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Abstract
We propose a novel blind compressive sensing (BCS) frame work to recover dynamic magnetic
resonance images from undersampled measurements. This scheme models the dynamic signal as a
sparse linear combination of temporal basis functions, chosen from a large dictionary. In contrast
to classical compressed sensing, the BCS scheme simultaneously estimates the dictionary and the
sparse coefficients from the undersampled measurements. Apart from the sparsity of the
coefficients, the key difference of the BCS scheme with current low rank methods is the non-
orthogonal nature of the dictionary basis functions. Since the number of degrees of freedom of the
BCS model is smaller than that of the low-rank methods, it provides improved reconstructions at
high acceleration rates. We formulate the reconstruction as a constrained optimization problem;
the objective function is the linear combination of a data consistency term and sparsity promoting
ℓ1 prior of the coefficients. The Frobenius norm dictionary constraint is used to avoid scale
ambiguity. We introduce a simple and efficient majorize-minimize algorithm, which decouples the
original criterion into three simpler sub problems. An alternating minimization strategy is used,
where we cycle through the minimization of three simpler problems. This algorithm is seen to be
considerably faster than approaches that alternates between sparse coding and dictionary
estimation, as well as the extension of K-SVD dictionary learning scheme. The use of the ℓ1
penalty and Frobenius norm dictionary constraint enables the attenuation of insignificant basis
functions compared to the ℓ0 norm and column norm constraint assumed in most dictionary
learning algorithms; this is especially important since the number of basis functions that can be
reliably estimated is restricted by the available measurements. We also observe that the proposed
scheme is more robust to local minima compared to K-SVD method, which relies on greedy
sparse coding. Our phase transition experiments demonstrate that the BCS scheme provides much
better recovery rates than classical Fourier-based CS schemes, while being only marginally worse
than the dictionary aware setting. Since the overhead in additionally estimating the dictionary is
low, this method can be very useful in dynamic MRI applications, where the signal is not sparse in
known dictionaries. We demonstrate the utility of the BCS scheme in accelerating contrast
enhanced dynamic data. We observe superior reconstruction performance with the BCS scheme in
comparison to existing low rank and compressed sensing schemes.

Index Terms
Dynamic MRI; undersampled reconstruction; blind compressed sensing

NIH Public Access
Author Manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 January 27.

Published in final edited form as:
IEEE Trans Med Imaging. 2013 June ; 32(6): 1132–1145. doi:10.1109/TMI.2013.2255133.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



I. Introduction
Dynamic MRI (DMRI) is a key component of many clinical exams such as cardiac,
perfusion, and functional imaging. The slow nature of the MR image acquisition scheme and
the risk of peripheral nerve stimulation often restricts the achievable spatio-temporal
resolution and volume coverage in DMRI. To overcome these problems, several image
acceleration schemes that recover dynamic images from undersampled k – t measurements
have been proposed. Since the recovery from undersampled data is ill-posed, these methods
exploit the compact representation of the spatio-temporal signal in a specified basis/
dictionary to constrain the reconstructions. For example, breath-held cardiac cine
acceleration schemes model the temporal intensity profiles of each voxel as a linear
combination of a few Fourier exponentials to exploit the periodicity of the spatio-temporal
data. While early models pre-select the specific Fourier basis functions using training data
(eg: [1]–[4]), more recent algorithms rely on compressive sensing (CS) (eg: [5]–[7]). These
schemes demonstrated high acceleration factors in applications involving periodic/quasi
periodic temporal patterns. However, the straightforward extension of these algorithms to
applications such as free breathing myocardial perfusion MRI and free breathing cine often
results in poor performance since the spatio-temporal signal is not periodic; many Fourier
basis functions are often required to represent the voxel intensity profiles [8], [9]. To
overcome this problem, several researchers have recently proposed to simultaneously
estimate an orthogonal dictionary of temporal basis functions (possibly non-Fourier) and
their coefficients directly from the undersampled data [10]–[13]; these methods rely on the
low-rank structure of the spatio-temporal data to make the above estimation well-posed.
Since the basis functions are estimated from the data itself and no sparsity assumption is
made on the coefficients, these schemes can be thought of blind linear models (BLM). These
methods have been demonstrated to provide considerably improved results in perfusion
[13]–[15] and other real time applications [16]. One challenge associated with this scheme is
the degradation in performance in the presence of large inter-frame motion. Specifically,
large numbers of temporal basis functions are needed to accurately represent the temporal
dynamics, thus restricting the possible acceleration. In such scenarios, these methods result
in considerable spatio-temporal blurring at high accelerations [13], [17], [18]. The number
of degrees of freedom in the low-rank representation is approximately1 Mr, where M is the
number of pixels and r is number of temporal basis functions or the rank. The dependence of
the degrees of freedom on the number of temporal basis function is the main reason for the
tradeoff between accuracy and achievable acceleration in applications with large motion.

We introduce a novel dynamic imaging scheme, termed as blind compressive sensing
(BCS), to improve the recovery of dynamic imaging datasets with large inter-frame motion.
Similar to classical CS schemes [5]–[7], the voxel intensity profiles are modeled as a sparse
linear combination of basis functions in a dictionary. However, instead of assuming a fixed
dictionary, the BCS scheme estimates the dictionary from the undersampled measurements
itself. While this approach of estimating the coefficients and dictionary from the data is
similar to BLM methods, the main difference is the sparsity assumption on the coefficients.
In addition, the dictionary in BCS is much larger and the temporal basis functions are not
constrained to be orthogonal (see figure 1). The significantly larger number of basis
functions in the BCS dictionary considerably improves the approximation of the dynamic
signal, especially for datasets with significant inter-frame motion. The number of degrees of
freedom of the BCS scheme is Mk + RN − 1, where k is the average sparsity of the
representation, R is the number of temporal basis functions in the dictionary, and N is the
total number of time frames. However, in dynamic MRI, since M >> N the degrees of

1Assuming that the number of pixels is far greater than the number of frames, which is generally true in dynamic imaging
applications.
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freedom is dominated by the average sparsity k and not the dictionary size R, for reasonable
dictionary sizes. In contrast to BLM, since the degrees of freedom in BCS is not heavily
dependent on the number of basis functions, the representation is richer and hence provide
an improved trade-off between accuracy and achievable acceleration.

An efficient computational algorithm to solve for the sparse coefficients and the dictionary
is introduced in this paper. In the BCS representation, the signal matrix Γ is modeled as the
product Γ = UV, where U is the sparse coefficient matrix V is the temporal dictionary. The
recovery is formulated as a constrained optimization problem, where the criterion is a linear
combination of the data consistency term and a sparsity promoting ℓ1 prior on U, subject to a
Frobenius norm (energy) constraint on V. We solve for U and V Using a majorize-minimize
framework. Specifically, we decompose the original optimization problem into three simpler
problems. An alternating minimization strategy is used, where we cycle through the
minimization of three simpler problems. The comparison of the proposed algorithm with a
scheme that alternates between sparse coding and dictionary estimation demonstrates the
computational efficiency of the proposed framework; both methods converge to the same
minimum, while the proposed scheme is approximately ten times faster. We also observe
that the proposed scheme is less sensitive to initial guesses, compared to the extension of the
K-SVD scheme [19] to under-sampled dynamic MRI setting. It is seen that the ℓ1 sparsity
norm and Frobenius norm dictionary constraint enables the attenuation of insignificant
dictionary basis functions, compared with the ℓ0 sparsity norm and column norm dictionary
constraint used by most dictionary learning schemes. This implicit model order selection
property is important in the under sampled setting since the number of basis functions that
can be reliably estimated is dependent on the available data and the signal to noise ratio.

The proposed work has some similarities to [20], where a patch dictionary is learned to
exploit the correlations between image patches in a static image. The key difference is that
the proposed scheme exploits the correlations between voxel time profiles in dynamic
imaging rather than redundancies between image patches. The ℓ0 norm sparsity constraints
and unit column norm dictionary constraints are assumed in [20]. The adaptation of this
formulation to our setting resulted in the learning of noisy basis functions at high
acceleration factors. Similar to [21], the setting in [20] permits the reconstructed dataset to
deviate from the sparse model. The denoising scheme is well-posed even in this relaxed
setting since the authors assume overlapping patches; even if a patch does not have a sparse
representation in the dictionary, the pixels in the patch are still constrained by the sparse
representations of other patches containing them. Since there is no redundancy in our
setting, the adaptation of the above scheme to our setting may also result in alias artifacts.
Furthermore, the proposed numerical algorithm is very different from the optimization
scheme in [20], where they alternate between a greedy K-SVD dictionary learning algorithm
and a reconstruction update step admitting an efficient closed-form solution. We observe
that the greedy approach is vulnerable to local minima in the dynamic imaging setting.

The proposed BCS setup has some key differences with the formulation in [22], where the
recovery of several signals measured by the same sensing matrix is addressed; additional
constraints on the dictionary were needed to ensure unique reconstruction in this setting. By
contrast, we use different sensing matrices (sampling patterns) for different time frames,
inspired by prior work in other dynamic MRI problems [5], [8], [13]. Our phase transition
experiments show that we obtain good reconstructions without any additional constraints on
the dictionary. Since the BCS scheme assumes that only very few basis functions are active
at each voxel, this model can be thought of as a locally low-rank representation [17].
However, unlike [17], the BCS scheme does not estimate the basis functions for each
neighborhood independently. Since it estimates V from all voxels simultaneously, it is
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capable of exploiting the correlations between voxels that are well separated in space (non-
local correlations).

II. Dynamic MRI Reconstruction Using The BCS Model
A. Dynamic image acquisition

The main goal of the paper is to recover the dynamic dataset γ(x, t) : ℤ3 → ℂ from its under-
sampled Fourier measurements. We represent the dataset as the M × N Casorati matrix [10]:

(1)

Here, M is the number of voxels in the image and N is the number of image frames in the
dataset. The columns of Γ correspond to the voxels of each time frame. We model the
measurement process as

(2)

where, bi and ni are respectively the measurement and noise vectors at the ith time instants.
τi is an operator that extracts the ith column of Γ, which corresponds to the image at ti. F is
the 2 dimensional Fourier transform and Si is the sampling operator that extracts the Fourier
samples on the k-space trajectory corresponding to the ith time frame. We consider different
sampling trajectories for different time frames to improve the diversity.

B. The BCS representation
We model Γ as the product of a sparse coefficient matrix U M×R and a matrix V R×N, which
is a dictionary of temporal basis functions:

(3)

Here, R is the total number of basis functions in the dictionary. The model in (3) can also be
expressed as the partially separable function (PSF) model [10], [15]:

(4)

Here, ui(x) corresponds to the ith column of U and is termed as the ith spatial weight.
Similarly, Vi(t) corresponds to the ith row of V and is the ith temporal basis function. The
main difference with the traditional PSF setting is that the rows of U are constrained to be
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sparse, which imply that there are very few non-zero entries; this also suggests that few of
the temporal basis functions are sufficient to model the temporal profile at any specified
voxel. The over-complete dictionary of basis functions are estimated from the data itself and
are not necessarily orthogonal. In figure 1, we demonstrate the differences between BLM
(low-rank) and BCS representations of a cardiac perfusion MRI data set with motion. Note
that the sparsity constraint encourages the formation of voxel groups that share similar
temporal profiles. Since many more basis functions are present in the dictionary, the
representation is richer than the BLM model. The sparsity assumption ensures that the
richness of the model is not translated to increased degrees of freedom. The sparsity
assumption also enables the suppression of noise and blurring artifacts, thus resulting in
sharper reconstructions.

The degrees of freedom associated with BCS is approximately Mk + RN − 1, where k is the
average sparsity of the coefficients and R is the number of basis functions in the dictionary.
Since M >> N, the degrees of freedom in the BCS representation is dominated by the
average sparsity (k) and not the size of the dictionary (R), for realistic dictionary sizes. Since
the overhead in learning the dictionary is low, it is much better to learn the dictionary from
the under-sampled data rather than using a sub-optimal dictionary. Hence, we expect this
scheme to provide superior results than classical compressive sensing schemes that use fixed
dictionaries.

C. The objective function
We now address the recovery of the signal matrix Γ, assuming the BCS model specified by
(3). Similar to classical compressive sensing schemes, we replace the sparsity constraint by
an ℓ1 penalty. We pose the simultaneous estimation of U and V from the measurements as
the constrained optimization problem:

(5)

The first term in the objective function (5) ensures data consistency. The second term is the
sparsity promoting ℓ1 norm on the entries of U defined as the absolute sum of its matrix

entries:  is the regularization parameter, and c is a constant
that is specified apriori. The Frobenius norm constraint on V is imposed to make the
problem well posed; if this constraint is not used, the optimization scheme can end up with
coefficients U that are arbitrarily small in magnitude. While other constraints (e.g. unit norm
constraints on rows) can also be used to make the problem well-posed, the Frobenius norm
constraint along with the ℓ1 sparsity penalty encourages a ranking of temporal basis
functions. Specifically, important basis functions are assigned larger amplitudes, while un-
important basis functions are allowed to decay to small amplitudes. We observe that the
specific choice of c is not very important; if c is changed, the regularization parameter λ also
has to be changed to yield similar results.

D. The optimization algorithm
The Lagrangian of the constrained optimization problem in (5) is specified by:

(6)
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where η is the Lagrange multiplier.

Since the ℓ1 penalty on the coefficient matrix is a non differentiable function, we
approximate it by the differentiable Huber induced penalty which smooths the l1 penalty.

(7)

where, ui,j are the entries of U and ψβ(u) is defined as:

(8)

The Lagrangian function obtained by replacing the ℓ1 penalty in (6) by φβ is:

(9)

Note that φβ(U) is parametrized by the single parameter β. When β → ∞, the Huber induced
norm is equivalent to the original ℓ1 penalty. Other ways to smooth the ℓ1 norm have been
proposed (eg: [23]).

We observe that the algorithm has slow convergence if we solve for (5) with β → ∞. We
use a continuation strategy to improve the convergence speed. Note that the Huber norm
simplifies to the Frobenius norm when β = 0. This formulation (ignoring the constant c and
optimization with respect to η) is similar to the one considered in [24]; according to the [24,
Lemma 5], the solution of (9) is equivalent to the minimum nuclear norm solution. Here, we
assume that the size of the dictionary R is greater than the rank of Γ, which holds in most
cases of practical interest. Thus, the problem converges to the well-defined nuclear norm
solution when β = 0. Our earlier experiments show that the minimum nuclear norm solution
already provides reasonable estimates with reduced aliasing [13]. Thus, the cost function is
less vulnerable to local minimum when β is small. Hence, we propose a continuation
strategy, where β is initialized to zero and is gradually increased to a large value. By slowly
increasing β from zero, we expect to gradually truncate the small coefficients of U, while re-
learning the dictionary. Our experiments show that this approach considerably improves the
convergence rate and avoids local minima issues.

We rely on the majorize-minimize framework to realize a fast algorithm. We start by
majorizing the Huber norm in (9) as 2 [25]:

(10)

2Note that the right hand side of (10) is only guaranteed to majorize the Huber penalty φβ(U); it does not majorize the ℓ1 norm of U;
(as from (8) that ψβ(x) is lower than the ℓ1 penalty by 1/2β when |x| > 1/β. Similarly ψβ < |x|/2 when |x| < 1/β). This majorization in
(10) later enables us to exploit simple shrinkage strategies that exist for the ℓ1 norm; if the ℓ1 penalty were used instead of the Huber
penalty, it would have resulted in more complex expressions than in (16). For additional details, we refer the interested reader to [25].
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where L is an auxiliary variable. Substituting (10) in (9), we obtain the following modified
Lagrange function, which is a function of four variables U, V, L and η:

(11)

The above criterion is dependent on U, V, L, and η and hence have to be solved for all of
these variables. While this formulation may appear more complex than the original BCS
scheme (5), this results in a simple algorithm. Specifically, we use an alternating
minimization scheme to solve (11). At each step, we solve for a specific variable, assuming
the other variables to be fixed; we systematically cycle through these subproblems until
convergence. The subproblems are specified below.

(12)

(13)

(14)

We use a steepesct ascent rule to update the Lagrange multiplier at each iteration.

(15)

where ‘+’ represents the operator defined as (τ)+ = max{0,τ}, which is used to ensure the
positivity constraint on η (see (9)).

Each of the sub-problems are relatively simple and can be solved efficiently, either using
analytical schemes or simple optimization strategies. Specifically, (12) can be solved
analytically as:

(16)

Since the problems in (13) and (14) are quadratic, we solve it using conjugate gradient (CG)
algorithms.

Once  we see that η stabilizes. Hence, we expect (14) to converge quickly. In
contrast, the condition number of the U sub-problem is dependent on β. Hence, the
convergence of the algorithm will be slow at high values of β. In addition, the algorithm may
converge to a local minimum if it is initialized directly with a large value of β. We use the
above mentioned continuation approach to solve for simpler problems initially and
progressively increase the complexity. Specifically, starting with an initialization of V, the
algorithm iterates between (12) and (15) in an inner loop, while progressively updating β
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starting with a small value in an outer loop. The inner loop is terminated when the cost in (6)
stagnates. The outer loop is terminated when a large enough β is achieved. We define
convergence as when the cost in (6) in the outer loop stagnates to a threshold of 10−5. In
general, with our experiments on dynamic MRI data, we observed convergence when the
final value of β is approximately 1013 to 1015 times larger than the initial value of β.

III. Experimental Evaluation
We describe in sections (III. A-B) the algorithmic considerations of the proposed blind CS
framework. We then perform phase transition experiments using numerical phantoms to
empirically demonstrate the uniqueness of the blind CS framework (section III.C). We
finally compare the reconstructions of blind CS against existing low rank and compressed
sensing schemes using invivo Cartesian and radial free breathing myocardial perfusion MRI
datasets (section III.D).

A. Comparison of different BCS schemes
In this section, we compare the performance of the proposed scheme with two other
potential BCS implementations. Specifically, we focus on the rate of convergence and the
sensitivity to initial guesses of the following schemes:

• Proposed BCS: The proposed BCS formulation specified by (5) solved by
optimizing U and V using the proposed majorize-minimize algorithm; the
algorithm cycles through steps specified by (12)-(15).

• Alternating BCS: The proposed BCS formulation specified by (5) solved by
alternatively optimizing for the sparse coefficients U and the dictionary V.
Specifically, the sparse coding step (solving for U, assuming a fixed V) is
performed using the state of the art augmented Lagrangian optimization algorithm
[26]. The dictionary learning sub-problem solves for V, assuming U to be fixed.
This is solved by iterating between a quadratic subproblem in V (solved by a
conjugate gradient algorithm), and a steepest ascent update rule for η (similar to
(15)). The update of η ensures the Frobenius norm constraint on V is satisfied at the
end of the V sub-problem. Both of the sparse coding and dictionary learning steps
are iterated until convergence.

• Greedy BCS: We adapt the extension of the K-SVD scheme that was used for patch
based 2D image recovery [20] to our setting of dynamic imaging. This scheme
models the rows of Γ in the synthesis dictionary with temporal basis functions (as
in (4)). Specifically, it solves the following optimization problem:

(17)

where σn is the standard deviation of the measurement noise. Here the ℓ0 norm is used to
impose the sparsity constraints on the rows (indexed by k) of U. The number of nonzero
coefficients (or the sparsity level) of each row of U is given by j. The unit column norm
constraints are used on the elements of the dictionary to ensure well posedness (avoid
scaling ambiguity). Starting with an initial estimate of the image data given by the zero
filled inverse Fourier reconstruction Γinit, the BCS scheme in this setting iterates between a
denoising/dealiasing step to update U, V, and an image reconstruction step to update Γ. The
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denoising step involves dictionary learning and sparse coding with ℓ0 minimization. It
utilizes the K-SVD algorithm [19] which takes a greedy approach to update U and V. We
implemented the K-SVD algorithm based on the codes available at the authors webpage
[27]. The K-SVD implementation available online was modified to produce complex
dictionaries. For sparse coding, we used the orthogonal matching pursuit algorithm (OMP).
We used the approximation error threshold along with the sparsity threshold (upper bound
on j) in OMP. The approximation error threshold was set to 10−6. Our implementation also
considered the pruning step described in [19], [21] to minimize local minima effects.
Specifically, if similar basis functions were learnt, one of them was replaced with the voxel
time profile that was least represented. In addition, if a basis function was not being used
enough, it was replaced with the voxel time profile that was least represented. Other
empirical heuristics such as varying the approximation error threshold in the OMP algorithm
during the different iteration (alteration) steps may also be considered in the greedy BCS
scheme. In this work, we restrict ourselves to a fixed error threshold of 10−6 due to the
difficulty of tuning for an optimal set of different error threshold values for different
alteration steps.

In Fig. 2, we aim to recover a myocardial perfusion MRI dataset with considerable
interframe motion (Nx × Ny × Nt = 190 × 90 × 70) from its undersampled k – t measurements
using the above three BCS schemes. We considered a noiseless simulation in this
experiment for all the three BCS schemes. While resampling, we used a radial trajectory
with 12 uniformly spaced rays within a frame with subsequent random rotations across
frames to achieve incoherency. This corresponded to an acceleration of 7.5 fold. We used 45
basis functions in the dictionary. We compare the performance of the different BCS
algorithms with different initializations of the dictionary V. Specifically, we used
dictionaries with random entries, and a dictionary with the discrete cosine transform (DCT)
bases. To ensure fair comparisons, we optimized the parameters of all the three schemes:
(i.e, regularization parameter λ in the proposed and alternating BCS schemes, as well as the
sparsity level j in the greedy BCS scheme). These were chosen such that the normalized
error between the reconstruction and the fully sampled data was minimal. A sparsity level of
j = 3 was found to be optimal for the greedy BCS scheme. Further, in the greedy BCS
scheme, after the first iteration, we initialized the K-SVD algorithm with the dictionary
obtained from the previous iteration. We used the same stopping criterion in both the
proposed and alternate BCS schemes: the iterations were terminated when the cost in (6)
stagnated to a threshold of 10−5. All the algorithms were run on a linux work station with a 4
core Intel Xeon processor and 24 GB RAM.

From Fig. 2, we observe both the proposed and alternate BCS schemes to be robust to the
choice of initial guess of the dictionary. They converged to almost the same solution with
different initial guesses. However, the proposed BCS scheme converged to the solution
significantly faster (atleast by a factor of 10 fold) compared to the alternate BCS scheme.
From Fig. 2, we observe the number of iterations for both the proposed and the alternate
BCS schemes to be similar. However, since the alternate BCS scheme solves for the sparse
ℓ1 minimization problem fully during each iteration, it is more expensive than the proposed
BCS scheme. On an average, an iteration of the alternate BCS scheme was ≈ 10 slower than
an iteration of the proposed BCS scheme. From Fig. 2, we note the greedy BCS scheme to
converge to different solutions for different initial guesses. Additionally, as noted in Fig. 2
c.d, the reconstructions with the proposed BCS scheme were better than the reconstructions
with the greedy BCS scheme. Although the temporal dynamics were faithfully captured in
the greedy BCS reconstructions, it suffered from noisy artifacts. This was due to modeling
with noisy basis functions, which were learned by the algorithm from under sampled data
(see Fig. 3). Note that this scheme uses the unit column norm constraints which has all the
basis functions are ranked equally. In contrast, since the proposed scheme uses the ℓ1
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sparsity penalty and the Frobenius norm dictionary constraint, the energy of the learned
bases functions varied considerably (see Fig. 3). With the proposed scheme, the ℓ1
minimization optimization ensures that the important basis functions (basis functions that
are shared by several voxels) will have a higher energy. Similarly, the un-important noise-
like basis functions that play active roles in fewer voxels will be attenuated, since the

corresponding increase in  is small. Thus, the ℓ1 penalty-Frobenius norm combination
results in a model order selection, which is more desirable than the ℓ0 penalty-column norm
combination. This choice is especially beneficial in the undersampled case since the number
of basis functions that can be reliably recovered is dependent on the number of
measurements and the signal to noise ratio.

B. Choice of parameters
The performance of the blind CS scheme depends on the choice of two parameters:
regularization parameter λ and the number of bases in the dictionary R. Eventhough the
criterion in (5) depends on c, varying it results in a renormalization of the dictionary
elements and hence changing the value of λ. We set the value of c as 800 for both the
numerical and invivo experiments. We now discuss the behavior of the blind CS model with
respect to changes in λ and R.

1) Dependence on λ—We observe that if a low λ is used, the model coefficient matrix U
is less sparse. This results in representing each voxel profile using many temporal basis
functions. Since the number of degrees of freedom on the scheme depends on the number of
sparse coefficients, this approach often results in residual aliasing in datasets with large
motion. In contrast, heavy regularization results in modeling the entire dynamic variations in
the dataset using very few temporal basis functions; this often results in temporal blurring
and loss of temporal detail. In the experiments in this paper, we have access to the fully
sampled ground truth data. As depicted in figure 4 (a), we choose the optimal λ such that the
error between the reconstructions and the fully sampled ground truth data, specified by

(18)

is minimized. Furthermore, in invivo experiments with myocardial perfusion MRI datasets,
we optimize λ by evaluating the reconstruction error only in a field of view that contained
regions of the heart (ζROI, ROI: region of interest), specified by

(19)

This metric is motivated by recent findings in [28], and by our own experience in
determining a quantitative metric that best describes the accuracy in reproducing the
perfusion dynamics in different regions of the heart, and the visual quality in terms of
minimizing visual artifacts, and preserving crispness of borders of heart.

We realize that the above approach of choosing the regularization parameter is not feasible
in practical applications, where the fully sampled reference data is not available. In these
cases, one can rely on simply heuristics such as the L-curve strategy [29], or more
sophisticated approaches for choosing the regularization parameters [30], [31]. The
discussion of these approaches in this context are beyond the scope of this paper.
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2) Dependence on the dictionary size—In figure 4.b & 4.c, we study the behavior of
the BCS model as the number of basis functions in the model increase. We perform BCS
reconstructions using dictionary sizes ranging from 5 to 100 temporal bases. The plot the
reconstruction errors and the average number of non-zero model coefficients 3 as a function
of the number of basis functions are shown in figures 4.b & 4.c, respectively. We observe
that the BCS reconstructions are insensitive to the dictionary size beyond 20-25 basis
functions. We attribute the insensitivity to number of basis functions to the combination of
the ℓ1 sparsity norm and the Frobenius norm constraint on the dictionary (see Fig. 3). Note
that the number of basis functions that can be reliably estimated from under sampled data is
limited by the number of measurements and the signal to noise ratio, unlike the classical
dictionary learning setting where extensive training data is available. As discussed earlier
(section III.A), the ℓ1 sparsity norm and the Frobenius norm dictionary constraint allows the
energy of the basis functions to be considerably different. Hence, the optimization scheme
ranks the basis functions in terms of their energy, allowing the insignificant basis functions
(which models the alias artifacts and noise) to decay to very small amplitudes. Based on
these above observations, we fix the BCS dictionary size to 45 basis functions in the rest of
the paper. Note that since 45 < 70 = the number of time frames of the data, this is an
undercomplete representation. From figure 4 (c), we observe that the average number of non
zero model coefficients to be approximately constant (≈ 4 − 4.5) for dictionary sizes greater
than 20 bases. The BCS model is also compared to the blind linear model (low-rank
representation) in figures 4 (b & c). The number of non zero model coefficients in the blind
linear model grows linearly with the number of bases. This implies that the temporal bases
modeling error artifacts and noise are also learned as the number of basis functions increase.
This explains the higher reconstruction errors observed with the blind linear models as the
number of basis functions increase beyond a limit.

C. Numerical simulations
To study the uniqueness of the proposed BCS formulation in (5), we evaluate the phase
transition behavior of the algorithm on numerical phantoms. We generate dynamic
phantoms with varying sparsity levels by performing dictionary learning on a fully sampled
myocardial perfusion MRI dataset with motion (Nx × Ny × Nt = 190 × 90 × 70); i.e., M =
17100; N = 70. We use the K-SVD algorithm [19] to approximate the fully sampled Casorati

matrix ΓM×N as a product of a sparse coefficient matrix  and a learned dictionary

 by solving

(20)

Here, j denotes the number of non zero coefficients in each row of Uj. We set the size of the
dictionary as R = 45. We construct different dynamic phantoms corresponding to different
values of j ranging from (j = 1, 2, ..10) as Γj = Uj Vj. Few of these phantoms are shown in
figure 5. Note that the K-SVD model is somewhat inconsistent with our formulation since it
relies on ℓ0 penalty and uses the unit column norm constraint, compared to the ℓ1 penalty
and Frobenius norm constraint on the dictionary in our setting.

3Evaluated by performing the average of the number of non-zero coefficients in the rows of the matrix UM×R that was thresholded at
1 percent of the maximum value of U.
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We perform experiments to reconstruct the spatio-temporal datasets Γj from k – t
measurements that are undersampled at different acceleration factors. Specifically, we
employ a radial sampling trajectory with ‘l’ number of uniformly spaced rays within a frame
with subsequent random rotations across time frames; the random rotations ensure
incoherent sampling. We consider different number of radial rays ranging from l = 4, 8,
12, .., 56 to simulate undersampling at different acceleration rates. The reconstructions were
performed with three different schemes:

1. classical compressed sensing method, where the signal is assumed to be sparse in
the temporal Fourier domain (CS) [5].

2. the proposed blind CS method, where the sparse coefficients and the dictionary are
estimated from the measurements.

3. dictionary aware CS: this approach is similar to 1, except that the dictionary Vj is
assumed to be known. This case is included as an upper-limit for acheivable
acceleration.

The performance of the above schemes were compared by evaluating the normalized
reconstruction error metric ζ (18). All the above reconstruction schemes were optimized for
their best performance by tuning the regularization parameters such that ζ was minimal.

The phase transition plots of the reconstruction schemes are shown in figure 6. We observe
that the CS scheme using Fourier dictionary result in poor recovery rates in comparison to
the other schemes. This is expected since the myocardial perfusion data is not sparse in the
Fourier basis. As expected, the dictionary aware case (the exact dictionary in which the
signal is sparse is pre-specified) provides the best results. However, we observe that the
performance of the BCS scheme is only marginally worse than the dictionary aware scheme.
As explained before, most of the degrees of freedom in the BCS representation is associated
with the sparse coefficients. By contrast, the number of free parameters associated with the
dictionary is comparatively far smaller since the number of voxels is far greater than the
number of time frames. This clearly shows that the overhead in additionally estimating the
dictionary is minimal in the dynamic imaging scenario. This property makes the proposed
scheme readily applicable and very useful in dynamic imaging applications (e.g. myocardial
perfusion, free breathing cine), where the signal is not sparse in pre-specified dictionaries.

D. Experiments on invivo datasets
1) Data acquisition and undersampling—We evaluate the performance of the BCS
scheme by performing retrospective undersampling experiments on contrast enhanced
dynamic MRI data. We consider one brain perfusion MRI dataset acquired using Cartesian
sampling, and two free breathing myocardial perfusion MRI datasets that were acquired
using Cartesian sampling, and radial sampling respectively.

The myocardial perfusion MRI datasets were obtained from subjects scanned on a Siemens
3T MRI at the University of Utah in accordance to the institute's review board. The
Cartesian dataset was acquired under rest conditions after a Gd bolus of 0.02 mmol/kg. The
radial dataset was acquired under stress conditions where 0.03 mmol/kg of Gd contrast agent
was injected after 3 minutes of adenosine infusion. The Cartesian dataset (phase × frequency
encodes × time = 90 × 190 × 70) was acquired using a saturation recovery FLASH sequence
(3 slices, TR/TE =2.5/1.5 ms, sat. recovery time = 100 ms). The motion in the data was due
to improper gating and/or breathing; (see the ripples in the time profile in figure 7(c)). The
radial data was acquired with a perfusion radial FLASH saturation recovery sequence (TR/
TE 2.5/1.3 ms). 72 radial rays equally spaced over π radians and with 256 samples per ray
were acquired for a given time frame. The rays in successive frames were rotated by a
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uniform angle of π/288 radians, which corresponds to a period of 4 across time. The
acquired radial data corresponds to an acceleration factor of ≈ 3 compared to Nyquist. Since
this dataset is slightly under sampled, we use a spatio-temporal total variation (TV)
constrained reconstruction algorithm to generate the reference data in this case. We observe
that this approach is capable of resolving the slight residual aliasing in the acquired data.

The single slice brain perfusion MRI dataset was obtained from a multi slice 2D dynamic
contrast enhanced (DCE) patient scan at the University of Rochester. The patient had
regions of tumor identified in the DCE study. The data corresponded to 60 time frames
separated by TR=2sec; the matrix size was 128 × 128 × 60.

Retrospective downsampling experiments were done using two different sampling schemes
respectively for the Cartesian and radial acquisitions. Specifically, the Cartesian datasets
were resampled using a radial trajectory with 12 uniformly spaced rays within a frame with
subsequent random rotations across frames to achieve incoherency. This corresponds to a
net acceleration level of 7.5 in the cardiac data, and 10.66 in the brain data. Retrospective
undersampling of the cardiac radial data was done by considering 24 rays from the acquired
72 ray dataset. These rays were chosen such that they were approximately separated by the
golden angle distance (π/1.818). The golden angle distribution ensured incoherent k-t
sampling. The acquisition using 24 rays corresponds to an acceleration of ≈ 10.6 fold when
compared to Nyquist. This acceleration can be capitalized to improve many factors in the
scan (eg: increase the number of slices, improve the spatial resolution, improve quality in
short duration scans such as systolic or ungated imaging).

2) Evaluation of blind CS against other reconstruction schemes—We compare
the BCS algorithm against the following schemes:

• low rank promoting reconstruction using Schatten p-norm (Sp-N) (p = 0.1)
minimization [13].

• compressed sensing (CS) exploiting temporal Fourier sparsity [5]

We compared different low-rank methods including two step low rank reconstruction [10],
nuclear norm minimization [13], incremented rank power factorization (IRPF) [12], and
observed that the Schatten p-norm minimization scheme provides comparable, or even
better, results in most cases that we considered [32]. Hence we chose the Schatten p-norm
reconstruction scheme in our comparisons. For a quantitative comparison amongst all the
methods, we use the normalized reconstruction error metrics defined in (18, 19) and the high
frequency normalized error norm metric (HFEN). The HFEN metric was used in [20] to
quantify the quality of fine features, and the edges in the images, and is defined as:

(21)

where LoG is a Laplacian of Gaussian filter that capture edges. We use the same filter
specifications as in [20]: kernel size of 15 × 15 pixels, with a standard deviation of 1.5
pixels.

The comparisons on the Cartesian rest myocardial perfusion MRI dataset are shown in
figure 7. We observe that the frames with significant motion content and contrast variations
are considerably blurred with the low rank method. By contrast, the BCS scheme robustly
recovers these regions with minimum spatio-temporal blur. The BCS scheme is more robust
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than the CS scheme. Specifically the former is robust to breathing motion, while the CS
scheme results in motion blur (see arrows in figure 7 iv.e and iv.f).

Figure 8 shows the comparisons on the brain perfusion MRI dataset. We observe BCS to
retain the subtle details and edges of the various structures in the brain. It shows superior
spatio-temporal fidelity. In contrast, the CS and low rank schemes suffer from
spatiotemporal blurring artifacts as depicted in Fig. 8.

In figure 9, we compare the various reconstruction schemes on the radial data acquired
during stress conditions. We observe performance similar to figure 7. The low rank
reconstructions exhibit reduced temporal fidelity. The reduced fidelity can result in
inaccurate characterization of the contrast dynamics uptake. The CS reconstructions have
considerable spatio-temporal blur. In particular, the borders of the heart and the papillary
muscles are blurred with the CS scheme. By contrast, the blind CS scheme provides crisper
images and are robust to spatio-temporal blur.

IV. Discussion
We proposed a novel blind compressive sensing framework for accelerating dynamic MRI.
Since the dictionary is learned from the measurements, we observe superior reconstructions
compared to compressive sensing schemes that assume fixed dictionaries. Our numerical
simulations and phase transition plots show that the overhead in additionally estimating the
dictionary is only marginally higher than the case with known dictionary. This observation
is valid in the dynamic imaging context since the number of non-zero coefficients
(dependent on the number of pixels) is much higher than the size of the dictionary
(dependent on the number of time frames).

We have also drawn similarities and important distinctions between the BCS scheme and
blind linear models or low-rank methods. Our experiments show superior performance of
the BCS scheme in comparison to the blind linear model. Specifically, better temporal
fidelity, reduced spatial artifacts, sharper spatial features were distinctly observed with BCS
when compared to blind linear model. These improvements can be attributed to the richness
of the model in having an overcomplete set of learned temporal bases.

The proposed setting is fundamentally different from approaches that use dictionaries learnt
from exemplar data and use them to recover similar images. The proposed setting learns the
dictionaries jointly with the reconstruction directly from undersampled data. We observe the
learnt temporal basis functions to be heavily dependent on respiration patterns, cardiac rate,
timing of the bolus, gadolinium dosage, adenosine dosage, and the arterial input function
(see from Fig. 3). Since these patterns would vary from subject to subject, the dictionaries
learnt from the data at hand would be more beneficial in capturing subject specific patterns
than dictionaries learnt from a data base of images.

The comparison of the proposed algorithm against an alternating scheme to minimize the
same cost function, where the state of the art sparse coding scheme is alternated with
dictionary learning, demonstrates the computational efficiency of the proposed optimization
strategy. In addition, the proposed scheme is also seen to be fast and more robust to local
minima than the extensions to the greedy K-SVD dictionary learning scheme. More
importantly, the ability of the proposed scheme to accommodate Frobenius norm priors is
seen to be advantageous in the context of dictionary learning from under sampled data; the
number of basis functions that can be reliably learned is limited by the available
measurements and signal to noise ratio in this setting. Specifically, this Frobenius norm
constraint along with the ℓ1 sparsity norm results in an implicit model order selection, where
the insignificant basis functions are attenuated. We observe that the continuation approach in
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the majorize-minimize algorithm to be crucial in providing fast convergence. We plan to
investigate solving the BCS problem with the augmented Lagrangian approach as proposed
in [33], [34] to further improve the algorithm.

The quality of the BCS reconstructions depends on the sparsity regularization parameter λ.
In general, in our experiments, the optimal value of λ (based on the metrics in (18) and (19))
did not vary much across datasets acquired with the same protocol (eg: rest cardiac
perfusion MRI, shallow breathing datasets). So, in a practical setting, one could use the
same λ tuned for one dataset (based on ground truth data) to recover other datasets from
undersampled data that are acquired with the same protocol.

The proposed scheme can be extended in several possible directions. For example, the BCS
signal representation can be further constrained by imposing the sparsity of U in a fixed
transform domain (e.g. wavelet, total variation domain) to further reduce the degrees of
freedom. Since such priors are complementary to the redundancy between the intensity
profiles of the voxels exploited by BCS, their use can provide additional gains. This
approach is similar in philosophy to [13], where we demonstrated the utility in combining
low-rank models with smoothness priors. The adaptation of [35], where the authors used
dictionaries with three-dimensional atoms, may be better than the 1-D dictionaries used in
this work. Similarly, the use of motion compensation within the reconstruction scheme as in
[36], [37] can also improve the results. The algorithm was observed to provide good
performance with radial sampling trajectories. However, more work is required to evaluate
the performance of the algorithm with different sampling trajectories. Since these extensions
are beyond the scope of this paper, we plan to investigate these extensions in the future.

V. Conclusion
We introduced a novel frame work for blind compressed sensing in the context of dynamic
imaging. The model represents the dynamic signal as a sparse linear combination of
temporal basis functions from a large dictionary. An efficient majorize-minimize algorithm
was used to simultaneously estimate the sparse coefficient matrix and the dictionary. The
comparisons of the proposed algorithm with alternate BCS implementations demonstrate the
computational efficiency, insensitivity to initial guesses, and the benefits of combining ℓ1
sparsity norm with Frobenius norm dictionary constraints. Our phase transition experiments
using simulated dynamic MRI data show that the BCS framework significantly outperforms
conventional CS methods, and is only marginally worse than the dictionary aware case. This
makes the proposed method to be highly useful in dynamic imaging applications where the
signal is not sparse in known dictionaries. The validation of the BCS scheme on accelerating
free breathing myocardial perfusion MRI show significant improvement over low rank
models and compressed sensing schemes. Specifically, the proposed scheme is observed to
be robust to spatio-temporal blurring and is efficient in preserving fine structural details.
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Fig. 1.
Comparison of blind compressed sensing (BCS) and blind linear model (BLM)
representations of dynamic imaging data: The Casorati form of the dynamic signal Γ is
shown in (a). The BLM and BCS decompositions of Γ are respectively shown in (b) and (c).
BCS uses a large over-complete dictionary, unlike the orthogonal dictionary with few basis
functions in BLM; (R > r). Note that the coefficients/spatial weights in BCS are sparser than
that of BLM. The temporal basis functions in the BCS dictionary are representative of
specific regions, since they are not constrained to be orthogonal. For example, the 1st, 2nd
columns of UM×R in BCS correspond respectively to the temporal dynamics of the right and
left ventricles in this myocardial perfusion data with motion. We observe that only 4-5
coefficients per pixel are sufficient to represent the dataset.
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Fig. 2.
Comparison of different BCS schemes: In (a), we show the reconstruction error vs
reconstruction time for the proposed BCS, alternate BCS, and the greedy BCS schemes. The
free parameters of all the schemes were optimized to yield the lowest possible errors, while
the dictionary sizes of all methods were fixed to 45 atoms. We plot the reconstruction error
as a function of the CPU run time for the different schemes with different dictionary
initializations. The proposed BCS and alternating BCS scheme converged to the same
solution irrespective of the initialization. However, the proposed scheme is observed to be
considerably faster; note that the alternating scheme takes around ten times more time to
converge. It is also seen that the greedy BCS scheme converged to different solutions with
different initializations, indicating the dependence of these schemes on local minima.
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Fig. 3.
Model coefficients and dictionary bases. We show few of the estimated spatial coefficients
ui(x) and its corresponding temporal bases υi(t) from 7.5 fold undersampled myocardial
perfusion MRI data (data in Fig. 2). (a) corresponds to the estimates using the proposed BCS
scheme, while (b) is estimated using the greedy BCS scheme. For consistent visualization,
we sort the product entries ui(x)υi(t) according to their ℓ2 norm, and show the first 30 sorted
terms. Note that the BCS basis functions are drastically different from exponential basis
functions in the Fourier dictionary; they represent temporal characteristics specific to the
dataset. It can also be seen that the energy of the basis functions in (a) varies considerably,
depending on their relative importance. Since we rely on the ℓ1 sparsity norm and Frobenius
norm dictionary constraint, the representation will adjust the scaling of the dictionary basis
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functions υi(t) such that the  is minimized. Specifically, the ℓ1 minimization
optimization will ensure that basis functions used more frequently are assigned higher
energies, while the less significant basis functions are assigned lower energy (see υ25(t) to
υ30(t)), hence providing an implicit model order selection. By contrast, the formulation of
the greedy BCS scheme involves the setting of ℓ0 sparsity norm and column norm dictionary
constraint; the penalty is only dependent on the sparsity of U. Unlike the proposed scheme,
this does not provide an implicit model order selection, resulting in the preservation of noisy
basis functions, whose coefficients capture the alias artifacts in the data. This explains the
higher errors in the greedy BCS reconstructions in Fig. 2.
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Fig. 4.
Blind CS model dependence on the regularization parameter and the dictionary size: (a)
shows the reconstruction error (ζ) as a function of different λ in the BCS model. (b) and (c)
respectively show the reconstruction error (ζ) and the average number of non zero model
coefficients of the BCS and the BLM schemes as a function of the number of bases in the
respective models. As depicted in (a), we optimize our choice of λ such that the error
between the fully sampled data and the reconstruction is minimal. From (b), we observe that
the BCS reconstruction error reduces with the dictionary size and hits a plateau after a size
of 20 basis functions. This is in sharp contrast with the BLM scheme where the
reconstructions errors increase when the basis functions are increased. The average number
of BCS model coefficients unlike the BLM has a non-linear relation with the dictionary size
reaching saturation to a number of 4-4.5. The plots in (b) and (c) depict that the BCS scheme
is insensitive to dictionary size as long as a reasonable size (atleast 20 in this case) is chosen.
We chose a dictionary size of 45 bases in the experiments considered in this paper.
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Fig. 5.
The numerical phantoms Γj, which are used in the simulation study in figure 6. Here j is the
number of non zero coefficients (sparsity levels) at each pixel. The top and bottom rows
respectively show one spatial frame and the image time profile through the dotted white line.
Note that the sparse decomposition provides considerable temporal detail even for a sparsity
of one. This is possible since different temporal basis functions are active at each pixel.
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Fig. 6.
Phase transition behavior of various reconstruction schemes: Top row: Normalized
reconstruction error ζ is shown at different acceleration factors (or equivalently different
number of radial rays in each frame) for different values of j. Bottom row: ζ thresholded at 1
percent error; black represents 100 percent recovery. We study the ability of the algorithms
to reliably recover each of the data sets Γj from different number of radial samples in
kspace. The Γj, shown in Fig. 5 are the j sparse approximations of a myocardial perfusion
MRI dataset with motion. As expected, the number of lines required to recover the dataset
increases with the sparsity. The blind CS scheme outperformed the compressed sensing
scheme considerably. The learned dictionary aware scheme yielded the best recovery rates.
However due to a small over head in estimating the dictionary, the dictionary unaware (blind
CS) scheme was only marginally worse than the dictionary aware scheme.
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Fig. 7.
Comparison of the proposed scheme with different methods on a retrospectively
downsampled Cartesian myocardial perfusion data set with motion at 7.5 fold acceleration:
A radial trajectory is used for downsampling. The trajectory for one frame is shown in (i).
The trajectory is rotated by random shifts in each time frame. Reconstructions using
different algorithms, along with the fully sampled data are shown in (i) to (v). (a-b), (c), (d-
e), (f) respectively show few spatial frames, image time profile, corresponding error images,
error in image time profile. The image time profile in (c) is through the dotted line in (i.b).
The ripples in (i.c) correspond to the motion due to inconsistent gating and/or breathing. The
location of the spatial frames along time is marked by the dotted lines in (i.c). We observe
the BCS scheme to be robust to spatio-temporal blurring, compared to the low rank model;
eg: see the white arrows, where the details of the papillary muscles are blurred in the
Schatten p-norm reconstruction while maintained well with BCS. This is depicted in the
error images as well, where BCS has diffused errors, while the low rank scheme (iii) have
structured errors corresponding to the anatomy of the heart. The BCS scheme was also
robust to the compromises observed with the CS scheme; the latter was sensitive to
breathing motion as depicted by the arrows in iv.
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Fig. 8.
Comparisons of the different reconstructions schemes on a brain perfusion MRI dataset. The
fully sampled data in (a) is retrospectively undersampled at a high acceleration of 10.66. The
radial sampling mask for one frame is shown in (a), subsequent frames had the mask rotated
by random angles. We show a spatial frame, the image time series, and the corresponding
error images for all the reconstruction schemes. Note from (b,c), the low rank and CS
schemes have artifacts in the form of spatiotemporal blur; the various fine features are
blurred (see arrows). In contrast, the BCS scheme had crisper features, and superior
spatiotemporal fidelity. The reconstruction error and the HFEN error numbers were also
considerably less with the BCS scheme.
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Fig. 9.
Comparisons of different reconstruction schemes on a stress myocardial perfusion MRI
dataset with breathing motion: Retrospective sampling was considered by picking 24 radial
rays/frame from the acquired 72 ray data; the rays closest to the golden ratio pattern was
chosen. Few spatial frames, the corresponding image time profile, error frames, and error in
image time profile are shown for all the schemes. We specifically observe loss of important
borders and temporal blur with the low rank and CS schemes while the blind CS
reconstructions have crisper borders and better temporal fidelity. Also note from the
columns d,e,f that the errors in the BCS scheme are less concentrated at the edges, compared
to the other methods. This indicates that the edge details and temporal dynamics are better
preserved in the BCS reconstructions.
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