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ABSTRACT

Mathematical methods of analysis of microarray
hybridizations deal with gene expression pro®les as
elementary units. However, some of these pro®les
do not re¯ect a biologically relevant transcriptional
response, but rather stem from technical artifacts.
Here, we describe two technically independent but
rationally interconnected methods for identi®cation
of such artifactual pro®les. Our diagnostics are
based on detection of deviations from uniformity,
which is assumed as the main underlying principle
of microarray design. Method 1 is based on detec-
tion of non-uniformity of microarray distribution of
printed genes that are clustered based on the simil-
arity of their expression pro®les. Method 2 is based
on evaluation of the presence of gene-speci®c
microarray spots within the slides' areas character-
ized by an abnormal concentration of low/high dif-
ferential expression values, which we de®ne as
`patterns of differentials'. Applying two novel algo-
rithms, for nested clustering (method 1) and for
pattern detection (method 2), we can make a dual
estimation of the pro®le's quality for almost every
printed gene. Genes with artifactual pro®les
detected by method 1 may then be removed from
further analysis. Suspicious differential expression
values detected by method 2 may be either removed
or weighted according to the probabilities of
patterns that cover them, thus diminishing their
input in any further data analysis.

INTRODUCTION

High-density cDNA microarrays are currently widely used to
assess differential expression of thousands of genes in various
biological conditions (1). The resulting pro®les of expression
of differential genes obtained in a set of microarray
hybridizations are regarded as the most valuable information
in interpretation and evaluation of the results. Almost all the
methods of advanced mathematical analysis of microarray
hybridizations (clustering, extraction of genes essential for

class separation, networking, etc.) deal with gene expression
pro®les (a pro®le is a series of differential expression values of
a gene according to the series of microarray hybridizations) as
elementary data units (2±4). However, generation of the large
quantity of data is always associated with the generation of a
signi®cant amount of noise. Therefore, it is anticipated that a
substantial proportion of the gene expression pro®les will not
actually re¯ect the in¯uence of the applied biological condi-
tions, but will rather result from various technical problems
encountered in one or several microarray experiments within
the hybridization set. Numerous unde®ned technical factors
may in¯uence the quality of microarray hybridization results
on different slides, producing artifactual expression pro®les of
genes. Such factors may include local microscopic glass
defects occurring during production of slides, defects of
printing pins, problems with scanning of particular slide areas
via one or both channels, ®ngerprints, scratches, excessive
slide drying, defects of washing, etc. Indeed, it could easily
happen that the main features of the expression pro®les that
underlie their clustering stem exclusively from the local
technical artifacts of one or several microarray slides used for
the analysis of hybridization set. Genes with completely or
partially artifactual expression pro®les are present practically
in any hybridization set and, depending on the hybridization
quality, may include up to 80% of the printed clones.

Unfortunately, the problem of distinguishing between
biological and artifactual pro®les cannot be easily solved by
the application of the common quality control strategies for
decreasing data noise since they mostly deal only with the
quality of printed spots (5±7), leaving aside the biological
relevance of data. For example, establishment of an arbitrary
general threshold for fold change in gene expression may well
mask biologically signi®cant changes while preserving the
artifacts if they produce signi®cant differential `expression'
values (8±10).

A popular approach for pinpointing the biological relevance
of the detected expression pro®les consists of technical
replication of hybridizations (11) or of microarray elements
(printing of several spots containing one and the same cDNA
on the same slide) (12,13), with an underlying assumption that
erroneous data are non-stable and are poorly repeated in
different experiments. However, such an assumption is true
only when error-producing factors randomly ¯uctuate among
repeated experiments (14). If a certain technical factor acts
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stably in numerous hybridizations (or in many spots), its
constant in¯uence will be superimposed with the in¯uences of
real biological factors and may even outweigh them. In this
case, repeated hybridizations will produce fairy stable, but
probably partly non-biological results. Unfortunately, experi-
mental design employing randomization of the in¯uence of
error-producing factors is hardly possible because of the
limited knowledge about their nature and mechanism of
action. The only known example that can be considered as an
attempt of randomization is a dye swap between Cy3 and Cy5
probe labels for two-color microarrays (15). However, this
type of control has limited value and seems unnecessary for
common reference design (16±18) when labeling bias does not
affect class comparisons (19).

Another approach proposed for the estimation of the
biological validity of microarray hybridization data is based
on the analysis of the correspondence between the dendrogram
presenting hierarchical clustering of hybridization expression
vectors and the dendrogram of similarity of applied biological
conditions (16). Needless to say, such an approach is poorly
applicable to experiments where unexpected proximity of
vectors is anticipated, e.g. for molecular classi®cation of
human tumor samples (20). Moreover, though the approach in
general is able to reveal a hybridization experiment of a poor
quality, it is not sensitive to individually erroneous gene
expression values. The same is true for hierarchical clustering
(correlation analysis) of common control probes for two-color
hybridization sets (17).

Large groupings of gene behavior are usually intuitively
regarded as biological, whereas singleton gene expression
pro®les are viewed as potential artifacts. Actually, such an
intuition may also be misleading, since the existence of a large
highly correlated cluster of genes with similar behavior does
not necessarily imply that this behavior is biologically
meaningful. Large clusters may consist of genes with
purely artifactual expression pro®les resulting from technical
problems involving relatively extensive slide areas in one or
several hybridizations.

Thus, it appears that clusters of genes displaying artifactual
expression pro®les may have all the typical characteristics
usually attributed to a true biological behavior: they may be
reproducible (stable) and include numerous genes displaying
statistically signi®cant levels of differential expression.

Here, we propose two novel approaches for distinguishing
between biological and artifactual gene expression pro®les.
These approaches do not deal with the traditionally used
criteria of technical quality or biological validity. Instead, our
diagnostics are based on detection of deviations from uniform-
ity (randomization), which is assumed as the main underlying
principle in microarray design. Indeed, all microarrays of the
same series keep the same geometrical position for every
printed gene within the microarray geometrical template. Since
there is no clustered printing of co-regulated genes or genes
having interconnected functions, such genes should yield a
uniform (random) distribution of spots. On the other hand, if
data are processed via a clustering algorithm, then biologically
interconnected and/or co-regulated genes are expected to react
similarly to applied biological conditions, thus displaying
correlated expression pro®les, which will in turn lead to their
gathering within a single cluster. Therefore, one anticipates a
uniform distribution of spots corresponding to the genes within

a cluster characterized by a biologically valid pro®le. On the
contrary, if a non-uniform distribution of spot positions of co-
clustered genes over the microarray is observed, it may indicate
that some locally acting technical factors rather than genuine
biological factors have contributed to the observed `expression'
pattern. Random printing of co-regulated genes over the
microarray template should also lead to uniform distribution
of various values of differential gene expression within the
same template. Therefore, any analogous differential expres-
sion values of genes printed within the same concentrated
microarray area may be suspected of having an artifactual
nature due to some local technical problems.

Thus, our method of detection of erroneous data is based on
the evaluation of two interconnected characteristics: (i) non-
uniformity of the distribution over the microarray geometrical
template of the printed genes that are clustered together based
on the similarity of their expression pro®les; and (ii) the
presence of gene-speci®c microarray spots within the slides'
areas characterized by an abnormal concentration of low/high
differential expression values, which we de®ne as `patterns of
differentials'. Though formally these two methods of quality
control are completely independent, in fact they handle the
same kind of noise. This becomes obvious in simple cases,
when a small number of patterns appear in the series of
hybridizations. In such instances, the microarray geometrical
distribution of genes included in non-uniform clusters of
pro®les perfectly matches the geometrical distribution of
patterns of differential expression values on individual slides.
When the number of patterns increases, the correspondence
becomes less obvious, and the ®rst method appears to be more
sensitive in detection of artifacts.

Applying two novel algorithms, one for nested clustering
(the basis of the ®rst method) and one for pattern detection (the
basis of the second method), a dual estimation of the pro®le's
quality for almost every printed gene is possible. Genes with
artifactual pro®les detected by the ®rst method may then be
removed from further analysis. Alternatively, suspicious
differential expression values detected by the second method
could be weighted according to the probabilities of patterns
that cover them, in order to diminish their input in any further
analysis.

MATERIALS AND METHODS

Microarray hybridizations

The examples shown in this report are derived from the
analysis of several microarray hybridization experiments
performed in the course of various gene discovery projects
conducted at Quark Biotech Inc. The utilized microarrays
(several types) contained approximately 10 000 clones derived
from custom disease-oriented non-redundant cDNA libraries
and were hybridized to pairs of Cy3- and Cy5-labeled cDNA
probes. Probe synthesis and labeling was performed using the
GEMBright probe labeling kit (Incyte Genomics, Palo Alto,
CA) according to the manufacturer's instructions. Microarray
printing, hybridization, washing and scanning of the slides
were performed as previously described (21). The experimen-
tal design was always based on using common biologically
relevant reference probes. Cy3 and Cy5 signals were balanced
according to signal intensities of all printed genes, using a
proprietary non-linear balancing algorithm.
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Nested clustering

The procedure of nested clustering consists of sequential
repetitions of three basic steps given below.

(i) Detection of the optimal neighborhood for a gene's
expression pro®le. The optimal neighborhood of a pro®le is
de®ned according to a chosen measure of similarity (typically,
Pearson's correlation coef®cient). The optimality implies that
for a given neighborhood radius, the minimum probability for
this neighborhood to collect a given number of gene expres-
sion pro®les is attained. All probabilities are calculated under
the hypothesis of the uniformity of distribution of vectors of
all gene expression pro®les in a much wider neighborhood.
Let k be a dimension of the vector of a gene's expression
pro®le equal to the number of hybridizations under analysis.
Let us take a deliberately wide neighborhood of pro®le x with
radius R. Then, the volume of neighborhood with radius R will
be de®ned as VR. Let it contain n points (gene expression
pro®les). As is well known (22), if n points are uniformly
distributed in a volume VR, then the number of points in a
neighborhood with radius r and with volume Vr will be a
random variable having a Poisson distribution with the
parameter l ´ rk that is proportional to Vr (l = n

R k). Thus, the
probability (P) of ®nding more than m points in a neighbor-
hood with radius r will be

Pm�r� �
X1
t�m

�l � rk�t
t!

eÿl�rk

1a

For large enough m (m > lrk), the sum is well approximated by
its ®rst member

Pm�r� � �l � r
k�m

m!
eÿl�rk

1b

Let us imagine that point (gene expression pro®le) x has an
expanding sequence of neighborhoods with radii r1, r2, r3...< R.
The optimal neighborhood (with radius ri) for a given gene (x)
will be the one for which the probability Pmi

(ri) reaches a
minimum, where m1, m2, m3¼ correspond to the actual
number of points observed in the neighborhoods with radii r1,
r2, r3, respectively, and where Pm1

(r1), Pm2
(r2), Pm3

(r3),... are
evaluated according to equation 1b.

(ii) De®ning the initial set of non-intersecting clusters is
formed by a greedy procedure. The most populated optimal
neighborhood of a gene expression pro®le out of the whole set
of detected neighborhoods is designated as cluster 1. The next
most populated neighborhood out of the whole set of detected
neighborhoods, which, however, does not intersect with
cluster 1, is designated as cluster 2, and so on. Genes that
are not included in any of the obtained clusters are distributed
among the numbered clusters according to their proximity to
the clusters' centers.

(iii) Improvement of clustering. To make the clustering
procedure more accurate, a popular k-means technique is
applied to the initial set of de®ned clusters. Speci®cally, by
iterations, all the genes are redistributed among the clusters in
such a way that every gene is moved into the cluster whose

center is closest to the genes pro®le. In the next step, the
centers of all the clusters are recalculated, and the next
iteration begins (23).

These three steps of the algorithm are initially applied to the
expression pro®les of all genes, thus producing ®rst level
clusters. Next, the same three steps are applied to the
epicenters of the ®rst level clusters (a cluster's epicenter is
closest to the cluster's center real gene expression pro®le,
whereas the center of the cluster is calculated as an average of
all gene expression pro®les included in a given cluster). This
produces clusters of the next (e.g. the second) level (Fig. 1A
and B). The procedure is repeated until either the necessary
number of levels of nested clustering is reached, or all the
genes are united within a single cluster. As a result, every gene
is attributed to a series of nested (enclosed) clusters.

The statistical validity of splitting higher level clusters into
lower level clusters is veri®ed by application of the
Kolmogorov±Smirnov (KS) criterion (22) testing the maximal
distance between two cumulative distributions: the distribu-
tion of real distances (correlations) between gene expression
pro®les within the higher level cluster and the cumulative
distribution of correlations between uniformly distributed
vectors (gene expression pro®les) within the area of multi-
dimensional space, which is covered by the same cluster. If all
lower level clusters within a higher level cluster are poorly
separated from each other, then the distribution of distances
among all the gene expression pro®les within a higher level
cluster should be similar to that of a uniformly distributed set.
An example of higher level cluster 2 (Cl-2) consisting of
`friable' lower level poorly separated (KS P-value = 0.23)
clusters, Cl-2a and Cl-2b, is shown in Figure 1. Alternatively,
if lower level clusters are compact and are clearly separated
one from another, then the distribution of correlations among
all the gene expression pro®les within a higher level cluster
will differ from the distribution expected for a uniformly
distributed set. This type of higher level cluster is also shown
in Figure 1 as cluster 1 (Cl-1), mainly consisting of compact
clusters Cl-1a and Cl-1b (KS P-value = 0.002).

De®ning the uniformity of the microarray distribution of
spots corresponding to the genes included within one
and the same cluster

Following the ideas appearing in Rassokhin and Agra®otis
(24), the same KS statistic was used as a criterion of
uniformity of distribution of spots over the microarray. The
distance between microarray spots was de®ned as a `city-
block' distance (|x2 ± x1| + |y2 ± y1|), where (x1, y1) and (x2, y2)
are coordinates of two spots on the microarray. (We use a city-
block distance because it adequately re¯ects non-uniformity
of the distribution of spots over a microarray, whilst corres-
ponding formulae are less complex in comparison with
Euclidean distance.) The cumulative distribution of city-
block distances between the spots corresponding to the genes
of the same cluster is compared with the cumulative distri-
bution of distances between spots randomly distributed over
the microarray. The theoretical cumulative distribution of
city-block distances between spots uniformly distributed over
the microarray is calculated as described below.

The relevant random variable is the city-block distance
x = r ((x1, y1), (x2, y2)) = |x2 ± x1| + |y2 ± y1| between two spots,
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randomly chosen from a uniform distribution of spots in the
rectangle with sides Lx and Ly.

Let

f(u) = P{x = u} = P{r((x1, y1), (x2, y2)) = u} (1<u<Lx + Ly) 2

Then

f �u� � PLxLy
�u�PLx�Ly

v� 1

PLxLy
�v�
� PLxLy

�u�
1ÿ PLxLY

�0� ;

where

PLxLy
�u� �

X
r�s� u; r� 0; s� 0

PLx
�r� � PLy

�s�; u � 1;

PL�u� � Pfr�x1; x2� � ug � 2�L� 1ÿ u�
�L� 1�2 ; 1 � u � L; 3a

and

PL�0� � Pfr�x1; x2� � 0g � 1

L� 1
3b

Calculations of all the theoretical cumulative distributions can
be performed using equations 3a and 3b. The resultant
maximal difference between the real and theoretical cumula-
tive distributions is the KS statistic. The KS quality of a cluster
is thus de®ned as the P-value of KS statistics for a given
cluster.

Detection of patterns (over-populated areas)

Pattern is de®ned as a spatially concentrated (e.g. located in
close proximity to one another on the microarray) set of spots

Figure 1. Nested clustering of gene expression pro®les. (A) Two-dimensional representation of the nested clustering procedure. The gene expression pro®les
are shown as separate points in a two-dimensional space. Higher level cluster 1 (Cl-1) contains two compact lower level clusters, Cl-1a and Cl-1b. Higher
level cluster 2 (Cl-2) contains two poorly separated lower level clusters, Cl-2a and Cl-2b. (B) Actual expression pro®les of genes included in Cl-1 and 2. The
x-axis shows the hybridization experiments and the y-axis shows the ln of values of differential expression. See text for details.
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with value characteristics belonging to the same prede®ned
interval. These values can refer to the values of Cy3 or Cy5
hybridization signals, or to background signals, or (which is
the most important for our purposes) to the calculated values
of balanced differential expression. For automatic detection of
patterns, the following algorithm is applied.

Let the distance between two spots on a microarray slide be
the city-block distance: (|x2 ± x1| + |y2 ± y1|); k the city-block
radius of the neighborhood; n(T) the total number of spots
characterized by values belonging to a prede®ned class T; p =
n�r�ÿ1

N
the probability of a random spot within the neighbor-

hood of a chosen spot x of class T belonging to the same class,
where N is a total number of spots on the microarray; a(k) the
total number of spots in the neighborhood of radius k; and
uk(x) the number of spots of class T in the neighborhood of
radius k of spot x.

On average, uk(x) is equal to p´a(k). For the uniform
distribution of all the spots of class T over the microarray, the
probability of ®nding more than uk(x) spots belonging to class
T in the neighborhood of spot x belonging to class T is

Qk�x� �
Xa�k�

r� uk�x�
C a�k�

r pr�1ÿ p�a�k�ÿr:

For large enough a(k), this distribution is close to a Poisson
distribution (22):

Qk�x� � eÿa�k��p X1
r� uk�x�

�a�k� � p�r
r!

:

Therefore, as in the case of equation 1, for large enough uk(x)
(uk(x) > a(k)´p), we can use the ®rst member of the sum as an
approximation of Qk(x):

Qk�x� � eÿa�k��p �a�k� � p�uk�x�

uk�x�! 4

For every spot x, there is a sequence of probabilities: Q1, Q2,
Q3... The minimal Qi will de®ne the optimal radius k(x) = i of
the neighborhood of spot x, for which the appearance of the
actual number of spots belonging to the same class as spot x is
the least probable.

Let l be the threshold of signi®cance for probability Qi (e.g.
0.001). Then, the interconnected union of all the neighbor-
hoods xi with Qk(xi )

< l will represent a `zone of pattern' of
class T: the interconnected union of signi®cantly over-
populated optimal neighborhoods (shown as an area covered
by semi-transparent rhombi in Fig. 2A). The pattern itself is
then de®ned as a set of spots with differential expression
values belonging to a certain interval (e.g. class T), which are
covered by a `pattern zone' generated by union of neighbor-
hoods with class T spot centers. For example, in Figure 2A,
though the `pattern zone' generated as a union of neighbor-
hoods of yellow spots covers both yellow (class T) and pink
spots (another class), only the yellow spots are detected as a
pattern (Fig. 2B).

The probability of the pattern occurrence, equal to the
probability of occurrence of the `pattern zone', similarly to
equation 4, may be estimated as

Ppatt � eÿz�p �z � p�u
u!

;

where z is the area of a given `pattern zone' (the total number
of spots covered by the zone), and u is the number of spots of
class T covered by the `pattern zone'.

RESULTS AND DISCUSSION

First method of quality control of gene expression
pro®les: evaluation of non-uniformity of distribution of
cluster-related spots over the microarray geometrical
template as a sign of an artifactual nature of cluster

This method employs a newly developed clustering procedure
as a tool for quality control of gene expression pro®les. It is
assumed that due to a random printing of co-regulated genes
over the microarray template, the genes having correlated
expression pro®les (and clustered together on this basis)
should be uniformly distributed over the microarray. Thus, any
deviation from such uniformity may indicate that an expres-
sion pro®le typical for a certain cluster has a non-biological
origin and rather stems from some locally acting technical
factors. Indeed, it could easily happen that the main features of
the expression pro®les that underlie their clustering stem
exclusively from the local technical artifacts of one or several
microarray slides used for the analysis of hybridization set.

Figure 2. Automatic identi®cation of patterns using a city-block distance. (A) An example of the distribution of differential expression values over a slide.
Yellow, blue and pink spots have differential expression values belonging to high value (>2), low value (<0.5) or intermediate value intervals, respectively.
Semi-transparent rhombi represent some of the optimal city-block neighborhoods of spots with high values of differentials. The interconnected union of these
rhombi constitutes a `pattern zone'. (B) Detected pattern of high differentials; the spots with high differential expression values that were covered by a
detected `pattern zone'.
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The above point is illustrated in Figure 3. The spots
corresponding to genes within cluster A (Fig. 3A) are
uniformly distributed over the microarray (Fig. 3B). At the
same time, the expression pro®le of these genes truly re¯ects
the applied biological conditions, because the genes are
upregulated by a certain treatment in a time-dependent manner
and are non-responsive to another treatment, exactly as
expected. On the other hand, all the spots corresponding to
the genes of cluster B (Fig. 3C) are concentrated within a
certain microarray area (Fig. 3D). Note that the main feature
of these genes' behavior is their high downregulation only in
hybridization 12, while in the rest of hybridizations the genes
do not display any signi®cant differential expression. Taken
together, these features of cluster B point to its potential
artifactual nature.

Accordingly, we reasoned that the uniformity of distribu-
tion of cluster-related spots over the microarray template
might be used as a quantitative measure of the biological
relevance of a cluster. A speci®c procedure of nested
clustering was worked out (for details, see Materials and
Methods) as an essential part of our approach for detection of
biologically valid and artifactual expression pro®les. As a
result of this procedure, the expression pro®le of almost every
gene appears in a chain of enclosed clusters. The uniformity of
the distribution of nested clusters of different levels over the
microarray is calculated using the KS statistic (see Materials
and Methods). The P-value corresponding to the median of the
distribution of ln of KS qualities (ln of P-values) of the
enclosed chain of clusters serves for the calculation of the KS
quality of the included individual gene expression pro®les. We
considered gene expression pro®le as biological when the

corresponding median KS P-value was >0.2, and as
artifactual when the median KS P-value was <0.001. Gene
expression pro®les with intermediate KS P-values were
considered as belonging to a `gray zone' and probably have
both biological and artifactual features.

As a next step, we experimentally tested our ability to
distinguish between biological and artifactual gene expression
pro®les based on KS statistics of the uniformity of microarray
distribution of the corresponding nested clusters. Hybridiz-
ation expression vectors originating from biologically related
samples (e.g. from the same type of similarly treated cells)
tend to be close to one another (highly correlated). Thus, the
correspondence between correlation distances among the
vectors of differential expression values of certain samples
(probes) and their expected biological `proximity' is a popular
method for testing the hybridization quality. If a certain
hybridization appears in a `wrong' position of the hierarchical
clustering dendrogram, it raises suspicion as to the quality of
this hybridization or as to its biological attribution. Clearly, if
for repeated hybridizations, the position of only one of the
hybridizations of a pair is non-consistent, the primary doubt
concerns its quality. (However, this is correct only in cases
when there are no doubts regarding its anticipated position
within the dendrogram.) Dendrograms of correlation proxim-
ity of hybridizations may be constructed either according to all
the genes employed in the experiment or according to a gene's
subset. It is natural to suggest that dendrograms constructed
only according to genes with biologically relevant expression
pro®les will better correspond to the assumed biological
proximity among the probes than dendrograms constructed
according to genes with artifactual expression pro®les.

Figure 3. Uniformity versus non-uniformity of cluster distribution over the microarray. (A and C) Examples of gene clusters (cluster A and cluster B)
detected in the same microarray experiment consisting of 15 hybridizations. The probes for hybridizations 1±6 were derived from cells subjected to
`treatment 1' in a time-course manner. Hybridizations 7±14 relate to a time-course treatment of the same cells with another agent (`treatment 2').
Hybridization 15 represents untreated control cells. The x-axis shows hybridization experiments and the y-axis shows the ln of values of differential expres-
sion. (B) Microarray distribution of spots corresponding to the genes included in cluster A. (D) Microarray distribution of spots corresponding to the genes in-
cluded in cluster B.
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Therefore, in order to test whether our assumption regarding
the non-biological nature of expression pro®les of genes
included in non-uniformly distributed clusters is correct,
we performed a hierarchical clustering of several hybridization
sets according to the following pro®les: (i) all the genes printed
on the microarray; (ii) genes that comply with the criterion of
biological nature of pro®les (median KS P-value >0.2);
(iii) genes that do not comply with the criterion of biological
nature of pro®les (median KS P-value <0.001); and (iv) a
similar number of randomly selected genes. An example of
such an analysis is shown in Figure 4. The experiment
consisted of microarray analysis of gene expression in the
same type of cells plated at the same initial density while
grown under different conditions. Speci®cally, the cells were
treated with 1 ng/ml platelet-derived growth factor b (PDGFb)
(A1) for 6 or 24 h; 10 ng/ml PDGFb (A2) for 6 or 24 h; 1 ng/ml
transforming growth factor b (TGFb) (B1) for 6 or 24 h;
10 ng/ml TGFb (B2) for 6 or 24 h; or hypoxia (C) for 6 or 24 h.
Control cells were grown under normoxic conditions in regular
basal medium (D) for 6 h. The resulting hybridization data
were not subjected to standard quality control evaluation and
no data ®ltering according to the thresholds of signals or
differential expression values was performed. Hierarchical
Pearson correlation clustering of hybridizations according to
expression pro®les of all 10 000 printed genes is shown in
Figure 4A. The major separation was obtained between three
groups of treatments: (i) all PDGFb treatments and control; (ii)
all TGFb treatments and 6 h hypoxia; and (iii) 24 h hypoxia.
While the close proximity of TGFb- and hypoxia-driven
expression pro®les could be explained by involvement of
similar signal transduction pathways triggered by these
treatments (25±29), a prominent separation of the 24 h hypoxia
sample had no straightforward biological explanation.

Similarly, there was no straightforward biological explanation
for the presence of the control sample among the PDGF
samples. However, when hierarchical clustering of probes was
performed according to 6283 expression pro®les correspond-
ing only to the genes complying with the KS criterion of
biological quality, the resulting tree became obviously more
relevant to the underlying biology (Fig. 4B): (i) the major
separation occurred between only two groups of hybridiza-
tions, one including all the PDGF treatments and control, and
the other including all the TGFb treatments and all the hypoxia
treatments; (ii) within the latter group, TGFb treatments
became clearly separated from the hypoxia treatments;
(iii) both hypoxia treatments appeared together; (iv) the
control probe was now separated from all the PDGF probes;
and (v) the proximity between the 6 or the 24 h pro®les
obtained with different concentrations of TGFb also became
more signi®cant. In contrast, when hierarchical clustering was
performed according to 1847 expression pro®les correspond-
ing only to the genes not complying with the KS criterion of
biological quality, the resulting tree became almost completely
biologically unordered (Fig. 4C), indicating the non-biological
nature of the analyzed expression pro®les. The distribution of
Cy3 signals, Cy5 signals and balanced differential expression
values in both analyzed gene subsets was similar, indicating
that indeed artifactual gene expression pro®les are not
generally removed from the analysis by establishing arbitrary
thresholds. Hierarchical clustering of 6000 or 2000 randomly
selected expression pro®les produced dendrograms identical to
the one shown in Figure 4A.

Thus, we conclude that our procedure is indeed able to
usefully distinguish between biologically relevant and arti-
factual expression pro®les of individual genes and their
clusters.

Figure 4. In¯uence of gene sorting according to the KS criterion of biological quality on hierarchical clustering of probes. (A) Hierarchical clustering of
probes within the hybridization set according to gene expression pro®les of all 10 000 genes printed on the microarray. (B) Hierarchical clustering of probes
within the same hybridization set according to expression pro®les of 6283 genes with a median KS P-value >0.2, predicted to have biological expression pro-
®les. (C) Hierarchical clustering of probes within the same hybridization set according to expression pro®les of 1847 genes with a median KS P-value
<0.001 predicted to have artifactual expression pro®les. Probes: A1, PDGFb 1 ng/ml; A2, PDGFb 10 ng/ml; B1, TGFb 1 ng/ml; B2, TGFb 10 ng/ml;
C, hypoxia (0.5% O2, 5% CO2). For details, see text.
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Second method of quality control of gene expression
pro®les: evaluation of biological validity of individual
differential gene expression values by calculation of
probability of patterns of high/low differential
expression values on the individual slide

Expression pro®les of genes are formed by the values of their
balanced differential expression in hybridizations included in
the set. Accordingly, we wished to investigate the uniformity
of distribution of these calculated differential expression
values over the corresponding slides. Our assumption was that
in certain hybridizations, prominently contributing to the
generation of artifactual pro®les, this distribution would not be
uniform. Rather, many spots with similar calculated differen-
tial expression values would be concentrated within limited
slide areas, indicating local technical problems. The whole
range of detected differential expression values was divided
into three intervals: (i) values higher than a selected threshold
for meaningful high differentials (for the examples presented
herein, the balanced Cy5/C3 ratio was selected to be higher
than 2); (ii) values lower than the selected threshold for
meaningful low differentials (for the examples presented
herein, the balanced Cy5/C3 ratio was selected to be less than
0.5); and (iii) an interval of values lying between these two
thresholds. Individual slide regions characterized by concen-
tration of spots with value characteristics attributed to the
same prede®ned interval were called `patterns of differen-
tials'. At the heart of method 2, there is a special algorithm that
was developed for automatic pattern detection (for details, see
Materials and Methods). Thus, all the individual differential
expression values obtained in every hybridization of the set
get an additional characteristic that is the probability of the
pattern that covers the corresponding spot (under conditions of
uniform distribution of high/low values). Differential expres-
sion values corresponding to the spots (per hybridization) that
are covered by patterns of small probability are considered as
artifactual.

The next question to ask is how to handle the data that were
found to be artifactual by application of method 2. The easiest
solution will be ®ltering out of the suspicious gene pro®les.
Indeed, removal of genes having artifactual expression
pro®les detected by method 1 from the analysis has signi®-
cantly improved the biological relevance of the thierarchical
clustering dendrogram (Fig. 4B).

However, it is clear that along with the purely biological
and purely artifactual pro®les, there must also exist pro®les
(and probably, they are the most abundant ones) of a mixed
nature, in which only part of the gene's differential expression
values is corrupted. Therefore, simple ®ltering out of all the
genes whose pro®les contain one or several suspicious
differential expression values cannot be considered as the
best solution because it will lead to a loss of potentially
important biological information.

A more feasible way of handling the artifactual differential
expression values is their correction. The correction (normal-
ization) of individual differential expression values derived
from the slides where the corresponding spot is covered by the
pattern may be performed according to the average of
expression values of the entire unpatterned area of the same
slide. A more accurate correction may be achieved using the
algorithm proposed by Yang et al. for within-print-tip-group

normalization (30). The robust local regression across the
range of gene expression intensity can be used here as is
proposed in Colantuoni et al. (31).

We propose an alternative way to handle the artifactual data
detected by method 2: diminishing the impact of a patterned
expression value on results of further data analysis. This type
of data processing can be easily applied to any kind of data
analysis by decreasing the input of suspicious values in the
corresponding function. Here it will be demonstrated on an
example of clustering of gene pro®les.

For a facilitated analysis of hybridization results, it is worth
having a clustering procedure that collects all the genes with
biologically similar behavior regardless of different artifactual
features that in¯uence their pro®les. Unfortunately, the
standard Pearson correlation measure equally weights both
artifactual and biological details. Moreover, as was shown for
the example in Figure 3, clustering may be mainly de®ned by
erroneous pro®le features (that usually tend also to be the
most prominent ones) while ignoring the biological
behavior. All this leads to a biologically meaningless gene
partition into clusters or, alternatively, to generation of a large
number of small clusters differing in terms of certain pro®le
characteristics, which may be biologically irrelevant.

To tackle this problem, we have developed a special
procedure of weighted clustering aimed at collection of all the
genes with similar/identical biological behavior regardless of
the contamination of their expression pro®les with artifactual
features. The idea of this procedure is to perform the clustering
of pro®les not on the basis of the standard correlation
coef®cient but rather according to a weighted coef®cient.
The correlation coef®cient between two gene pro®les, x and y,
is calculated based on the differential expression values (xi and
yi) constituting these pro®les. The weight attributed to the xi

differential is equal to the probability Ppatt of the pattern,
which includes a corresponding spot in the ith hybridization.
Differential expression values obtained from the spots
included in low probability patterns have smaller input in
weighted correlation coef®cient between the pro®les.

corrW�x; y� �
X

i

�wx
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and where weight wi
x is equal to the probability of a pattern

that covers a given spot in a given hybridization. If there are no
patterns covering the spot, wi

x = 1. It is obvious that this
weighted measure of distance is applicable not only for the
clustering of gene expression pro®les (Fig. 5A±D), but also for
the hierarchical clustering of probes (Fig. 5E and F) and for
any other type of statistical analysis of microarray results
involving a measure of distance. Figure 5A illustrates an
application of this procedure to clustering of gene expression
pro®les, that results in gathering within one cluster of two
(`red' and `blue') otherwise separately clustered groups of
genes. The biological nature of the `blue' pro®le is con®rmed
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(i) by the pro®le characteristics corresponding to the
treatments applied; and (ii) by a uniform microarray distribu-
tion of spots corresponding to the clustered genes (Fig. 5B).
The artifactual origin of the `red' cluster is con®rmed (i) by a
non-uniform microarray distribution of the corresponding
genes (Fig. 5C); and (ii) by the coincidence of this distribution
with the `zone of pattern' of low differentials on the slide,
corresponding to hybridization 8, which contributes the major
negative peak of the `red' cluster pro®le.

Thus, the biological quality of gene expression pro®les may
be determined not only by their inclusion in a chain of non-
uniformly distributed clusters (method 1), but also by
estimation of the presence of their corresponding individual
slide spots within the patterns of differentials (method 2). On
the other hand, calculation of the cumulative size of the
`patterned' areas may serve as a measure of quality control of
the slide itself: the more patterns of differentials are detected

in a certain hybridization, the poorer its technical quality
(L. Brodsky, A. Leontovich, M. Shtutman and E. Feinstein,
manuscript in preparation).

Comparison of the two methods of quality control of
gene expression pro®les

The interconnection of the two methods presented above is
easily demonstrated in simple cases where there is high
coincidence of areas of distribution of artifactual clusters over
the microarray template with the zones of patterns of high/low
differential expression values on the individual slides of a
hybridization set. An example shown in Figure 6 clearly
demonstrates that the microarray locations of genes included
in artifactual clusters (Fig. 6C and D) indeed coincide with the
positions of some of the patterns of high/low differentials
(Fig. 6E and F; the relevant patterns are colored in green)

Figure 5. Application of weighted measure of distance for clustering of gene expression pro®les and hierarchical clustering of hybridizations. (A) A cluster
obtained from the application of the weighted clustering procedure represents a combination of two otherwise separated clusters (shown in blue and red). The
x-axis shows the hybridization probes and the y-axis shows the ln of values of differential expression. (B) Microarray distribution of spots corresponding to
the genes within the `blue' cluster. (C) Microarray distribution of spots corresponding to the genes within the `red' cluster. (D) Pattern of low differentials on
the slide corresponding to probe 8. (E) Hierarchical clustering of probes within the hybridization set according to gene expression pro®les of all 10 000 genes
printed on the microarray (same as shown in Fig. 4A). (F) Hierarchical clustering of the same hybridization set using a weighted measure of distance, based
on the expression pro®les of all 10 000 printed genes. Note the improvement of the probe clustering in accordance with the underlying biological conditions
(for details, see the text and the legend to Fig. 4).
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detected on slides corresponding to the hybridizations
(hybridization 10 for the left panel and hybridization 2 for
the right panel), which predominantly contributed to the
features of calculated gene expression pro®les (Fig. 6A and

B). Additional patterns detected on these or other slides
contributed to formation of other artifactual clusters (not
shown). Interestingly, while in some cases these patterns
clearly overlapped with visually distinguishable slide

Figure 6. Coincidence of microarray distribution of artifactual clusters with the zones of patterns of differential expression values. (A and B) Two gene
clusters detected in the same microarray experiment, comprising 15 hybridizations. The x-axis shows the hybridization probes and the y-axis shows the ln of
values of differential expression. (C and D) Microarray distribution of spots corresponding to the genes included in the clusters shown in (A) and (B),
respectively. (E and F) Patterns of differentials appearing on the slides corresponding to hybridizations 10 and 2, respectively. The patterns whose position
coincides with the microarray distribution of clusters shown in (A) and (B) are colored green. (G and H) Deduced Cy5 microarray images of slides
corresponding to hybridizations 10 and 2, respectively.
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defects (Fig. 6G), in other cases the existence of pattern
of differentials could be detected only by the algorithm
(Fig. 6F).

When there are many patterns on different individual slides
of a given series of hybridizations, the correspondence
between areas of non-uniformly distributed clusters and
slide patterns becomes less obvious. Indeed, for this case,
the geometry of cluster distributions is de®ned by the interplay
of patterns on different slides.

According to our observations, nested clustering-based
detection of arti®cial pro®les is more sensitive than pattern-
based detection. Exclusion of arti®cial gene pro®les detected
by the ®rst method renders the dendrogram of probe proximity
closer to the biologically expected one (Fig. 4B, probes C-8h
and C-24h are together) than the dendrogram obtained after
correction of the patterned expression values (see Fig. 5B,
where probes C-8h and C-24h are rather far from each other).
We believe that the higher sensitivity of the ®rst method stems
from the fact that the results of pattern detection are strongly
dependent on such parameters of the procedure as threshold
for high/low values and threshold for probability of signi®cant
pattern.

Conclusions

We have developed a novel approach for quality control of
microarray hybridizations. Unlike other quality control
approaches, its main purpose is distinguishing between truly
biological expression data and artifactual data. Moreover, the
method not only helps in detecting erroneous data but also
struggles with at least some of the artifacts hampering high
throughput gene expression analysis. In contrast to other
approaches, which are based on a spot-wise quality control, in
our method detection of irrelevant data is a result of
simultaneous processing of the entire set of hybridization
values, thus providing more reliable statistics. As a conse-
quence, the method is very sensitive for the detection of
differential expression values that are under the in¯uence of
hidden technical factors.

The method is supported by a group of novel algorithms,
enabling (i) nested clustering of gene expression pro®les;
(ii) analysis of the non-uniformity of microarray distribution
of spots corresponding to the genes included in a cluster; and
(iii) detection of patterns (non-uniform distribution of signals,
differentials, etc.) on the hybridization slides.

The lack of biological relevance of a gene expression pro®le
is determined according to its inclusion in a nested chain of
non-uniformly distributed clusters, while the lack of biological
relevance of each balanced differential expression value
forming the gene's expression pro®le may be estimated
according to the probability of a `zone of pattern' to cover the
corresponding microarray spots on the corresponding slides.
The ability to distinguish between biological and artifactual
data may be further translated into decision making in three
ways. (i) Exclusion of genes with artifactual expression
pro®les from further analysis. (ii) Weighting of patterned
expression values (proposed in this manuscript). For example,
weighted clustering of gene expression pro®les gathers genes
with common biological behavior into the same group
regardless of the contamination of their pro®les with
technical artifacts. (iii) Normalization (correction) of pat-

terned expression values as was proposed by other authors
(30,31).

Standard quality control procedures tend to disregard
low differential expression values or suf®ciently high differ-
ential expression values obtained from microarray spots
characterized by low hybridization signals because of doubts
concerning their technical/biological quality. The developed
ability to estimate the biological relevance of the gene's
behavior supports the possibility of a more comprehensive
analysis of this potentially important though automatically
disregarded information. Keep in mind that expression of
many regulatory biological factors is normally very low.
Finally, the latest attempts to create microarray data deposi-
tories (e.g. the Gene Expression Omnibus project at NCBI,
http://www.ncbi.nlm.nih.gov/geo/) are expected to encounter
problems that stem from data of variable quality originating
from different sources utilizing different quality control
procedures and different technological platforms for micro-
array printing and data acquisition. Our method is independent
of spot-wise quality control parameters and mainly relies only
on knowledge of acquired hybridization signals and distribu-
tion of the printed genes over the microarrays. As such, it may
be helpful for handling the heterogeneous data supplied to the
depositories by various groups. Though random printing of
genes is currently assumed as a basis for the whole approach,
this procedure of printing may be established as a necessary
attribute of microarray design. At present, our algorithms
support 10 000 spot microarrays printed in the former Incyte
facility. However, the algorithms may be easily adjusted to
any technological platform.
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