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Abstract
While epidemiologic and clinical research often aims to analyze predictors of specific endpoints,
time-to-the-specific-event analysis can be hampered by problems with cause ascertainment. Under
typical assumptions of competing risks analysis (and missing-data settings), we correct the cause-
specific proportional hazards analysis when information on the reliability of diagnosis is available.
Our method avoids bias in effect estimates at low cost in variance, thus offering a perspective for
better-informed decision-making. The ratio of different cause-specific hazards can be estimated
flexibly for this purpose. It thus complements an all-cause analysis. In a sensitivity analysis, this
approach can reveal the likely extent and direction of the bias of a standard cause-specific analysis
when the diagnosis is suspect. These two uses are illustrated in a randomized vaccine trial and an
epidemiologic cohort study respectively.

The study of life-threatening diseases typically relies on survival analyses to demonstrate the
impact of prognostic factors and the effect of a given intervention. One may gain precision
and acquire insight into the mechanism of action by conducting a more targeted competing
risks analysis of cause-specific endpoints.1;2 Traditional inference is then made through
models for cause-specific hazards – the instantaneous rate at which events of a specific type
occur – conditionally on surviving up to the observation time. We do not wish to interpret
these cause-specific hazards in terms of latent failure times, referring to the unrealistic
scenario where all other causes of death would have been removed, but instead view them as
driving forces of mortality, acting on each individual locally in time and in constant
competition with the other causes. As such, these hazards represent the internal mechanisms
underlying the observed mortality, while intuition into their practical implications can best
be obtained through derived cumulative incidence curves,3 as we have illustrated elsewhere
(figures 3 and 4).

While much is to be gained by this approach, precise assessment of cause-specific
information may be lacking due to practical, financial or ethical constraints. Epidemiologic
studies in industrialized countries are often based on separately obtained mortality data,
while cause-of-death errors on death certificates have been a longstanding issue.4;5;6;7;8Also,
studies in developing countries may not wish to invest in clinical autopsies.9 Imprecision in
the assessment of cause of death results in misclassification, introduces bias in effect
estimates, and undermines analytic power.10;11 This happens through an attenuation of the
exposure effect, which for a targeted intervention typically affects the event of interest much
more strongly than it affects the competing risk. Sarfati, Blakely and Pearce12 show that the
type of misclassification typically drives the bias: non-differential misclassification has less
impact than misclassification related to underlying factors (such as e.g. race).

We motivate our approach by illustrating the possible bias and power loss when
misclassification is present. We propose a general method for time-to-event analysis that
incorporates existing knowledge on the rate at which misclassified causes occur. The
method uses standard proportionality assumptions to remove bias from effect estimates,
allowing one to gain insight into the cause-specific structure of hazards. While estimators
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solve score equations, resampling strategies will yield variance estimators and hypothesis
tests. We show how an additional proportionality assumption can be made, and illustrate
bias removal. The method is used both for a primary analysis and as an additional sensitivity
analysis of data from the Gambia Pneumococcal Vaccine Trial and the Belgian
Interuniversity Research on Nutrition and Health-studies that suffer from known and
suspected misclassification respectively. General issues in applying the method are
discussed. The eAppendix provides supplementary materials addressing technical issues in
more detail.

Bias and power loss due to misclassification
As a simple illustration of the problems of bias and power loss due to misclassification,
consider a trial accruing 2543 patients uniformly over 2 years time, with an additional 4
years follow-up. Patients are randomized equally to treatment (X = 1) or control (X = 0).
Two causes of death occur with constant cause-specific baseline hazard; for cause 1, h1
equals 0.04 and for cause 0, h0 equals 0.06. Treatment affects both the cause-1-specific
hazard, lowering it by a factor exp( −0.3X), and the cause-0-specific hazard, increasing it by
a factor exp(0.1X). Patients in the control arm have 16% chance of a type-1 event during the
study, and 24% of a type-0 event. Under treatment this becomes 12% and 26%, respectively.
The study was sized to yield a power of 80% for detecting this effect on the cause-1-specific
hazard at the 5% significance level (a sample size calculation is provided in eAppendix).

Bias due to misclassification
The most important consequence of misclassification of cause-of-death is bias in cause-
specific analyses. With proportional cause-specific hazards on both causes 0 and 1 (in a
setting with and without misclassification of the death cause), we perform 10,000
simulations of the trial described above. If misclassification occurs, p1 = 60% of all true
cause-1 events are diagnosed as from cause 0, and p0 = 10% of true cause-0 events as from
cause 1. Such extreme rates were considered in a clinical trial by Jaffar et al. 10

Figure 1 shows boxplots of the estimates for the treatment effect on cause 1 (Fig. 1A) and
cause 0 (Fig. 1B). While unbiased estimation is confirmed in the absence of
misclassification (bottom boxplots), the presence of misclassification results in bias (top
boxplots): estimated effects on both causes are attenuated, contraindicating for example the
use of naive Wald tests or confidence intervals. An all-cause analysis will avoid such
effects, but its estimate has a possibly undesired marginal interpretation. The eAppendix
presents a more elaborate simulation study of the bias for standard cause-specific analyses at
various sample sizes and with various settings of misclassification rates, hazards and effect
sizes.

Power loss due to misclassification
In general, misclassification mixes cause-specific hazards within treatment groups leading to
bias, and changes the number of observed specific events. Both effects influence the power
and type I error rate of formal hypothesis tests. We compare the power of Wald tests from
standard all-cause proportional hazards analysis (based on mixed treatment effects) to that
from cause-specific proportional hazards analyses on either cause 0 or 1 (with estimates
influenced by possible misclassification). Table 1 shows empirical powers based on 10,000
simulations: in the absence of misclassification (first row) the all-cause analysis has much
lower power (10%) than the cause-1-specific assessment (79%) due to the extreme dilution
of the effect, when the two cause-specific effects go in opposite directions. For the cause-0-
specific analysis, the power is 24%. The second line of the table shows results when
misclassification is introduced (again p1 = 60% and p0 = 10%). This confirms that the power

Van Rompaye et al. Page 2

Epidemiology. Author manuscript; available in PMC 2014 January 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



of the all-cause analysis is unaffected by misclassification (10%), while the power of the
cause-1-specific analysis drops to 23%, making it virtually useless. The power of the
cause-0-specific analysis drops below that of the all-cause analysis to 5%. Further effects of
misclassification are described in the eAppendix.

In this paper, we propose a correction for the misclassification probabilities p0 and p1 that
avoids biased estimates and gains precision. It builds on a weighted logrank test by Van
Rompaye, Jaffar and Goetghebeur13 to regain significant power under quite general
assumptions, which becomes especially useful when events of interest are relatively rare and
are often misclassified as competing risks. This is common in developing countries, where
one cause appears against a high background mortality of diseases with overlapping signs
and symptoms (see for example Jaffar et al. 10), but equally in studies of elderly
populations14 or with rare, difficult-to-diagnose diseases.15 To allow correction for possible
confounders,we extend previous work to develop a complete cause-specific Cox model
incorporating known misclassification rates, with the goal of gaining precision and avoiding
bias in targeted estimation.

Theoretical framework
As in Goetghebeur and Ryan,16 we rely on the framework of cause-specific proportional
hazards to model possibly misclassified failure patterns. The corresponding partial
likelihood weights the observed competing failure types relative to their relevance for the
true cause-specific event rates. Without loss of generality, we restrict ourselves to two
possible causes of failure, which are possibly misclassified or may even be completely
unknown to yield missing causes of death (as in16).

Notation and model assumptions
We largely adopt notation from Van Rompaye, Jaffar and Goetghebeur,13 considering
failure types 1 (cause of interest) and 0 (other causes), where δi = k ∈ {0,1} indicates the
true (unobserved) type for individual i ∈ {1, …, n} and Fi the observed and possibly
misclassified type. Misclassification is indicated by the binary covariate Mi. Time until
failure Di is possibly censored to yield observed time Ti until failure or censoring. Censoring
is assumed to be non-informative17 and its occurence is indicated by Ci = 0, while observed
events have Ci = 1.

The model assumptions follow Van Rompaye, Jaffar and Goetghebeur,13 but now allow for
a multidimensional covariate space. We assume that a (possibly time-varying) covariate
vector Zi(t) acts proportionally on the type-1-specific hazard h1(t; Zi(t)), as does a second
(possibly overlapping) covariate vector Xi(t) on the type-0-specific hazard h0(t; Xi(t)):

Assumption 1

(1)

The effect of interest is thus represented by φ, while ρ represents the effect on the competing
risk. To adjust effect estimates for misclassification, we introduce an arbitrary link function
between the cause-specific baseline hazards h0 and h1:

(2)
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with e−ξ(t) the relative cause-specific hazard, as opposed to exp(φ) and exp(ρ), the cause-
specific relative hazards. This unconstrained link function allows one cause to appear more
during one period of time, and be less important thereafter. However, when deemed
appropriate, one can impose restrictions or make assumptions, such as proportional cause-
specific hazards.

Finally, the misclassification probabilities are assumed known. To simplify matters
(although extension is straightforward and sometimes needed4;18), we consider non-
differential misclassification rates, i.e. misclassification does not depend on covariates, but
can depend on the time of death and the true cause of death k:

Assumption 2

(3)

Typically 1 – p1(t) is called the sensitivity of the cause-of-interest diagnosis at time t and 1 –
p0(t) the specificity.

Estimating equations and methodology
For mathematical expressions and details of this section, we refer to the eAppendix. Under
assumptions 1 and 2 with time-varying e−ξ(t) a log partial likelihood l is constructed from the
conditional probabilities of an observed event of type f at time ti, given that one such event
was observed in the risk set Ri at that time. This likelihood deviates from the standard cause-
specific partial likelihood17 by using contributions from both types of event, and by using
weights reflecting the positive predictive value and one minus the negative predictive value
of the observed event type, conditional on the covariate values and time.

With known exp( −ξ(t)), both φ and ρ can be estimated from the score equations  and

. These equate the weighted covariate values for all failed individuals to the sum of
model-based expected covariate values in the respective risk sets. Weights are constructed to
conserve the balance between the various causes (imposed by e−ξ(t)). Without
misclassification (p0 = p1 = 0) the equations return to the standard solutions for the cause-
specific effects of Z(t) and X(t).

When the relative cause-specific hazard exp( −ξ (t)) is not known in advance, it can be
estimated. Partial likelihoods that condition on the event type (such as l) lose all information
on the contrast between event types and hence ξ(t). This can be resolved by conditioning on
just the occurrence of any type of event in the risk set at each observed failure time as
Dewanji did,19 leading to a more informative log partial likelihood l*. This however no
longer leads to the standard solutions in the absence of misclassification (p0 = p1 = 0), as
both types continue to contribute to l*

Following the approach by Goetghebeur and Ryan,16 we use the partial likelihood l to
jointly estimate φ and ρ in the standard manner, while adding an estimating equation for the
nuisance parameter ξ(t) from the partial likelihood l*. To allow for different causes
appearing with varying intensity over time, nonparametric estimation of ξ(t) using a kernel-
weighted version of l* is possible as in Van Rompaye, Jaffar and Goetghebeur.13 In our
analysis below of the Gambia Pneumococcal Vaccine Trial data, we rely on a localized
version of the full log-likelihood l*, using a Gaussian kernel. Together with the (φ, ρ)-
estimation this is iterated until convergence.
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The complexity associated with the non-parametric  prevents a closed-form estimator
for the variance matrix of the estimates. We therefore work with resampling-based
estimates, such as various types of jackknife estimates,20;21 or a parametric bootstrap
procedure for the covariance matrix.22 Below, we rely on the latter, fitting the model to the
data and then repeatedly simulating from the fitted event and censoring distributions,
applying the assumed misclassification rates.

An expression similar to the Breslow estimator for the baseline cumulative hazard is given
in the eAppendix. This exploits the fact that exp( −ξ(t)) explicitly gives the ratio between the
cause-specific baseline hazards to allow contributions from all observed event types. From
the resulting estimates one could derive various residuals such as the martingale, Cox-Snell
or Schoenfeld residuals.

In practice, simple parametric or piecewise constant models for ξ(t) will often combine
interpretational ease with sufficient flexibility. The parameters of such models can be
estimated by solving the corresponding score equations resulting from l*. In the following
section, we single out the simplest of such models, a constant ξ model.

A proportional relative cause-specific hazard setting
In various settings the additional constraint of proportionality of the cause-specific baseline
hazards is warranted, e.g. with stable diseases. We call this the time-constant ξ setting, and
technically make

Assumption 3′>

(4)

The solutions to the resulting joint estimating equations based on l and l* are consistent and
asymptotically normal, with a covariance matrix estimator that is given in the eAppendix. In
the remainder of this text, standard errors based on this expression will be called “model
based”. Because the expression for the covariance matrix is complex, the parametric models
could be misspecified and asymptotic properties may be hard to defend in finite samples;
here too, one may prefer one of the resampling-based estimates mentioned before.

Illustration of bias removal and efficiency
Returning to the simple example described above, where the relative cause-specific hazard is
constant at 3/2, we apply our method for time-constant ξ, using known misclassification
probabilities p0 = 0.1 and p1 = 0.6 to obtain corrected estimates. With reasonable starting
values, the iterative solution to the estimating equations typically converges in 2 or 3 steps.
To avoid running parametric bootstrap steps within the simulation steps, Wald tests here use
the model-based standard errors.

Figure 2 shows boxplots of the estimates, based on the same 10,000 simulated datasets used
in the introductory example. One finds the bias of the naive cause-specific estimates
removed by our method, at the cost of an increased variation. This reflects increased
uncertainty inherent to the problem of misclassification: the missing information can be only
partially recovered.

Since the bias starts to dominate the variance with increasing sample size, large samples will
favor our method because it has lower MSE than the naive approach, as was confirmed in
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simulations. The eAppendix presents a simulation-based examination of the exact balance of
variance and bias in various hazard and misclassification settings.

With constant relative cause-specific hazard exp( −ξ), the treatment effect on the all-cause
hazard h can be reconstructed as

(5)

This expression is virtually indistinguishable from the standard all-cause effect, with minor
differences arising from the constancy constraint on ξ(t). Hence the decomposition into
cause-specific information and the modelling of ξ does not come at the expense of precision.

Two applications
Use of the proposed methodology as a primary analysis

We revisit the Gambia Pneumococcal Vaccine Trial,23 also analyzed by Van Rompaye,
Jaffar and Goetghebeur,13 which studied 17,433 children born between September 1999 and
the beginning of 2003, to assess the impact of vaccination against pneumococcal infection
on mortality from acute lower-respiratory-tract infections.24 Vaccination usually took place
between 40 and 400 days of age at a median of 75 days; 8,715 children were randomized to
vaccine (for a total follow-up time of 16,390 person years) and 8,718 to placebo (total
follow-up time 16,340 person years). Follow-up stopped in April 2004, with a median
follow-up of 722 days and a maximum follow-up of 888 days. By that time, 491 deaths were
observed in the control and 426 in the treatment arm. Of these 917 deaths, 186 were
classified as due to acute infection of the respiratory tract (99 under control and 87 under
treatment), and the rest as other causes. Verbal autopsy determined cause-of-death,9 with
low expected sensitivity (40%) and specificity (90%).10 While the focus of the trial is the
vaccine effect, Jaffar and colleagues25 were interested in the cause-specific patterns of infant
and childhood mortality by cause.

Van Rompaye, Jaffar and Goetghebeur13 compare a naive infection-specific test (with a p-
value of 0.371) and an adapted logrank test (with p0 = 10% and p1 = 60%), assuming a
constant ξ and a treatment effect on infection-specific but not on other cause mortality, with
a p-value of 0.055. Still, an all-cause test yielded the lowest p-value (0.029), although the
asymptotic efficiency of the adapted test was highest. It was then hypothesized this resulted
from the treatment also affecting the competing risks. Jaffar et al.10 and Cutts et al.23 also
indicate this, hinting at a reduction in mortality when the lower-respiratory-tract infection is
a secondary infection and at a reduction of pneumococcal meningitis. We investigate this
using our corrected Cox model.

First, the treatment (a binary Z, no X) is assumed to influence only infection-specific
mortality, under a time-constant ξ. This differs from the adapted logrank test in Van
Rompaye, Jaffar and Goetghebeur,13 which estimates both ξ and the standard errors under
the null. The asymptotically unbiased estimate for e−ξ is 1.623, which is slightly lower than
the possibly biased estimate from the null of 1.917. The estimate for φ is −0.327 (95%
confidence interval [CI]=−0.699 to 0.045, p-value = 0.085), a slight increase in p-value that
likely results from using no information from the null in the ξ-estimate, thereby slightly
increasing its variance. Nevertheless, this analysis does not qualitatively differ from that in
Van Rompaye, Jaffar and Goetghebeur.13
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Next, a treatment effect on the competing risks is allowed (one binary Z, one binary X).
Using standard proportional hazard models, we find an all-cause hazard ratio of 0.865 (95%
CI 0.760 to 0.985), a naive infection-specific hazard ratio of 0.877 (CI 0.658 to 1.170) and a
naive other-cause-specific hazard ratio of 0.862 (0.746 to 0.997). Using our method of
analysis, we find an estimate for e−ξ of 1.954 (1.570 to 2.338). The treatment lowers the
hazard of infection-specific mortality by a factor 0.888 ( , CI = −0.824 to 0.588),
and the hazard for the competing risks by a factor 0.853 ( , −0.545 to 0.227).
Although some indication of vaccination effect on the infection-specific hazard is seen, the
point estimate shows that the effect on the other-cause-hazard is stronger, even though the
vaccine explicitly targets pneumococci responsible for these infections. The all-cause hazard
ratio of 0.865 (0.763 to 0.981) in the third column of Table 2 is based on Equation 5, and is
equal to the standard all-cause estimate. While these observations are scientifically
interesting in guiding further research, none of these effects is deemed significant in this
model, which reflects the persistent and strong uncertainty resulting from the
misclassification.

Another important aspect of the data is investigated through the nonparametric estimator of
the relative cause-specific mortality pattern exp( −ξ(t)), shown in Figure 3A. This reveals
that, under control, the airway infection is the most prevalent cause of death in young
children, while at later ages other causes (such as malaria) become relatively more prevalent.
This confirms and extends the observations made by Jaffar et al. 25 concerning age
dependence of causes of death (noting their estimates are based on older data, and are not

corrected for possible misclassification). After 600 days into the study  drops
again, which results mainly from a decrease in other-cause mortality in older children. The

rise of  at the very end of the follow-up is presumably a boundary effect of the
nonparametric estimator. To fully understand the mortality structure, one needs to take into
account the baseline all-cause hazard itself, which is virtually constant here, with a slight
increase after 1 year (not shown).

Using this nonparametric  we obtain  and , or an estimated
infection-specific hazard ratio of 0.933 and an estimated other cause-specific hazard ratio of
0.832. A parametric bootstrapping procedure yields estimated standard errors of 0.27 on 
(CI = −0.598 to 0.460) and 0.21 on  (−0.596 to 0.228), making no substantive change in
statistical significance. However, the point estimate indicates a much smaller effect on the
cause of interest.

Intuitively appealing cumulative incidence curves are obtained from the Breslow-type
estimator for the baseline cumulative cause-specific hazards (eAppendix) and estimates for
φ, ρ and ξ(t). Figure 3B shows these for a time-varying and a time-constant ξ. The relatively
large deviations between the two ξ estimates seen in Figure 3A, translate into substantial
differences between the incidence curves in Figure 3B. As expected, all methods virtually
coincide in their estimates of the cumulative all-cause incidences. Figure 4 illustrates the
practical impact of the treatment on the various causes of death.

Use of the proposed methodology in sensitivity analyses
The Belgian Interuniversity Research on Nutrition and Health study is a survey on nutrition
and health, where cause-specific mortality is of interest but is likely measured with error.
Between 1981 and 1984, data on nutrition and medical parameters were collected from
10,577 Belgians between the age of 25 and 74, with sampling stratified by sex and age. They
were subsequently followed for 10 years (for a total follow-up of 96,870 person years) with
the goal of relating dietary habits to cause-specific mortality. Causes of death were
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ascertained from the person’s family doctor or the doctor who completed the death
certificate, and supplemented if necessary with information from hospital or medical
records. While this approach strongly improves the classification based solely on the death
certificate itself, errors may still be expected. However, there is no precise indication of the
expected frequency of cause misclassification. We removed data on 210 diabetic patients
(because of their very specific risk character) and we removed all 324 remaining incomplete
cases to avoid missing data issues. These issues are not relevant to our illustration, and no
systematic missingness pattern was observed, making missingness completely at random
plausible. Finally, of the observed 802 deaths, 258 were classified as being cardiovascular
(CVD) deaths and 544 as deaths from other causes. More information on this study can be
found in the paper by De Bacquer et al. 26

As Sarfati, Blakely and Pearce12 indicate, when there is doubt about the precise
misclassification rates it is prudent to perform a sensitivity analysis by varying the
misclassification probabilities used in the analysis. In the case of a corrected analysis using
our method, this gives a sense of the stability of the estimates. In the case of a standard,
uncorrected analysis, such a sensitivity analysis indicates the likely extent and direction of
bias introduced by misclassification. This last principle is applied to the nutrition and health
data.

Our main interest is the impact of baseline pulse rate on the rate of CVD. This is studied by
means of proportional (cause-specific) hazard models, correcting for the possible effects of
baseline risk factors smoking (Smoke = 1 if smoking, 0 else) and use of beta-blockers (BBl
= 1 if using, 0 else), and including sex (Male=1 for men and =0 for women) and baseline age
in years (Age), with age centered around its mean (48.42 years). Pulse rate is categorized
following commonly used definitions of bradycardia and tachycardia (respectively, PR<60=1
if rate < 60, 0 otherwise and PR>100=1 if rate > 100, 0 otherwise). Main effect models are
built in a backward fashion (referring to 5% significance), forcing the pulse rate effect to be
included. Next, interactions of both age and sex with pulse rate are allowed if p<0.15, as
these may be of interest to policy makers. We first consider the standard proportional hazard
analyses which are available.

Standard analyses—Table 3 gives an overview of estimates and standard errors for three
hazard notions. When information on cause-of-death is unreliable, typically a Cox model for
the all-cause mortality is fitted, as given in the first column of Table 3. No interactions were
retained at the 15% level, with the main effect of the categorical pulse rate being borderline
significant at the 5% level (p=0.054). Extreme pulse rates in both directions (high or low)
are associated with a higher overall mortality. Being older and male is significantly
associated with a decreased survival, as are both smoking and beta-blocker use.

In a next step, more detail is obtained from cause-specific models. The CVD-specific effects
(second column of Table 3) include a significant pulse rate effect with sex-specific
magnitude (p=0.053). Higher pulse rates are associated with higher CVD-specific mortality
in men, but lower in women. Low pulse rates are associated with increased CVD-specific
mortality in both groups.

For the other cause-specific hazard (third column) only sex, age and smoking show a
significant additive effect on the log hazard. This shows how the pulse rate effect plays
especially on cardiovascular mortality (where it is modulated by sex), while its effect on
other causes is not significant. However, the suspected misclassification of some causes of
death warrants a sensitivity analysis of these cause-specific results, showing how strongly
the estimates can be affected by possible misclassification in the cause-of-death records.
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Sensitivity analysis—In the sensitivity analysis, our model is repeatedly fit to the
observed data, each time varying the assumed misclassification rates within a reasonable
range of 0% and 20% for both death causes (see for instance Lloyd-Jones et al. 8 on
coronary heart disease). We assume ξ is constant, and we use all combinations of p0 and p1
in 0.00001, 0.02, 0.04, 0.06, …, 0.2.

Figure 5 summarizes the sensitivity distributions of the estimates for the various pulse-rate
effects. It shows the point estimates (dots) of the standard cause-specific models with their
95% confidence intervals (lines), alongside boxplots summarizing the distribution of the
estimates marginal over the (p0, p1)-grid.

Figure 5 reveals that effect estimates most often change in one specific direction when
misclassification is accounted for. This means that naive cause-specific analyses
systematically over- or underestimate effects, which stresses the need for a thorough
sensitivity analysis in settings prone to misclassification error.

Discussion
The present development fills a gap in methods currently available for cause-specific
survival analysis when cause of death is uncertain. This problem is common in death
registries, and most pressing in countries that lack both infrastructure and funds for precise
registration of death causes.

Our method allows one to assess the relative role of various cause-specific dependencies on
covariates, as long as misclassification rates are provided. When lacking precise information
on misclassification rates, the method can be used to address sensitivity of conclusions from
standard methods. It involves nonparametric estimation of the relative cause-specific hazard,
which reveals how certain causes are relatively more prominent over time, and can thus help
decide which subpopulations could be targeted when intervening.

The proposed method uses standard assumptions of proportional covariate effects on the
cause-specific hazards, without constraining the relative cause-specific hazard exp( −ξ(t)).
The necessary misclassification rates can sometimes be obtained from the literature, or may
require a “gold standard” pilot study to estimate the rates. The main analysis may then
include the data from the pilot study, as the score equations allow optimization of the
weights to reflect the increased certainty for specific persons.

The general nature of the score equations even allows individualized misclassification rates,
depending arbitrarily on time of death, on covariates in the model, or on covariates external
to the death process (such as the diagnostic method used). Ebrahimi27 instead starts from a
fully parametric method with assumed error matrix, allowing the physician to specify the
probability that each of a number of multiple possible diagnoses is the one causing the
death. This can be translated to misclassification rates on an unambiguous diagnosis, and
incorporated into our method using case-specific misclassification probabilities.

In the extreme case of missing causes of death, our method reduces to the one of
Goetghebeur and Ryan16;28 by adapting the likelihood as in the supplementary materials of
Van Rompaye, Jaffar and Goetghebeur.13

Although our approach naturally incorporates common assumptions on misclassification and
competing risks, other approaches could prove valuable. One option models the cumulative
incidence function more directly,29 an approach that has enjoyed increasing attention given
the appealing interpretation of the cumulative incidence function. Key ingredient there
would be a proportionality assumption on the two hazards of subdistribution, after which
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further developments are similar to ours, exploiting the resemblance between the likelihoods
for proportional cause-specific hazards and proportional hazards of subdistribution. One
additional difficulty may be the definition of the risk sets, which depends on the observed
event type in the Fine and Gray model.29 As no candidate model is obviously preferred for
making the proportionality assumption, further development of the parallel method for the
subdistribution hazard should allow researchers to use both methods in data analysis, as
recommended in Grambauer, Schumacher and Beyersmann.30

Any analysis of hazard ratios comes with the specific interpretation of hazards as conditional
parameters characterizing unconditional (sub)distribution functions. As such, their causal
interpretation becomes more intricate, as discussed by Hernán.31 Incidence curves are more
straightforward to interpret, as the cause-specific counterpart of the unconditional survival
curve they express the chance of experiencing the event of a specific type before a given
time t. Should one have any interest in estimating the causal effect of particular treatment
strategies, such curves can be adjusted. Furthermore, to allow for time-varying effects, one
can explicitly include time-varying covariates in the model, or include a plot of average
effect estimates over ever-increasing follow-up periods.

While our method involves exact prior knowledge of the misclassification rates, this
prerequisite can be relaxed in a sensitivity analysis, as shown above. Such approach comes
close to a Bayesian analysis, specifying a prior distribution on the misclassification rates.
Explicitly developing a formal Bayesian framework could prove interesting, but lies outside
the scope of this paper.

As different types of Cox models target different estimands, direct comparisons of efficiency
may be secondary and hard to achieve. Under the standard assumptions in randomized
clinical trials, substantial power for simple two-group comparisons can be regained,13 but in
more complex models appropriate for observational epidemiology the standard errors in our
model are inflated. The simulation above shows that our method removes bias but pays a
price in terms of variance. In light of this bias/variance trade-off, one will need to make an
informed decision on which method of analysis is preferable. Simulations illustrate how,
with increasing sample sizes, our method becomes preferable to a naive cause-specific
analysis in terms of MSE (work presented in the eAppendix). Also, no loss in MSE terms
emerges for a standard all-cause analysis parameter.

The ambiguous view on efficiency complicates anticipation on the use of our method at the
design stage. It therefore seems prudent to propose the all-cause mortality as the primary
endpoint at the design of a study, and to use our method to complement the all-cause
conclusions. This approach also appeals to common sense: researchers who are interested
primarily in cause-specific results should, first and foremost, invest in reliable cause
assessment.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Distribution of effect estimates (A. cause 1; B. cause 0) in the presence (top) and
absence (bottom) of misclassification.
The true effects are indicated by vertical striped lines.
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Figure 2. Simulated bias for the naive and corrected method (A. cause 1-specific; B. cause 0-
specific).
At the top are the (unbiased) corrected estimates, at the bottom the (biased) uncorrected,
naive estimates from Figure 1. The vertical striped lines indicate the true simulated effects.
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Figure 3. A. estimate of the relative cause-specific hazard ; B. resulting
cumulative incidence curves.
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Figure 4. Cumulative incidence curves (AC=all-cause, 0=cause 0, 1=cause 1).
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Figure 5. Standard cause-specific effect estimates (filled dots with 95% confidence intervals as
vertical lines) with their sensitivity distributions (boxplots), using a uniform rectangular p0, p1
grid between 0 and 0.2.
MPR < 60 denotes the interaction between the indicators Male and PR<60, MPR > 100 that
between Male and PR>100.
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Table 1
Illustration of Power Loss Due to Misclassification With p1 0.6 and p0 = 0.1 (Standard
Error on Estimates Below 0.005)

Misclassification All-cause Cause Specific

Cause 1 Cause 0

No 0.0984 0.7935 0.2412

Yes 0.0984 0.231 0.492

Baseline hazards are h1 = 0.04 and h0 = 0.06, treated vs. nontreated have cause 1-specific hazard ratio exp(−0.3) and cause 0-specific hazard ratio

exp(0.1).
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Table 2
Effect Estimates (and Standard Errors) for the Various Analyses of the Gambian
Pneumococcal Vaccine Trial Data

Log (HR) Naïve Corrected

Z, X, no ξ Z, no X, ξ(t) = ξ Z, X, ξ(t) = ξ Z, X, ξ(t)

All-cause −0.145 (0.066) −0.112 (0.058) −0.145 (0.064) —

Infection-specific ϕ −0.131 (0.147) −0.327 (0.190) −0.118 (0.360) −0.069 (0.27)

Other cause-specific p −0.148 (0.074) 0 −0.159 (0.197) −0.184 (0.21)

ξ — −0.484 (0.186) −0.670 (0.197) —

Estimates of ξ are missing when allowed to vary over time; all-cause estimates are missing when incompatible with the model. No ξ indicates that
separate standard cause-specific models were fit.
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Table 3
Summary of Effect Estimates (Log Hazard Ratios With Standard Errors) for the Various
Standard Analyses of the Belgian Interuniversity Research on Nutrition and Health Data
(Models Built in a Backward Fashion)

All-cause Naive CVD-specific Naive OC-specific

Estimate (SE) P Estimate (SE) P Estimate (SE) P

Male 0.59 (0.09) <0.001 0.38 (0.16) 0.02 0.64 (0.11) <0.001

Age (years) 0.100 (0.004) <0.001 0.127 (0.007) <0.001 0.089 (0.004) <0.001

PR 0.05 0.22 0.28

   PR<60 0.09 (0.15) 0.52 (0.46) −0.19 (0.21)

   PR>100 0.41 (0.17) −1.30 (1.01) 0.28 (0.22)

BBI 0.32 (0.14) 0.03 0.71 (0.21) <0.001 — —

Smoke 0.48 (0.08) <0.001 0.35 (0.14) 0.01 0.54 (0.10) <0.001

Male × PR — — <0.001 — −

   Male × PR<60 — — −0.006 (0.526) — —

   Male × PR>100 — — 2.535 (1.047) — —
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