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Axons develop in a series of steps, beginning with specification,
outgrowth, and arborization, and terminating with formation and
maturation of presynaptic specializations. We found previously
that the SAD-A and SAD-B kinases are required for axon specifi-
cation and arborization in subsets of mouse neurons. Here, we
show that following these steps, SAD kinases become localized to
synaptic sites and are required within presynaptic cells for structural
and functional maturation of synapses in both peripheral and
central nervous systems. Deleting SADs from sensory neurons can
perturb either axonal arborization or nerve terminal maturation,
depending on the stage of deletion. Thus, a single pair of kinases
plays multiple, sequential roles in axonal differentiation.
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Axons differentiate in a prolonged series of steps. Initially,
one of several equivalent neurites is specified as axonal (1).

The axon then grows, often over long distances, to reach target
regions. Within the targets, axons branch to form complex arbors
that contact postsynaptic cells (2). Some contacts then differ-
entiate into nerve terminals that contain active zones, calcium
channels, and concentrations of synaptic vesicles and mitochon-
dria (3). These components are organized in a precise manner to
facilitate rapid release of neurotransmitter in response to entry
of calcium through voltage-gated channels (4).
Formation of the presynaptic apparatus itself occurs in several

stages. Some components are transported together in packets
from cell bodies to synaptic sites (5, 6). These packets are then
combined with other components to form transmitter release
sites (7). Vesicles and mitochondria accumulate in juxtaposition
to these sites, perhaps trapped by cytoskeletal elements anchored
to active zones (8, 9). Synapses then mature functionally, adding
components, exchanging embryonic for adult isoforms, and ac-
quiring complex topologies (10, 11). During this period, many
synapses grow, the number of release sites increases, and neu-
rotransmission becomes more synchronized and reliable.
Signals from postsynaptic and neighboring glial cells organize

formation and maturation of nerve terminals, ensuring precise
matching of presynaptic and postsynaptic structures. Numerous
synaptic organizers that initiate this process have been identified,
including soluble, membrane-anchored, and extracellular matrix
molecules (12–15). In contrast, little is known about the signal
transduction components through which the organizers act.
Promising candidates include the Ser/Thr kinases SAD-A and
SAD-B, mammalian orthologes of Caenorhabditis elegans SAD-1
(16-18). Sad-1 was identified in a screen for mutations that af-
fected vesicle clustering at active zones (16, 19). We found
previously that mouse SAD-A and SAD-B play essential roles in
two earlier phases of axonal differentiation, axonal specification
and formation of terminal arbors (17, 18, 20). We show here that
they are also required for maturation of nerve terminals at motor
and autonomic synapses in the mouse peripheral nervous system
and at central synapses in the brain and spinal cord. By playing

discrete, sequential roles in a single cell type, SAD kinases can
coordinate multiple phases of axonal development.

Results
SAD Kinases Regulate Synapse Maturation at the Neuromuscular
Junction. To begin this study, we analyzed the skeletal neuro-
muscular junction (NMJ), a large synapse that undergoes a ste-
reotyped series of morphological changes during the first two
postnatal weeks (21, 22). Immunostaining with an antibody that
recognizes both SAD-A and SAD-B revealed that SADs are
present throughout the axons of peripheral nerves at postnatal
day (P)0 and P8 (Fig. 1 A–B′′). During the second postnatal
week, the localization of SAD-A/B shifted, leading to a concen-
tration in motor nerve terminals (labeled with antibodies to
Synaptotagmin II [SytII], a component of synaptic vesicles; Fig.
1C and ref. 23). In adults, SAD-A/B protein was largely localized
to nerve terminals (Fig. 1D). SAD-A/B protein also underwent
a shift in distribution from axonal tracts to synaptic neuropil in
spinal cord and retina (Fig. S1).
Because antibodies specific for either SAD-A or SAD-B stain

tissue poorly, we used SAD-A and SAD-B mutants to determine
which SAD proteins are present in motor nerve terminals. Levels
of immunoreactivity were reduced in SAD-A mutant mice and
abolished in mice lacking both SAD-A and SAD-B (Fig. 1 D–F),
indicating that both proteins are present at NMJs. Consistent
with this observation, we detected no synaptic defects in mice
lacking either SAD-A or SAD-B.
Because SAD-A;SAD-B double mutants (denoted, SAD-A/B−/−)

die perinatally (17), we used a conditional SAD-A floxed allele
(18) in conjunction with the SAD-B null allele to delete all copies
of SADs in motor neurons. We used two Cre drivers: Isl1-cre
(24) and ChAT-Cre (25) (Fig. S2A; denoted SADIsl1-cre and
SADChAT-cre, respectively). SADs are deleted from motor neurons
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by embryonic day (E)13.5 and E15.5 in SADIsl1-cre and SADChAT-cre

mice, respectively (18).
NMJs in the neonatal diaphragm muscle of control animals

are plaque-shaped structures in which two or more neurofilament-
positive motor axons contact an acetylcholine receptor (AChR)-
rich aggregate on the postsynaptic membrane (21). Subsequently,
the AChR clusters enlarge and acquire a complex, perforated
topology that eventually resolves into a set of finger-like branches;
in parallel, the overlying axons branch to maintain occupancy of
the postsynaptic site. In both SAD-A/B−/− and SADIsl1-cre mutants,
initial stages of synapse formation were normal as shown by ap-
position of structures stained for SytII and α-bungarotoxin (BTX),
which binds to AChRs (Fig. 2 A–D). Because most SADIsl1-cre

mutants died within 24 h after birth, we examined NMJ matura-
tion in SADChAT-cre mutant animals, which survived until adult-
hood but exhibited mild postural tremors. In SADChAT-cre mutants,
NMJ area was significantly reduced at P16, as was the overall
topological complexity of the synapse (Fig. 2 E–I). We observed
similar defects in the splenius rectus muscle of the upper back
(Fig. S3 A and B). SADs are therefore not required for for-
mation of NMJs, but rather are required presynaptically for syn-
aptic maturation.
One prominent feature of SADChAT-cre mutant NMJs was dis-

organization of neurofilaments. Rather than containing tapered,
finely branched neurofilament bundles, SADChAT-cre terminals
showed disorganized bundles that covered a large portion of the
endplate (Fig. 2 E–K). Ultrastructural analysis of NMJs from
SADChAT-cre animals showed the presence of filamentous material
adjacent to the presynaptic membrane, consistent with light mi-
croscopic analysis (Fig. S3 D and E). In many cases, the abnor-
mally positioned filaments appeared to displace synaptic vesicles
from normal-appearing active zones adjacent to postsynaptic folds
(Fig. S3 C–I). No defects were observed in the postsynaptic ap-
paratus by either light or electron microscopy, except the simpli-
fied topology noted above.
We also asked whether SADs are required for later steps in

synaptic maturation or maintenance. A well-characterized aspect
of synaptic maturation is elimination of supernumerary nerve
terminals accompanied by growth of those that remain (26). We
did not observe an increase in the number of multiply innervated
NMJs at P16 in SADChAT-cre animals relative to controls. Further,

we did not observe an increased severity of defects or an in-
creased number of denervated NMJs in 3- to 4-mo-old SADChAT-cre

animals (Fig. S3 J and K), indicating that SADs are not required
for synaptic maintenance.

SADs Regulate Synaptic Maturation of Neuron-Neuron Synapses in an
Autonomic Ganglion. To ask whether neuron-neuron synapses
require SADs for their development, we analyzed the cholinergic
synapses made by autonomic preganglionic axons on adrenergic
sympathetic neurons in the superior cervical ganglion (SCG). We
used the ChAT-cre line to examine the role of SADs in the de-
velopment of this neuron-neuron synapse as it acts in pregan-
glionic motor neurons, but not their postsynaptic targets in the
SCG (Fig. S2B). We used antibodies to synaptophysin (a synaptic
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Fig. 1. SAD kinases localize to synaptic sites during development. Sections
of splenius rectus muscle were stained with antibodies to SAD-A/B (A–F) plus
anti-neurofilament heavy subunit (NF-H, A′–C′) and anti-synaptotagmin II
(SytII, A′′–C′′) and/or BTX (D′–F′). SADs are redistributed from axons (labeled
with anti–NF-H) to endplates (labeled with anti-SytII) postnatally. SAD im-
munoreactivity at NMJs is decreased in SAD-A−/− animals and is completely
lost in SADChAT-cre animals at P35 (D–F), showing that motor nerve terminals
contain both SAD-A and SAD-B. (Scale bars: A–C′′, 5 μm; D and D′, 10 μm.)
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Fig. 2. SAD kinases are required for the maturation of the neuromuscular
junction. (A–H) Immunohistochemical analysis of diaphragm muscle of con-
trol and SADMN-cre (SADIsl1-cre in B and D; SADChAT-cre in F and H) animals
reveals impaired growth and topological maturation of SAD-deficient NMJs.
(I) Cumulative frequency histogram and graph (Inset) of endplate size in
control and SADChAT-cre animals at P16 showing reduced NMJ size when SADs
are deleted presynaptically (graph shows mean ± SEM of endplate size, n >
100, ***unpaired t test: P < 0.001). (E′, F′, J, and K) Endplates stained with
anti-neurofilaments to show disorganization of neurofilament structures at
SADChAT-cre NMJs. E′ and F′ show boxed areas from E and F at higher mag-
nification. (Scale bars: 5 μm in A for A–H and E′ for E’, F′, J, and K.)
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vesicle protein) to mark nerve terminals and antibodies to the
scaffolding protein PSD-93 to mark postsynaptic sites on ganglion
cells (27). SAD-A/B colocalized with synaptophysin in wild-type
ganglia, showing that these kinases are concentrated in nerve
terminals in the SCG (Fig. 3 A and B).
The number of synaptophysin- and PSD-93–rich punctae did

not differ detectably between control and SADChAT-cre animals at
any age examined (P8–adult), and the apposition of presynaptic
to postsynaptic specializations was maintained in mutants (Fig. 3
C and D). However, at P8 and later, presynaptic punctae in
SADChAT-cre mutants exhibited a marked increase in size and
intensity of staining (Fig. 3 C–E). Similar results were obtained
by using two other markers of nerve terminals, synaptotagmin II
(SytII) and vesiular acetylcholine transporter (VaChT) (Fig. S4
A–D). Thus, preganglionic nerve terminals lacking SAD kinases
mature aberrantly.
We used electron microscopy to analyze synaptic ultrastructure

in SADChAT-cre ganglia. In controls, synapses were characterized by
electron-dense presynaptic and postsynaptic membranes sepa-
rated by a synaptic cleft, and by clusters of synaptic vesicles in
close proximity to the presynaptic membrane (Fig. 3F and Fig. S3
E–G; ref. 28). In synapses of SADChAT-cre mice, in contrast, we
observed synaptic vesicle aggregates that were several hundred
nanometers in diameter and were displaced by >200 nm from
a visible active zone (Fig. 3G and Fig. S4 H–J). Abnormalities
were apparent in 24/41 terminals from three mutants, but in no
control synapses (n = 18). This defect in the organization of
vesicles at the nerve terminal is consistent with results from light
microscopic analysis, and with the displacement of vesicles from
release sites described above for NMJs.

SADs Regulate Maturation of the Calyx of Held. Does the role of
SAD kinases in synapse development extend to the central
nervous system? The small size and high density of most types of
brain synapses hamper light microscopic analysis. An exception
is the Calyx of Held, a large glutamatergic synapse in the median
nucleus of the trapezoid body (MNTB) of the auditory brain-
stem. These synapses undergo dramatic growth during the first
two postnatal weeks, during which nerve terminals envelope the
MNTB principal cells to form calyces that contain many trans-
mitter release sites (29, 30). SAD-A/B colocalized with the ve-
sicular glutamate transporter VGLUT1 and SytII, both of which
selectively mark calyces in the MNTB (ref. 31; Fig. 4 A and B).
The calcium binding protein parvalbumin (PV) is expressed by
the globular bushy cells of the ventral cochlear nucleus, which
form calyces in the MNTB (32), so we used a PV-cre line to
delete SADs from these cells. Cre activity was evident by P1 in
presynaptic axons and was also expressed by some MNTB neu-
rons by P6 (Fig. S2C).
By P24, fully mature calyces in controls had undergone sub-

stantial growth as demonstrated by the presence of VGLUT1-
and SytII-rich structures covering large portions of the surface of
MNTB soma (Fig. 4 C, E, and G). In contrast, a substantial frac-
tion of calyces in SADPV-cre animals showed reduced occupancy
of the postsynaptic cell (Fig. 4 D, F, H, and I). This phenotype
persisted at later stages, suggesting that calyx maturation was
defective rather than merely delayed in SADPV-cre animals.

SADs Play Sequential Roles in Formation of Sensory Synapses on
Motor Neurons. We showed recently that SAD kinases are es-
sential for terminal axon arborization by type Ia proprioceptive
sensory neurons (IaPSNs) in the ventral spinal cord (ref. 18; Fig.
S5A). These axons fail to contact and form synapses on motor
neurons in SADIsl1-cre mice, in which SADs are deleted at ∼E13.5
(18). To ask whether SADs play a distinct, later role in formation
of synapses by IaPSNs, we used the PV-cre line that acts selec-
tively in proprioceptive sensory neurons in DRG (33). Using
reporter lines, we found that PV-cre activity is only sporadically
detectable at E15.5–E16 in DRG neurons, after IaPSNs have
grown to the ventral horn (Figs. S2D and S5B). By P0, however,
SAD protein is undetectable in the somata of PV+ DRG neurons
of SADPV-cre mutants (Fig. S5 C and D). Consistent with these
results, IaPSN projections were truncated in SADIsl1-cre mutants
but IaPSN axons formed arbors in the ventral horn of SADPV-cre

mutants (Fig. S6).
We analyzed Ia-motor neuron synapses by using VGLUT1

and Shank1a as selective presynaptic and postsynaptic markers,
respectively (34). At P14–P16, VGLUT1-labeled Ia boutons in
SADPV-cre spinal cord were significantly larger than those in
controls (Fig. 5 A–D and G). As was seen in the cholinergic
synapses in the SCG, single VGLUT1 boutons were often ap-
posed to multiple Shank1a clusters. Expansion of VGLUT1
immunoreactivity in preterminal axon segments was observed
at many synapses, and the average VGLUT1 bouton volume
was increased by nearly 50% in SADPV-cre animals (Fig. 5G).
Thus, SADs play multiple, sequential roles in the assembly of
Ia-MN synapses.

SAD Kinases Are Required Presynaptically but Not Postsynaptically
for Nerve Terminal Differentiation. In studies described so far, we
deleted SADs from neurons that form nerve terminals in muscle,
autonomic ganglia, and spinal cord and from both presynaptic
and postsynaptic elements at the Calyx of Held. We next asked
whether loss of SAD kinases from postsynaptic cells alone affects
the maturation of nerve terminals that form on them. To this
end, we examined Ia-motor neuron synapses in SADChAT-cre

mice, in which SADs were deleted from motor neurons but not
IaPSNs (Fig. S2E). Postsynaptic deletion of SADs in motor
neurons had no detectable effect on the size and distribution of
IaPSN (VGLUT1+) boutons or on the clustering of Shank1a at
postsynaptic sites (Fig. 5 E–G). We also examined inhibitory
terminals on motor neurons in SADChAT-cre animals. Inhibitory
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Fig. 3. Maturation of autonomic ganglionic synapses require SADs. (A–B’)
SADs colocalize with presynaptic synaptophysin of control P16 SCG, but re-
activity is lost in SADChAT-cre animals. (C and D) Enlargement of synaptophysin
boutons in SADChAT-cre SCG relative to control. (E) Cumulative frequency his-
togram and graph (Inset) of bouton size in control and SADChAT-cre animals,
measured from images such as those in C and D (graph shows mean ± SEM of
bouton volume, n > 2,000, ***unpaired t test: P < 0.001). (F and G) Electron
microscopy shows vesicles clustered at an active zone (arrowhead) in a control
synapse (F), but large vesicle aggregates (arrow) localized away from the ac-
tive zone in a mutant synapse. (Scale bars: A–B′, 4 μm; C and D, 2 μm; F and G,
200 nm.)
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synapses labeled by antibodies to the vesicular amino acid
transporter and glycine receptors were unaffected by the loss of
SADs in postsynaptic partners (Fig. S7). Thus, the requirement
for SADs in nerve terminal development is restricted to the
presynaptic compartment at least in some types of synapses.

SAD Kinases Are Required for Functional Maturation of Synapses.
Loss of SAD from motor nerve terminals and the Calyx of
Held led to decreased size of these large synapses, which is likely
to result in decreased capacity for neurotransmitter release. In
contrast, autonomic and sensory nerve terminals were enlarged
in SAD mutants, raising the question of whether SADs could
enhance their function. We used electrophysiological methods to
address this issue.
For SCG, we recorded compound action potentials from the

postganglionic nerve upon evoked stimulation of presynaptic
fibers. This method is widely used as an indirect measure of
ganglionic transmission (35). At P2, the size of compound action
potentials from control and SADChAT-cre animals were in-
distinguishable (Fig. 6 A and B). Over the following 2 wk, the size
of the compound action potentials increased ∼threefold in
controls. In SADChAT-cre mutant ganglia, in contrast, the re-
sponses in older ganglia were similar to those seen at P2, dem-
onstrating that ganglionic transmission did not mature, consistent
with a role for SAD kinases in promoting synaptic maturation
(Fig. 6 A and B).
To analyze IaPSN-motor neuron synapses, we first recorded

from motor axons in L4 ventral roots following stimulation of L4
dorsal roots. Suprathreshold dorsal root stimulation induced
a strong monosynaptic (short latency) response in motor axons of
control animals at P0 (Fig. S8A). In SADIsl1-cre mutants, L4
dorsal root stimulation elicited only a weak monosynaptic re-
sponse and failed to induce action potential firing in motor
neurons in 4/4 animals (Fig. S8 A and B). In contrast, stimulation
of L4 dorsal roots in SADPV-cre animals elicited a robust mono-
synaptic response with normal synaptic latency (Fig. S8 C–F).

Thus, consistent with anatomical studies (Fig. 5), later deletion
of SADs in IaPSNs permits formation of functional connections
with motor neurons.
We then recorded intracellularly from motor neurons of

P5–P7 SADPV-cre animals while stimulating Ia sensory axons in
individual muscle nerves to ask whether loss of SADs from sen-
sory neurons perturbs maturation of the Ia synapse. The latency
of monosynaptic responses did not differ detectably between
control and SADPV-cre mutants (Fig. S8G). However, we observed
an ∼50% reduction in the average excitatory postsynaptic po-
tential (EPSP) amplitude in SADPV-cre animals relative to controls
(Fig. 6 C and D). Thus, in both autonomic preganglionic and
Ia nerve terminals, loss of SADs leads to enlarged size but
decreased function.
Finally, we asked whether impaired maturation of synapses in

SAD mutants resulted from a defect in synaptic specificity, which
could lead to formation of inappropriate synapses. In wild-type
mice, IaPSNs arising from a particular muscle selectively synapse
on “homonymous” motor neurons, which innervate the same
muscle (36). Accordingly, stimulation of quadriceps or obturator
muscle nerves elicited monosynaptic EPSPs in identified motor
neurons innervating the same muscle, but not that of the non-
homonymous muscle in control mice. Specificity was maintained
in SADPV-cre mutants (Fig. S8H), indicating that SADs are not
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required for establishing appropriate synaptic connections in
this circuit.

Discussion
Our main result is that SAD kinases are required for the struc-
tural and functional maturation of synapses. We analyzed four
synaptic types in detail, including ones in the peripheral motor
system (the NMJ), the peripheral autonomic nervous system
(synapses in the SCG), the spinal cord (synapses of Ia sensory
afferents on motor neurons) and the brain (the Calyx of Held).
In all cases, synapses formed in the absence of SADs, but the
maturation of nerve terminals was compromised. We used im-
munohistochemical methods to document defects in all four
synaptic types and complemented this work with ultrastructural
analysis of the NMJ and SCG synapses. We also used electro-
physiological methods to demonstrate functional defects in Ia-
motor neuron and SCG synapses. Although our survey is in-
complete, we conclude that SADs promote maturation of many,
and perhaps all, types of synapses in mice. Favoring this idea,
mutations of SAD orthologs in C. elegans and Drosophila also
lead to presynaptic defects (16, 37).
Although presynaptic maturation was impaired in all four

types of synapses examined, the defects varied among synaptic
types. SADs are required for synaptic growth in motor nerve
terminals and the Calyx of Held, two very large synapses with
multiple release sites. However, at SCG and Ia-MN synapses, the
defects involved distension of nerve terminals with, at least for
SCG, aberrant vesicle aggregation. What processes might SADs
control to promote growth of nerve terminals and localization of
synaptic vesicles? SAD-deficient NMJs display disorganized neu-
rofilament structures that do not branch appreciably, and SAD-
deficient DRG neurons fail to form terminal axon branches in the
central nervous system (18). SADs may therefore influence as-
pects of cytoskeletal dynamics as axons form branches either in
the terminal field or at presynaptic sites where large areas of
contact are made onto postsynaptic targets (NMJ and Calyx).
Interestingly, SADs phosphorylate both γ-tubulin and the mi-
crotubule-associated protein tau, which regulates microtubule
dynamics (17, 20, 38).
In Ia-MN and SCG nerve terminals, SADs appear to influence

localization of synaptic vesicles at active zones. This effect may

reflect the phosphorylation of another set of substrates by SADs.
Plausible candidates include proteins involved in positioning
vesicles at nerve terminals such as myosins or synapsins (39, 40).
SAD-B also phosphorylates RIM proteins, which are compo-
nents of a cytomatrix that is closely associated with active zones
(41). Our ultrastructural analysis did not reveal obvious defects
in the assembly of active zones at the NMJ or in SCG in SAD
mutants. We therefore propose that SADs act as links between
synaptic vesicles and presynaptic cytomatrix coordinating the
assembly of nerve terminal structure as synapses mature.
In previous studies, we demonstrated roles of SAD kinases in

the initial specification of axons and in the formation of their
terminal arbors (17, 18, 20). Taken together with results pre-
sented here, this work establishes SADs as critical organizers of
multiple steps in axonal development. However, roles of SADs
are strikingly selective in at least two respects. First, roles of
SADs appear to differ among neuronal types. SADs are required
for axon specification and polarization of projection neurons in
the cerebral cortex and hippocampus. In contrast, SADs are
dispensable for polarization of multiple other neuronal types,
including motor neurons, sensory neurons, retinal ganglion cells,
photoreceptors, and retinal bipolar interneurons, all of which are
strikingly polarized. Likewise, formation of terminal arbors is
SAD-dependent in NT-3–responsive sensory neurons, whereas
axons of motor neurons and NGF-responsive sensory neurons
show no obvious arborization defects in the absence of SADs
(18). Second, at least in the neurons examined to date, SADs are
not involved in all aspects of axonal development. As noted in
the Introduction, axons develop in a series of steps, including
specification, elongation, formation of terminal arbors, forma-
tion of presynaptic specializations, and synaptic maturation (42).
SADs are required in at least some neurons for axonal specifi-
cation, arborization, and synaptic maintenance but not for axonal
elongation or the initial steps in synapse formation.
These results raise two questions: First, how can SADs pro-

mote diverse steps in axonal morphogenesis, at least sometimes
(for example, in Ia-PSN sensory neurons) in a single neuronal
type? Second, why are effects of SADs confined to some neu-
ronal types and some developmental steps? The likely answer to
the first question is that SADs lie at the hub of a complex sig-
naling pathway, with distinct inputs and outputs depending on
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the cell type and developmental stage. For example, LKB1 acts
upstream of SADs in axonal specification, but not in axonal ar-
borization (18, 20); in the latter case, and likely in synaptic
maturation, other kinases are likely to activate SADs in re-
sponses to appropriate signals. Likewise, C. elegans SAD-1 acts
through neurabins to regulate polarity, whereas its effects on
synaptic differentiation are neurabin-independent (43). For the
second question, one likely answer is that SADs act redundantly
with other kinases. SADs are 2 members of a 12-member kinase
subfamily, most of which are expressed in neurons. The MARK
and NUAK members of the AMPK subfamily of kinases also
influence neuronal polarity and axon branching, respectively (44,
45), and thus may act in parallel with SADs in some circum-
stances. NUAKs also influence presynaptic mitochondrial dy-
namics during synapse development (45). Although our analysis
did not reveal changes in the distribution of mitochondria at
SAD-deficient nerve terminals, we speculate that SADs and
NUAKs may interact to regulate presynaptic development.
Finally, it will be interesting to ask whether SADs play even

more roles in axons. One attractive possibility is that SADs are
involved in synaptic function or plasticity (46). We have observed
that, in response to depolarization, SADs undergo dramatic de-
phosphorylation of inhibitory sites, a regulatory control mecha-
nism that facilitates SAD kinase activation (18). Thus, SADs may

also alter synaptic structure or function in mature nerve terminals
in response to activity-dependent signals.

Materials and Methods
Animals were used in accordance with protocols approved by Institutional
Animal Use and Care Committee at Harvard University in accordance with
National Institutes of Health guidelines. Mice carrying the SAD-A and SAD-B
null alleles and the SAD-A floxed allele have been described (17, 18). SAD-Afl/+;
SAD-B−/−; x-cre and SAD-Afl/fl; SAD-B−/− animals showed phenotypes similar
to wild-type animals and were used as littermate controls. The Isl1-cre line
(Isl1tm1(cre)Tmj; ref. 24) was provided by Tom Jessell, Columbia University, New
York. The Chat-cre [Chattm1(cre)Lowl; ref. 25] and PV-cre (Pvalbtm1(cre)Arbr; ref. 33)
lines were obtained from Jackson Laboratories. The RC::Epe, [Gt(ROSA)
26Sortm6Dym provided by Susan Dymecki, Harvard Medical School, Boston; ref.
47] and Ai14 (Jackson Labs; ref. 48) cre reporter lines were used to determine
patterns of cre expression. Animals were maintained on a mixed C57B6J/CD-1
genetic background.

Histological, ultrastructural, and electrophysiological methods are de-
scribed in SI Materials and Methods.
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