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Abstract

Integrative genomics has the potential to uncover relevant loci, as clinical outcome and response to che-
motherapies are most likely not due to a single gene (or data type) but rather a complex relationship involving
genetic variation, mRNA, DNA methylation, and copy number variation. In addition to this complexity, many
complex phenotypes are thought to be controlled by the interplay of multiple genes within the same molecular
pathway or gene set (GS). To address these two challenges, we propose an integrative gene set analysis approach
and apply this strategy to a cisplatin (CDDP) pharmacogenomics study involving lymphoblastoid cell lines for
which genome-wide SNP and mRNA expression data was collected. Application of the integrative GS analysis
implicated the role of the RNA binding and cytoskeletal part GSs. The genes LMNB1 and CENPF, within the
cytoskeletal part GS, were functionally validated with siRNA knockdown experiments, where the knockdown of
LMNB1 and CENPF resulted in CDDP resistance in multiple cancer cell lines. This study demonstrates the utility
of an integrative GS analysis strategy for detecting novel genes associated with response to cancer therapies,
moving closer to tailored therapy decisions for cancer patients.

Introduction

Platinum agents, such as cisplatin (CDDP), are com-
monly used in the treatment of a variety of cancers, in-

cluding ovarian and lung cancers. However, response to
therapy varies among patients. One of the biggest challenges
to achieve desirable therapeutic effects is the large inter-
patient variation in clinical response and toxicity. Major mo-
lecular mechanisms underlying this resistance might involve
alteration in platinum inactivation or reduced intracellular
accumulation by uptake/efflux transporters, increased repair
of adducts, increased adduct tolerance, or failure of apoptotic
pathway. Thus, any alterations in expression/activity of
major drug transporters, DNA repair genes, and detoxifica-
tion genes can influence treatment response (Lu et al., 2006;
Meijer et al., 2000; Okcu et al., 2004; Peters et al., 2000; Sakano
et al., 2006; van der Straaten et al., 2006; Vella et al., 2011)
(www.pharmGKB.org). Nevertheless, these candidate genes
do not explain all the variation in drug response observed in
clinical practice.

In addition, clinical outcome and response to cancer ther-
apies is most likely not due to a single gene (or data type) but
rather a complex relationship involving genetic variation,

mRNA, miRNA, DNA methylation, and copy number vari-
ation. Finally, many complex phenotypes are thought to be
controlled by the interplay of multiple genes within the same
molecular pathway or gene set (GS). Hence, gene set analysis
(GSA) has been widely used in the analysis of mRNA and
single nucleotide polymorphism (SNP) data as GSA incor-
porates biological knowledge, reduces the multiple-testing
burden, and may increase the association signal (i.e., increas-
ing the power to detect meaningful associations). However, to
date there has been little integration of both SNP and mRNA
expression data in the context of GSs.

In 2011, Tyekucheva et al (2011) presented the use of two
integrative GSA approaches that they refer to as ‘‘integrative’’
or ‘‘meta-analytic.’’ In their ‘‘integrative approach,’’ a gene-
level model is fit with both types of genomic data, followed by
combining the gene-level scores to evaluate the association
with the GS. In contrast, the ‘‘meta-analytic’’ approach com-
putes a GS score for each data type and then combines the
scores across the data types, using either the average or
the maximum value. They found their ‘‘integrative’’ GSA to be
the more powerful approach. However, their approaches only
incorporate cis-acting relationships. In contrast to this ap-
proach, we propose an approach that takes into account both
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cis and trans relationships using a similar step-wise approach
we have previously used to find novel genes associated with
response to therapies (Li et al., 2009; Niu et al., 2010).

To illustrate the method, we applied our integrative GSA
approach to a pharmacogenomic study of the platinum agent
cisplatin (CDDP) involving the Coriell Human Variation Pa-
nel (HVP) lymphoblastoid cell lines (LCLs). Functional ana-
lyses were completed for three genes within each of the top
two associated GSs, with two genes (LMNB1 and CENPF)
functionally validated. The identification and understanding
of the role of genomic variation on response to platinum
therapies would help clinicians determine optimal treatment
plans for cancer patients.

Materials and Methods

Human Variation Panel cell-based model system

Lymphoblastoid cell lines and cytotoxicity assays. Human
Variation Panel (HVP) consists of a sample of lymphoblastoid
cell lines (LCLs) derived from 100 African American (AA), 100
Caucasian American (CA), and 100 Han Chinese American
(HCA) subjects obtained from the Coriell Cell Repository
(Camden, NJ). The National Institute of General Medical
Sciences obtained and anonymized these cell lines before
deposit, and all subjects provided written informed consent
for the use of their samples for research purposes. The cyto-
toxicity assays for CDDP were completed in a similar manner
as outlined in Tan et al (2011). The quantitative phenotype
IC50 (effective dose that kills 50% of the cells) was estimated
using a four-parameter logistic model (Davidian and Giltinan,
1995; Gallant, 1987), followed by application of the Van de
Waerden rank transformation. CDDP cytotoxicity experi-
ments were successfully performed for 283 LCLs (96 CA, 91
AA, and 96 HCA LCLs).

Genotypic data. Genotyping of SNPs was completed on
the Illumina HumanHap 550K and HumanHap510S for the
LCLs at the Genotyping Shared Resources at the Mayo Clinic
in Rochester, MN, as previously described (Li et al., 2009; Niu
et al., 2010). As part of quality control, SNPs with Hardy-
Weinberg equilibrium (HWE) p values <10 - 6 in one race or
10 - 4 in all three races (based exact test for HWE (Guo and
Thompson, 1992; Wigginton et al., 2005)), minor allele fre-
quency (MAF) <5%, or call rate <95% were removed from
analysis, resulting in 852,829 SNPs for GSA.

Expression data. Whole Genome expression data for cell
lines was obtained using the Affymetrix U133 plus 2.0 ex-
pression array chip (over 54,000 probe sets). The RNA ex-
traction and the expression array assays were performed
following the Affymetrix GeneChip� expression technical
manual (Affymetrix, Inc., Santa Clara, CA). Description of the
expression data and analysis have been previously described
by Li et al. (2008) and Niu et al. (2010). The mRNA expression
data has been submitted to the Gene Expression Omnibus and
can be found at http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc = GSE23120.

Integrative gene set analysis

An overview of the procedure is presented in Figure 1.
First, we identify SNP GSs associated with response, using a
principal component analysis to determine gene–level asso-
ciations, and the Gamma Method to aggregate the association
of genes within a GS (referred to as the PC-GM approach)
(Biernacka et al., 2012). Then, for this set of GSs, we identify
mRNA expression GSs associated with the SNP GSs using a
method we developed, which we refer to as GS-eQTL (Abo
et al., 2012). Finally, we take these identified mRNA GSs and
determine their association with the phenotype using a global
random effects model (Goeman et al., 2004). In the following
sections, we provide additional information on the various
analyses methods used in the integrative GSA.

Gene set analysis for SNP data. For assessing the asso-
ciation of a set of predefined GSs with CDDP IC50 values, we
used a self-contained method (Goeman and Buhlmann, 2007).
First, SNPs were mapped to genes ( – 20 KB of first and last
exon). These genes were then mapped to GSs from the fol-
lowing sources: Kyoto Encyclopedia of Genes and Genomes
(KEGG) (http://www.genome.jp/kegg/) (Kanehisa and
Goto, 2000; Kanehisa et al., 2010), the Gene Ontology (GO)
project (http://www.geneontology.org/) (Ashburner et al.,
2000), and PharmGKB (http://www.pharmgkb.org/) (Ei-
chelbaum et al., 2009; Hewett et al., 2002; Klein et al., 2001). In
completing the mapping, SNPs could be mapped to multiple
genes, and genes could be mapped to multiple GSs. Once the
mapping of SNPs to genes and genes to GSs was completed,
GSA was completed using PC-GM approach (Biernacka et al.,
2011; Fridley et al., 2012), which uses a principal component
analysis (PCA) (Gauderman et al., 2007; Mardia et al., 1979) in

FIG. 1. Framework for integrative GSA involving SNP and mRNA expression data.
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combination with the Gamma method (Zaykin et al., 2007). A
linear model was used for assessing the association of each
gene with CDDP IC50, where the explanatory variables re-
presented the principal components explaining 80% of the
genetic variation within the gene. In completing the PCA,
genotypes for SNPs within the gene were coded in terms of
the number of minor alleles (e.g., 0, 1 or 2). Covariates of sex,
race, and eigenvectors from EigenSTRAT (Price et al., 2006)
analysis were included in the gene-level analysis.

Following the determination of the gene-level association p
values for genes within a GS, these gene-level p values were
combined using the Gamma Method (GM) (Zaykin et al.,
2007),with soft truncation threshold value (STT) of 0.15. The
GM is based on summing transformed p values, similar to
Fisher’s Method. Simulation studies have shown the PC-GM
to be a powerful approach for testing a self-contained GS
hypothesis under a variety of genetic models (Biernacka et al.,
2011). 10,000 permutations were completed to determine
empirical GS p values. To adjust for multiple testing, FDR q-
values (Storey, 2002) were computed for each GS.

Gene Set expression quantitative trait analysis (GS-
eQTL). Establishing the association of genetic variation with
levels of gene expression is a key component to understand
the molecular basis of human traits further, including re-
sponse to drug therapies. By assessing the relationship be-
tween SNPs and gene expression in the context of GSs, we
reduce the multiple testing burden. Therefore, for the SNP
GSs with genetic variation associated with CDDP IC50, we
wish to determine their association with variation in mRNA
expression levels in terms of GSs. We refer to this method as
gene set eQTL or GS-eQTL (Abo et al., 2012).

First, the mRNA expression probe sets on the Affymetrix
U133 plus 2.0 expression array chip were mapped to their
respective genes, with multiple probe sets for a gene sum-
marized using the median expression level. These genes were
then mapped to GSs in a similar manner as completed for the
SNP GSA. We denote GSs involving expression data as GSexpr,

while GSs involving genetic variation or SNPs as GSSNP.
The association of genetic variation within GSSNP to the

variation within GSexpr was then assessed using a multivari-
ate linear model. For each set of SNPs within the given GS, we
performed a PCA. This approach has been applied with suc-
cess in other GSA methods to produce a lower-dimensional
GS (Chai et al., 2009; Tomfohr et al., 2005). In addition, PCA is
a commonly used approach for modeling the association of
multiple SNPs within a gene, as opposed to GS (Ballard et al.,
2010; Gauderman et al., 2007). The design matrix was then
constructed using the q components that explain 80% of the
variance of the adjusted SNP genotypes (i.e., X = PCA80%

(GSSNP) is an n x q matrix where n is the number of samples).
Similarly, PCA is also applied to GSexpr, where we also keep
the p components that explain 80% of the variance of the ad-
justed mRNA expression values (i.e., Y = PCA80%(GSexpr) is an
n x p matrix). We define the GS-eQTL model as Y = B0 +
XB1 + U, where B1 represents the q x p matrix of unknown
regression parameters, vector B0 represents the intercept, and
U is a p x p matrix of unobserved random effects that are
assumed to come from a mean zero multivariate normal
distribution. The test of association between GSSNP and GSexpr

was then based on testing H0: B1 = 0 using Wilk’s lambda test
statistic (Mardia et al., 1979).

Gene Set analysis of mRNA expression data. To assess
the association of GS expression values (GSexp) with CDDP
IC50, the self-contained ‘‘global model’’ approach of Goeman
et al. (2004) was utilized using the R library ‘‘globaltest’’
(http://bioconductor.org/packages/2.6/bioc/html/globaltest
.html). This method has been used successfully in prior
pharmacogenomic studies involving the HVP (Fridley et al.,
2011) and found to have good power under a variety of ge-
nomic models (Fridley et al., 2010). The global modeling ap-
proach is based on a linear random effects model in which
CDDP IC50 is modeled as a function of the expression values
for the genes within the GS. Prior to analysis, the normalized
expression data was adjusted for batch/run, gender and race
and standardized as previously described (Li et al., 2008;
2009). Empirical p values were computed using Monte Carlo
simulations.

Functional validation studies

Functional studies were performed in five human cancer
cell lines: A549 (lung adenocarcinoma), CRL5872 (non-small
cell lung adenocarcinoma), CRL5823 (variant small cell lung
carcinoma), H460 (large cell lung carcinoma), and IGROV1
(ovarian carcinoma). These cell lines were obtained from the
American Type Culture Collection (ATCC, Manassas, VA)
and were cultured in RPMI 1640 containing 10% FBS. Pools of
four specific siRNAs for the candidate genes and negative
nontargeting control siRNA pools were purchased from
Dharmacon (Chicago, IL). Reverse transfection with siRNA
was performed in 96-well plates with cells from these five cell
lines, using 0.2 lL of lipofectamineTM RNAi-MAX reagent
(Invitrogen, Carlsbad, CA) and siRNA pools at final concen-
trations of 30 nM for 24 hours. The cells were then treated with
a series of concentrations of CDDP. After 72 h, cytotoxicity
assays were performed using the CellTiter 96@ AQueous Non-
Radioactive Cell Proliferation Assay kit (Promega Corpora-
tion, Madison, WI), followed by absorbance measurements
at 490 nm in a Safire2 microplate reader (Tecan AG, Switzer-
land).

Total RNA was isolated from the cultured cells using the
Quick-RNATM MiniPrep kit (Zymo Research, Orange, CA),
followed by qRT-PCR performed with the one-step, Brilliant
SYBR Green qRT-PCR master mix kit (Stratagene, La Jolla,
CA). Specifically, primers purchased from QIAGEN were
used to perform qRT-PCR using the ABI StepOne� Real-Time
PCR System (Applied Biosystems, Foster, CA). All experi-
ments were corrected by using beta-actin as an internal con-
trol. Cytotoxicity for CDDP in the five cell lines were
compared between cells treated with negative control siRNA
and gene-specific siRNAs.

Results

Integrative Gene Set Analysis

Mapping of the SNP GWAS data to gene and GSs resulted
in 2568 SNP GS (1512, 422, 372 from biological, cellular, and
molecular groupings of GO; 201 from KEGG; and 61 from
PharmGKB) containing 16,778 genes and 459,275 SNPs. The
expression probe sets mapped to 34,266 genes within the 2568
GSs. SNP GSA was completed using the PC-GM approach
with STT value of 0.15. This analysis resulted in three GSs
evidence of associated with CDDP IC50 values ( p £ 0.001)
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(Table 1). These GSs were: detection of abiotic stimulus
( p = 1.0E-05, 59 genes, 2211 SNPs); positive regulation of cat-
echolamine secretion ( p = 5.0E-04, 7 genes, 178 SNPs); and
negative regulation of heart contraction ( p = 0.001, 16 genes,
685 SNPs). Of these, only the GS detection of abiotic stimulus,
a biological process GS within GO, had a q-value < 0.25 (GS
q-value = 0.02). Next, we assessed the association of the ge-
netic variation within these three GSs with the mRNA gene

expression levels for genes within each of the 2568 GSs (i.e.,
GS-eQTL analysis). This analysis resulted in 93 GS-eQTL
associations with p < 10 - 10, where all of these associations
involved the genetic variation within the detection of abiotic
stimulus GS. Of these 93 GSs, the mRNA expression levels for
genes in 36 GSs were associated with CDDP IC50 ( p < 10 - 4)
(Table 2).

The top most associated GS was RNA binding (715 genes,
RNA binding GSexpr - IC50 p = 8.0E-06; detection of abiotic
stimulus – RNA binding GS-eQTL p = 8.7E-10; detection of
abiotic stimulus GSSNP – IC50 p = 1.0E-05). RNA binding is a
GS within the molecular function set of GSs within Gene
Ontology (GO). This GS contains genes which interact selec-
tively and noncovalently with an RNA molecule (http://
gowiki.tamu.edu/wiki/index.php/Category:GO:0003723_!_
RNA_binding) ( June 8, 2012). The second most significant GS
was cytoskeletal part (870 genes, cytoskeletal part GSexpr -
IC50 p = 1.2E-05; detection of abiotic stimulus – cytoskeletal
part GS-eQTL p = 4.2E-17). The cytoskeletal part is a GS in the
cellular component set of GSs within GO that contains genes
that play important roles in both intracellular transport and

Table 1. SNP GSs with Association with CDDP IC50

Gene set # Genes # SNPs P value Q value

Detection of abiotic
stimulus

59 2211 1.0E-05 0.02

Positive regulation
of catecholamine
secretion

7 178 5.0E-04 0.44

Negative regulation
of heart contraction

16 685 0.001 0.44

p value £ 0.001.

Table 2. Of the 93 Significant GS-eQTL Association ( p < 10 - 10
), mRNA Expression for Genes

Within 36 GSs Were Associated with CDDP IC50 ( p < 10 - 4
)

Gene Set N Genes mRNA-IC50 GS p value GS-eQTL p value

RNA binding 715 8.0E-06 8.7E-10
Cytoskeletal part 870 1.2E-05 4.2E-17
Intracellular non-membrane-bounded organelle 2461 1.2E-05 1.1E-16
Chromosome organization 494 1.4E-05 3.4E-11
Reg of cellular component organization 454 1.6E-05 5.8E-11
Neg reg of nitrogen compound metabolic process 512 1.6E-05 4.8E-10
Intracellular organelle lumen 1779 2.8E-05 2.0E-13
Organelle lumen 1820 2.8E-05 4.9E-13
Ribonucleoprotein complex 490 2.8E-05 2.0E-11
Neg reg of metabolic process 770 3.0E-05 1.2E-10
Neg reg of macromolecule metabolic process 722 3.0E-05 2.1E-10
Nuclear part 1840 3.2E-05 4.8E-16
Intracellular organelle part 4711 4.2E-05 6.9E-25
Reg of cell death 824 5.2E-05 2.8E-12
Cellular response to stress 623 5.4E-05 8.6E-12
Neg reg of cellular metabolic process 710 5.4E-05 6.1E-11
Transferase activity- transferring phosphorus-containing groups 881 5.6E-05 3.4E-11
Enzyme binding 515 6.6E-05 2.1E-14
Programmed cell death 1080 6.6E-05 1.4E-13
Protein complex assembly 540 6.6E-05 4.4E-11
Neg reg of biological process 1797 6.8E-05 2.5E-15
Purine nucleoside binding 1566 6.8E-05 2.5E-14
Gene expression 3566 7.0E-05 2.1E-22
Nucleobase- side- tide and nucleic acid metabolic process 3911 7.0E-05 4.0E-22
Intracellular organelle 8658 7.2E-05 6.6E-28
Cellular macromolecule metabolic process 5664 7.2E-05 1.8E-23
Pos reg of cellular process 1795 7.4E-05 4.4E-13
Hydrolase activity- acting on acid anhydrides 753 7.6E-05 3.6E-12
Intracellular membrane-bounded organelle 7788 7.8E-05 1.3E-25
Purine nucleotide binding 1853 7.8E-05 7.2E-17
Ribonucleotide binding 1772 8.0E-05 1.5E-17
Macromolecule biosynthetic process 3384 8.2E-05 3.2E-22
Intracellular part 10298 8.6E-05 2.5E-29
Neg reg of cellular process 1641 8.6E-05 1.5E-13
Intracellular 10634 9.0E-05 1.0E-29
Pos reg of cell death 428 9.4E-05 2.6E-12

All GS-eQTL involved the genetic variation within the ‘‘Detection of abiotic stimulus’’ GS.
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cellular division (http://gowiki.tamu.edu/wiki/index.php/
Category:GO:0044430_!_cytoskeletal_part) ( June 8, 2012).

Next, for the top two GSs of RNA binding and cytoskeletal
part, we assessed the association of mRNA levels for genes
within these GSs with CDDP IC50 (Table 3). The top three
genes in the RNA binding GS were: HNRNPF (r = - 0.283,
p = 1.34E-06); RNASEH2A (r = - 0.282, p = 1.38E-06); and
SNRPD1 (r = - 0.280, p = 1.65E-06). The top three genes
within the cytoskeletal part GS were: CENPF (r = - 0.327,
p = 1.75E-08); CAMSAP1L1 (r = 0.315, p = 5.98E-08); and
LMNB1 (r = - 0.311, p = 9.25E-08).

Functional Validation for CDDP-related genes

Based on the findings from the integrative genet set anal-
ysis involving the cell line model systems, functional valida-
tion was attempted for the top three genes within the RNA
binding (HNRNPF, RNASEH2A, SNRPD1) and cytoskeletal

part (CENPF, CAMSAP1L1, LMNB1) GSs. All studies in the
H460 and IGROV1 cell lines showed no effect of the six genes
on CDDP response. However, functional studies in the A549,
CRL5872, and CRL5823 cell lines showed effect of the genes
CAMPSAP1L1, LMNB1, and CENPF on sensitivity to CDDP,
which corresponds to the results observed in the integrative
GSA in the LCLs (Fig. 2). In particular, we found the effect of
LMNB1 to be consistent in all three cell lines, in which
knockdown of LMNB1 resulted in CDDP desensitized cells,
confirming the GSA results (i.e., no expression of LMNB1 re-
sulted in higher CDDP IC50 value or more resistant cells).

Similarly, knockdown of CENPF resulted in cells resistant
to CDDP in the CRL5872 and CRL5823 cell lines. However,
knockdown of CAMSAP1L1 showed opposite effects in the
A549 and CRL5823 cell lines. Knockdown of SNRPD1 showed
in the cell lines A549 and CRL5872 rendered cells more sen-
sitive to CDDP. However this relationship contradicts the
direction of association observed in the statistical analysis
(r = - 0.280). The difference in the functional validation of
candidate genes might be due to cell-line specificity.

Discussion

In this article, we present a novel approach to integrate
SNP, mRNA expression and phenotypic information in the
context of GSs to determine novel genomic features related to
a complex phenotype (e.g., response to platinum therapy).
The proposed approach uses a step-wise GSA approach to
integrate multiple types of genomic information, which can
also be extended to other types of genomic data, such as
methylation or microRNA data. As proof of principle, we
applied the proposed integrative GSA approach to a phar-
macogenomic study of CDDP involving a cell based model
system.

Integrative Gene Set Analysis

As the first step in the integrative GSA, we determined
three SNP GSs associated with CDDP drug response using the
PC-GM method (Biernacka et al., 2012) ( p < 0.001). For this set
of GSs, we then used a GS-eQTL method (Abo et al., 2012) to
determine mRNA expression GSs associated with these SNP
GSs ( p < 10e-10). Finally, for these mRNA GSs we determine
their association with CDDP response using a random effects
model (Goeman et al., 2004) ( p < 1e-04). From this integrative
GSA, we found 32 expression GSs associated with CDDP re-
sponse, all associated with the SNP GS ‘‘detection of abiotic
stimulus’’. These mRNA expression GSs included many bio-
logically relevant GSs for CDDP response, a therapy designed
to crosslink DNA and interfere with cell division, such as:
RNA binding, positive regulation of cell death, cellular re-
sponse to stress, enzyme binding, metabolic processes, and
purine nucleotide binding.

While this integrative GSA has numerous benefits, this type
of analysis also has limitations. First, gaps in knowledge may
prevent definition of appropriate GSs, and combining a few
genes with functional impact on the phenotype with many
non-associated genes can lead to loss in power. The fact that
GSA assumes that SNPs can be assigned to relevant genes is
an important limitation of GSA, particularly in light of the fact
that many phenotype-associated SNPs identified to date do
not lie in genes. Second, the integrative GSA still fail to ac-
count for joint effects that are not due to simple additive (or

Table 3. Association Between mRNA Expression

and CDDP for Genes Within the GSs RNA Binding

and Cytoskeletal Part

Gene Set Gene

Correlation
between IC50

and mRNA levels
Association

p value

RNA binding HNRNPF - 0.283 1.34E-06
RNASEH2A - 0.282 1.38E-06
SNRPD1 - 0.280 1.65E-06
DIS3L - 0.278 2.01E-06
HNRNPA3 - 0.276 2.49E-06
DAZAP1 - 0.273 3.08E-06
HNRNPD - 0.271 3.60E-06
THOC6 - 0.267 5.25E-06
LGTN 0.265 6.33E-06
KHDRBS1 - 0.261 8.78E-06

Cytoskeletal part CENPF - 0.327 1.75E-08
CAMSAP1L1 0.315 5.98E-08
LMNB1 - 0.311 9.25E-08
FEZ1 0.308 1.29E-07
GABARAPL1 0.304 1.78E-07
KIF20A - 0.300 2.77E-07
IFNGR1 0.297 3.56E-07
TOP2A - 0.296 3.78E-07
KIF3B 0.296 3.80E-07
MYL5 0.295 4.32E-07
FAM33A - 0.294 4.75E-07
HOOK1 - 0.294 4.83E-07
POLB 0.294 4.83E-07
NUSAP1 - 0.291 6.06E-07
CDCA8 - 0.285 1.04E-06
BLOC1S2 0.284 1.20E-06
PRC1 - 0.284 1.21E-06
IFT20 0.284 1.23E-06
CDC25B - 0.278 1.97E-06
TUBA1A 0.277 2.18E-06
TUBA4A - 0.271 3.84E-06
TPX2 - 0.268 4.85E-06
MCM3 - 0.264 6.82E-06
KIF4A - 0.261 8.31E-06
FGFR1OP - 0.261 8.40E-06
KIF15 - 0.260 9.21E-06
MYO6 - 0.260 9.30E-06

The genes in bold print were selected for the functional studies.
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log-additive) effects of individual SNPs. Methods based on
joint modeling of SNP effects could be extended to include
assessment of gene–gene interactions. Third, the assessment of
statistical significance of the entire integrative testing proce-
dure is not straight forward, with the selection of an arbitrary
significance threshold for determining GSs to be carried for-
ward in the step-wise procedure. Therefore, replication and/
or functional validation is suggested to confirm association
findings from the integrative GSA. However, the results from
this study show the usefulness of GSA that integrates both
SNP and mRNA variation to determine novel GSs and genes
associated with drug response. Further research is needed to
build upon the integrative framework presented in this man-
uscript and to develop other approaches for the integration of
multiple types of genomic data in the study of complex traits.

Cisplatin pharmacogenomics

Following the determination of novel GSs involved with
CDDP response through the integrative GSA, we selected
three genes for functional studies to determine if these genes

impact the sensitivity of cancer cell lines to CDDP. Functional
validation was attempted for the genes HNRNPF, RNASE-
H2A, and SNRPD1 in the RNA binding GS and CENPF,
CAMSAP1L1, and LMNB1 in the cytoskeletal part GS. The
functional studies confirmed the effect of LMNB1 and CENPF.
The effect of LMNB1 was consistent in multiple cancer cell
lines, in which knockdown of LMNB1 resulted in increased
resistance to CDDP. Similarly, knockdown of CENPF also
resulted in CDDP resistance in the CRL5872 and CRL5823 cell
lines.

LMNB1 is a gene contained within the TNFR1 signaling,
caspase cascade in apoptosis, and the breakdown of nuclear
lamina pathways, which are involved in cell death, cell cycle,
and apoptosis. LMNB1 has been found to be a potential
biomarker for early stage liver cancer (Sun et al., 2010) and
cancers of the gastrointestinal tract (Moss et al., 1999).
Downregulation of LMNB1 has also been implicated in re-
sponse to DNA-alkylating drugs, 5-fluorouracil, and radia-
tion in pancreatic tumor cells (Kokkinakis et al., 2005).
Liu et al. (2012) also found the expression of LMNB1 and
CENPF to be associated with hepatocellular carcinoma.

FIG. 2. CDDP functional validation in human A549, CRL5872, and CRL5923 cells. siRNA
knockdown was performed, followed by drug cytotoxicity for the six selected genes in the
top two GSs. Presented are only the results for genes SNRPD1, CAMSAP1L1, LMNB1, and
CENPF. A549, CRL5872, and CRL5923 cells were transfected with control siRNA or specific
siRNA for the gene of interest. Following 24 h after siRNA transfection, cells were treated
with CDDP for an additional 72 h.
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CENPF encodes a protein involved in chromosome segrega-
tion in mitosis, DNA synthesis, and cell cycle progression.
Expression of CENPF has been found to be associated with
methotrexate response in the treatment of acute lympho-
blastic leukemia (Sorich et al., 2008), head and neck squamous
cell carcinomas (de la Guardia et al., 2001), astrocytoma pro-
gression (van den Boom et al., 2003), and survival following
breast cancer (Campone et al., 2008; Huang et al., 2012). Fu-
ture research is needed to determine the precise role of
LMNB1 and CENPF in response to CDDP and other platinum
agents, such as carboplatin.

Conclusions

In conclusion, this research demonstrated the utility of a
novel integrative GSA approach to discover two candidate
genes, LMNB1 and CENPF, associated with CDDP response.
Integrated approaches focusing on comprehensive genomic
profiling are crucial for the identification of new drug targets
and genes responsible for drug response, and therefore,
moving closer to tailored therapy decisions for cancer patients.
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