive
in the rest reconstruction. After looking at the delayed enhancement images, the clinician
classified these ischemic regions as infarction. With the normal subjects, the quality scores
of the k − t SLR reconstructions were in close agreement with the reference images. No dark
rim artifacts were observed in all the images. Slight residual streaking artifacts were present
with the k − t SLR method in one of the normal subjects. However, these artifacts were
outside the field of view of the heart, which the cardiologist was not very concerned about.

5. Discussion
In this study, the feasibility of k − t SLR in providing robust free breathing MPI
reconstructions at high acceleration levels was evaluated. This study considered
retrospectively accelerating free breathing MPI datasets that were acquired using 72 radial
rays/frame at 2.3 mm2 in plane resolution and 3 slices. The results of obtaining good fidelity
k − t SLR reconstructions from highly undersampled data suggest that k − t SLR could be
used to improve the slice coverage and the spatial resolution in a prospective acquisition.
For a reliable quantification of perfusion parameters from free breathing MPI data, it should
be noted that the breathing motion should be compensated. In this work, we used a basic
non-rigid registration algorithm to correct for the breathing motion, and analyzed the
temporal curves in the registered reconstructions. The results show that the temporal profiles
from the undersampled k − t SLR reconstructions match well with the temporal profiles
from the reference reconstructions. This suggests that the good temporal fidelity of the k − t
SLR reconstructions may lead to reliable estimation of quantitative perfusion parameters.
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All the reconstruction algorithms considered in this work were based on nonlinear
reconstruction strategies. Unlike the classical linear k-t reconstruction strategies, the
performance of these algorithms cannot be characterized by a single point spread function
(Blaimer et al., 2011). To analyze the performance of the nonlinear algorithms, this study
relied on quantitative metrics that gave a measure of overall spatio-temporal fidelity, image
sharpness, and temporal accuracy. Our comparisons against MPI accelerated schemes show
that the k − t SLR scheme is capable of reducing motion blurring and edge smoothing
artifacts. In general, the k − t SLR algorithm benefited from total variation sparsity
regularization in being robust to temporal and spatial smoothing. The STCR method
performed well in regions where the signal was piece wise constant both spatially and
temporally - or equivalently during peak contrast frames and datasets with less motion.
However, it was observed during the pre and post contrast frames, STCR yielded patchy
artifacts and edge blurring. In such scenarios, k − t SLR provided more robust and natural
textures and less edge blurring. During the peak contrast frames, the use of the low rank
regularizer alone yielded temporal blur, which was minimized with k − t SLR.

During this study, we observed that performance evaluation using the noisy SENSE based
reconstructions as reference datasets were not conclusive since the noise in these
reconstructions were higher than the subtle differences between the different reconstruction
methods. To address this, we denoised the SENSE based reconstructions using the block
matching 4D (BM4D) denoising algorithm. The BM4D algorithm is reported to give state of
the art denoising performance. The algorithm performs denoising by exploiting nonlocal
similarities of spatio- temporal patches. Since the BM4D algorithm is very different from all
the reconstruction algorithms considered in this work, the performance comparisons are free
from any bias. In addition, the BM4D algorithm has an automatic selection of parameters
based on the estimation of the noise level, which minimizes the risk of subjectivity.

During the review of the paper, it was suggested that breath held data sets from a second
injection could be used as reference ground truth images. The main challenge however
would be to perform a good registration between the undersampled free breathing
reconstructions and the breath held datasets for a head to head comparison; this is difficult
due to out of plane motion, especially when only a few slices are imaged. In addition, any
residual contrast from the first bolus may bias the comparisons. In this context, we believe
that the usage of the free breathing datasets as reference sets would better fit to the goals of
the current work.

In this study, optimization of λ1, λ2 in k − t SLR was performed with a fixed value of p = 0.1
and α = 4. The choices of p and α were motivated by empirical observations and worked
well in practice for free breathing MPI data. A thorough search in a 4-dimensional space of
p, α, λ1, λ2 could improve the k − t SLR reconstructions. The automatic tuning of
regularization parameters for iterative nonlinear reconstruction algorithms is an actively
researched area. There exists some strategies such as cross validation (Lukas, 2006), and
Stein unbiased risk estimator (SURE) methods (Ramani et al., 2012). In the future, we plan
to investigate the adaption of one of these methods to our setting.

The performance of all the nonlinear iterative reconstruction algorithms in this study were
evaluated based on quantitative metrics that gave measures of image sharpness, temporal
blurring, and overall mean square error. Recently, the resolution of reconstructed images
from nonlinear algorithms were characterized by determining the local point spread
functions at every image pixel (Wech et al., 2012). Such an analysis could be adapted to our
setting to characterize the resolution of the images from the different algorithms.
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The augmented Lagrangian optimization algorithm used in this study was found to provide
fast convergence. Speed up factors of about four were observed when compared to the
previous implementation of k − t SLR. In this study, we used a simple sum of squares
approach (Roemer et al., 2005) to estimate the coil sensitivities from time averaged data. In
the future, we plan to consider other extensions for better estimations such as moving
window approaches for time varying sensitivities, and/or joint estimation of the sensitivities
along with the reconstructions (Ying and Sheng, 2007).

The current study has limitations in that data from only three subjects were used for
analysis. To fully evaluate the clinical feasibility of k − t SLR and draw statistical
conclusions, a study with a cohort of patient datasets is needed with validation against gold
standard coronary x-ray angiography.

6. Conclusion
In this study, the feasibility of the low rank and sparse reconstruction algorithm (k − t SLR)
to accelerate free breathing myocardial perfusion MRI acquisition was demonstrated. The
algorithm was extended to include actual radial sampling for better incoherent artifact
distribution. Multi-coil sensitivity encoding data was used to improve data consistency. A
fast augmented Lagrangian (AL) optimization algorithm was introduced to provide fast
convergence. The AL scheme was observed to considerably reduce the computation time,
compared with the previous reported implementation of k − t SLR on in-vivo radial data.
Using k − t sampling experiments, it was shown that sampling patterns with golden ratio
spacing between successive rays provided the best reconstructions with the k − t SLR
algorithm. Comparisons on myocardial perfusion rest and stress data sets showed that k − t
SLR was able to achieve feasible reconstructions using few rays while being robust to
artifacts such as spatio-temporal and motion blurring.
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Refer to Web version on PubMed Central for supplementary material.
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8. Appendix

8.1. Augmented Lagrangian (AL) algorithm steps
In this section, the derivation of the AL subproblems is described. Referring to Eq. 6, the
constraints are enforced using Lagrange multiplier terms and quadratic penalties. The
resulting optimization objective (termed as the AL function) is specified by:
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(10)

where X, Y are matrices of Lagrange multipliers. β1 and β2 are the penalty parameters that
determine the equivalence of Eq. 10 to Eq. 6, and hence the original problem in Eq. 3. In our
earlier implementation (Lingala et al., 2011), we only relied on the quadratic penalty terms
in Eq. 10 (second line of Eq. 10) to enforce the constraints in Eq. 6 due to which β1 and β2
were tended to ∞ and resulted in slow convergence. The main advantage of using the
Lagrange terms (last line of Eq. 10) rather than enforcing the constraints using penalties
alone is that the parameters β1, β2 need not tend to ∞ for the constraints in Eq. 6 to hold,
which allows for a faster convergence.

All the five variables in Eq. 10 are estimated using an alternating minimization algorithm.
Specifically, we minimize the AL objective function in Eq. 10 alternately with respect to
one variable at a time, assuming the other to be fixed. This approach simplifies the original
problem to a sequence of well understood sub-problems. These subproblems are shown in
Fig.9. In essence, the algorithm cycles through: (a) regularized SENSE problem solved by
conjugate gradient algorithm, (b) singular value shrinkage, (c) total variation shrinkage, and
(d,e) linear update rules of the Lagrange multipliers. Additionally, a continuation strategy is
employed where the parameters β1 and β2 are initialized with small values and are gradually
incremented. This continuation strategy was observed to be a key aspect in avoiding
convergence to local minima (Hu et al., 2012).

8.2. Choosing the regularization parameters
The k − t SLR algorithm depends on four parameters: λ1, λ2, α, p. Since it is impractical to
tune for these parameters in a four dimensional space, we restrict ourselves to a simpler
approach. The values of p and α were fixed to p = 0.1 and α = 4 based on empirical
observations on free breathing MPI data. With the fixed values of α, p, we tune for λ1, λ2 in
a 2D space. We tuned for λ1, λ2 for the rest and stress datasets from a single subject. The
parameter optimization is shown in Fig. 10, where a rest dataset is recovered using 21 radial
rays/frame. The SERROI plot in Fig. 10 was evaluated for the values of λ1, λ2 in the window:

. The optimal
values of λ1, λ2 were chosen such that the SERROI was the maximum. The values of λ1, λ2
varied slightly for the rest and stress datasets. Since all the subjects were scanned with the
same protocol under shallow breathing, we used the same values of λ1, λ2 tuned for the first
subject for reconstruction of all the other datasets. The total time spent for tuning the
regularization parameters was approximately two hours.
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Figure 1.
The low rank Casorati matrix representation of dynamic data: The pixels in each spatial
frame of the dynamic data (a) are vectorized and represented column wise in the Casorati
matrix (b). This matrix is low rank (c) which enables the decomposition of the dynamic data
as a linear combination of few data derived orthogonal temporal bases (Eq. 1). Note from (d)
and (e), how the bases adapt to model the respiratory motion in the free breathing data (see
arrows in (d) that correspond to motion). Also note that the number of bases will increase
with the motion induced temporal variations.
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Figure 2.
k−t SLR with parallel MRI for accelerated imaging: The perfusion images are acquired
using multiple coils and radial sampling with golden angle ray spacing (a). k − t SLR
exploits the low rank and smooth spatio-temporal properties of perfusion data by utilizing
the non-convex Schatten p-norm (p<1) and the spatio-temporal total variation norm (b). The
reconstruction in (b) is formulated as a spectral and sparsity penalized optimization problem;
the coil sensitivity encoding in combination with radial sampling improves data consistency
in the formulation.
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Figure 3.
Convergence analysis: (a) Cost in Eq.3 v/s GPU run time, (b) Region of interest signal to
Error ratio (SERROI) as defined in Eq.7 in (dB) v/s GPU run time. From (a), (b), it can be
seen that k − t SLR has a faster convergence (by a factor of 4) with the augmented
Lagrangian (AL) algorithm in comparison to the previous implementation without the
Lagrange multiplier updates. The converged reconstruction in (b) show that the radial
streaking artifacts are fully resolved. The SERROI is evaluated in a square region of interest
containing the heart as depicted in (b).
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Figure 4.
Performance of different radial sampling schemes: The different k − t radial sampling
schemes along with the corresponding reconstructions are respectively shown in the first and
second rows. The third row shows the signal to error ratio plots for the reconstruction
algorithms at different acceleration rates. As seen from the third row, the golden ratio
sampling gave the best performance with all the algorithms. From the second row, with k − t
SLR, uniform sampling was suboptimal as the conditions of incoherent sampling were not
met. Random sampling was suboptimal since some regions of k-space are under-sampled.
The golden ratio sampling satisfied the requirements of incoherency and uniformity and was
found to be optimal.

Lingala et al. Page 18

Phys Med Biol. Author manuscript; available in PMC 2014 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Comparisons of different MPI algorithms on a rest dataset with breathing motion. Each row
shows the reconstructions, error images and time profile curves for the different algorithms.
The image frames in the first and second columns respectively correspond to the peak left
ventricular blood enhancement, and peak myocardial wall enhancement instants. The time
curves are shown after averaging the signal intensity of the blood pool and myocardial
regions (as denoted in (a)) for the registered reconstructions overlaid on the registered
reference data. The k − t SPARSE/SENSE method was sensitive to motion and resulted in
temporal blurring (see arrows in (b)). The low rank model yielded noise enhancement and
temporal blur due to ill-conditionness (arrows in (c)). STCR was relatively robust to motion,
however suffered from loss of resolution especially near the edges (see arrows in (d)). k − t
SLR was found to maintain a good compromise between spatial and temporal blurs.
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Figure 6.
Example comparisons of different MPI acceleration algorithms using rest (i) and stress (ii)
perfusion data from a patient with myocardial ischemia. The image frames in the first three
columns respectively correspond to peak right ventricular blood enhancement, transition
between right ventricle and left ventricle, and peak myocardial wall enhancement. During
stress, the patient showed reduced contrast uptake in the inferior myocardium wall due to
ischemia (see red arrows in (ii.a)). The time curves correspond to the regions depicted in i.a,
ii.a). The k − t SLR reconstructions were observed to be less sensitive to artifacts observed
with other methods. Specifically k-t SPARSE/SENSE yielded motion blur artifacts (see
arrows in i.b, ii.b, and the time curves), low rank method had some temporal blur especially
during peak contrast frames (see arrows in ii.c, ii.d, and the time curves). STCR exhibited
patchy artifacts (see arrows in (i.d) and (ii.d)). k − t SLR had better quality across all frames
in comparison to the other methods. We also observe that the regions of low contrast uptake
to be well preserved in the k-t SLR reconstructions.
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Figure 7.
Quantitative comparison of reconstructions from undersampled radial data (21 rays/frame)
using different algorithms.
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Figure 8.
Peak myocardial wall enhancement images from (a) reference (72 rays/frame), and (b) k−t
SLR (24 rays/frame) reconstructions. Subtle ischemic areas were identified by the
cardiologist in the inferior myocardial wall on the second slice in both the reconstructions
(see arrows in a,b). These regions were subsequently classified as infarcted regions from the
gadolinium enhancement observed in the delayed enhancement image (c).
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Figure 9.
The augmented Lagrangian frame work with the different sub problems. The original
problem in (3) is broken into a series of multiple simpler problems by using the augmented
Lagrangian framework. Specifically, the algorithm iterates between the steps of regularized
SENSE (that is solved by the method of conjugate gradient (CG)), singular value shrinkage,
shrinkage and update rules for Lagrange multipliers. These steps are all solved by simple
operations.
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Figure 10.
Tuning of the regularization parameters λ1 and λ2. The SER was evaluated in a field of view
containing the regions of the heart. The optimal parameters were chosen corresponding to
the region where the SER between the reconstruction and the reference data set was
maximum.
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Table 1
Quality scores from a cardiologist on three subjects

Subject id Reconstruction Rest Stress Presence of disease

Quality score Quality score

Subject 1 Reference 4 4 positive

Subject 1 k−t SLR 4 4 positive

Subject 2 Reference 4 4 negative

Subject 2 k−t SLR 3.75 3.75 negative

Subject 3 Reference 4 4 negative

Subject 3 k−t SLR 4 4 negative
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