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TGF-β is a pathogenic factor in patients with acute respiratory
distress syndrome (ARDS), a condition characterized by alveolar
edema. A unique TGF-β pathway is described, which rapidly pro-
moted internalization of the αβγ epithelial sodium channel (ENaC)
complex from the alveolar epithelial cell surface, leading to persis-
tence of pulmonary edema. TGF-β applied to the alveolar airspaces
of live rabbits or isolated rabbit lungs blocked sodium transport
and caused fluid retention, which—together with patch-clamp and
flow cytometry studies—identified ENaC as the target of TGF-β.
TGF-β rapidly and sequentially activated phospholipase D1, phos-
phatidylinositol-4-phosphate 5-kinase 1α, and NADPH oxidase 4
(NOX4) to produce reactive oxygen species, driving internalization
of βENaC, the subunit responsible for cell-surface stability of the
αβγENaC complex. ENaC internalization was dependent on oxida-
tion of βENaC Cys43. Treatment of alveolar epithelial cells with
bronchoalveolar lavage fluids from ARDS patients drove βENaC
internalization, which was inhibited by a TGF-β neutralizing anti-
body and a Tgfbr1 inhibitor. Pharmacological inhibition of TGF-β
signaling in vivo in mice, and genetic ablation of the nox4 gene in
mice, protected against perturbed lung fluid balance in a bleomy-
cin model of lung injury, highlighting a role for both proximal and
distal components of this unique ENaC regulatory pathway in lung
fluid balance. These data describe a unique TGF-β–dependent
mechanism that regulates ion and fluid transport in the lung,
which is not only relevant to the pathological mechanisms of
ARDS, but might also represent a physiological means of acutely
regulating ENaC activity in the lung and other organs.

alveolar epithelium | fluid homeostasis

The acute respiratory distress syndrome (ARDS) is a devas-
tating syndrome characterized by alveolar flooding (edema),

which impairs gas exchange, leading to respiratory failure (1).
The high mortality rate of 35–45% observed in patients with
ARDS and the lack of any pharmacological therapy (1) under-
scores the need to better understand the pathomechanisms of
this lethal disease, in the hope of facilitating improved clinical
management of affected patients.
Alveolar edema occurs as a consequence of increased fluid

influx into the alveolar airspaces from the vasculature, across the
thin alveolo-capillary barrier (2), as well as a failure of trans-
epithelial Na+ and Cl− ion transport, which drives fluid clearance
from the alveolar airspaces. Transepithelial sodium transport is
undertaken by the concerted action of several ion transporters,
namely the Na+/K+-ATPase (3) and the epithelial sodium
channel (ENaC) (4, 5), which actively transport Na+ out of the
fluid lining the alveolar airspaces (epithelial lining fluid, ELF).
This process generates an osmotic gradient that clears water

from the alveolar airspaces (6). This fluid clearance process is
defective in ARDS patients with compromised alveolo-capillary
barrier function, and it is widely believed that edema fluid must
be cleared for patients with ARDS to survive (7, 8).
TGF-β is a key mediator of acute lung injury (ALI), where

TGF-β is activated locally by integrin αvβ6 (9) in cooperation with
protease-activated receptor-1 (10), to increase epithelial and
endothelial permeability and promote alveolar flooding. In fur-
ther support of a role for TGF-β in ALI, two studies have
demonstrated increased TGF-β levels in lung fluids from patients
with ALI/ARDS (11, 12), and in these patients lower TGF-β
levels correlate with more ventilator-free and intensive care unit-
free days (11). Some evidence has also implicated TGF-β in
transepithelial ion transport in vitro, where TGF-β down-regu-
lated gene expression of one of three ENaC subunits (13),
temporally modulated gene expression of the Na+/K+-ATPase
(14), and impacted Cl− transport (15). In animal models of ALI/
ARDS, administration of a soluble type II TGF-β receptor,
which sequesters free TGF-β, attenuated the degree of pulmo-
nary edema (9), confirming a role for TGF-β in disturbed lung
fluid dynamics associated with experimental ALI/ARDS, how-
ever, a role for TGF-β in regulating alveolar fluid reabsorption
has not been established.

Significance

The acute respiratory distress syndrome (ARDS) is a devasting
clinical problem with high mortality, no drug therapy, and
poorly understood pathogenesis. The hallmark of ARDS is
persistent pulmonary edema, attributable in part to impaired
Na+ and fluid transport across the alveolo-capillary barrier,
undertaken by the epithelial sodium channel (ENaC). We de-
scribe a unique signaling pathway driven by TGF-β, which
acutely dysregulates ENaC trafficking, blocking alveolar Na+

transport and edema resolution. This pathway represents
a unique pathomechanism in ARDS, highlights potential
“druggable” targets, and may represent a physiological means
of acutely regulating ENaC in lungs and other organs.
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In this study, a unique TGF-β signaling pathway is described,
whereby TGF-β—acting through the Tgfbr1/Smad2/3 axis (16)—
recruits phosphoinositide-metabolizing enzymes and an NADPH
oxidase to generate reactive oxygen species (ROS), which drive
αβγENaC complex internalization from the lung epithelial cell
surface and, hence, block the sodium-transporting capacity of
alveolar epithelial cells. Using animal and isolated organ models
of edema resolution, we demonstrate that TGF-β, applied at
clinically relevant doses, rapidly blocked the transepithelial ion
fluxes necessary for alveolar fluid reabsorption, and indeed al-
veolar fluid reabsorption itself. Given the rapid onset and pro-
gression of ARDS and the critical role played by ENaC-mediated
alveolar fluid clearance in the survival of ARDS patients, the
pathway described here has important implications for the un-
derstanding of the pathological mechanisms that promote for-
mation or persistence of alveolar edema in ARDS patients. This
idea is highlighted by the findings reported here that identify
TGF-β, exclusively, as the factor in the lung fluids of ARDS
patients responsible for promoting loss of ENaC from the lung
epithelial cell surface. In addition to revealing an entirely
unique TGF-β signaling pathway that regulates ion channel
trafficking, these data point to a pathway that may be amenable
to pharmacological manipulation in patients with ARDS, a dev-
astating and lethal syndrome for which no pharmacological
therapy currently exists.

Results
TGF-β Levels Are Elevated in Lavage Fluids of Patients with ARDS.
Levels of active TGF-β1 were elevated in bronchoalveolar lavage
(BAL) fluids of mechanically ventilated patients with ARDS
[137.1 ± 55.2 pg/mL by ELISA (Fig. S1A); 70.0 ± 38.8 pg/mL by
bioassay (Fig. S1B); (n = 17)]. Active TGF-β1 could not be
detected in BAL fluids from healthy volunteers (Fig. S1A)
(ELISA detection limit ∼7.5 pg/mL), but was detected by bio-
assay in three of eight volunteers (2.7 ± 4.2 pg/mL) (Fig. S1B),
approaching the bioassay detection limit (∼1 pg/mL). BAL fluid

TGF-β levels were elevated in ARDS patients irrespective of
disease etiology (Fig. S1 C and D). Using a BAL fluid to ELF
conversion of 1:100 (17), TGF-β levels in ELF of ARDS patients
are estimated at 7–14 ng/mL.

Exogenous TGF-β Application Blocks Fluid Reabsorption in Live,
Anesthetized, and Ventilated Rabbits. TGF-β was nebulized into
the lungs of live anesthetized rabbits at a deposited concentra-
tion of 10 ng/mL in the ELF, followed 30 min later by a 1-mL
fluid challenge. After 60 min, the ELF volume in TGF-β–treated
rabbits was twofold increased, from 0.65 ± 0.02 mL in control
rabbits to 1.12 ± 0.12 mL, indicating fluid accumulation in the
lung (Fig. 1A). Similarly, pretreatment with amiloride (10 μM in
ELF), an inhibitor of ENaC, caused a 1.5-fold increase in ELF
volume, but the effects of pretreatment with amiloride and TGF-β
together was not additive over each agent applied alone (Fig. 1A),
suggesting that amiloride and TGF-β may share the same targets
in the rabbit lung.

Exogenous TGF-β Application Blocks Fluid Reabsorption in Isolated,
Ventilated, and Perfused Rabbit Lungs. Similar to the observations
in live rabbits, preapplication of TGF-β to an isolated, ventilated,
and perfused rabbit lung led to a net gain in the steady-state lung
mass of 1.35 ± 0.27 g 60 min after a 2-mL fluid challenge, in-
dicating fluid retention in the lung, which was also seen when
lungs were maintained at 8 °C (which block active ion and fluid
transport) or treated with amiloride (Fig. S1F). Lung fluid re-
tention driven by TGF-β was blocked by preapplication of the
TGF-β signaling inhibitor SB431542 (10 μM in ELF) and by
phalloidin oleate (PO; 1 μM in ELF), a cell membrane-perme-
able inhibitor of F→G actin conversion that blocks endocytosis.
Trends in changes in the ELF volume of the isolated, ventilated,
and perfused rabbit lungs (Fig. 1B) paralleled the observations
made on net steady-state lung mass (Fig. S1F). TGF-β did not
impact lung endothelial permeability, assessed by capillary
filtration coefficient (Kf,c) (Fig. S1E), but oleic acid, used as
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Fig. 1. TGF-β blocks alveolar ion and fluid transport.
(A) TGF-β or vehicle (Veh) was nebulized into the
lungs of live, anesthetized rabbits. Changes in ELF
volume was assessed 60 min later (n = 4, per group).
The ELF volume (B) was assessed in isolated, venti-
lated, and perfused rabbit lungs pretreated with ve-
hicle (Veh), low temperature (8 °C), ouabain (ouab;
10 μM), TGF-β, SB431542 (SB), amiloride (Amil),
phalloidin oleate (PO), or combinations thereof, 60
min after application of a 2-mL fluid challenge (n = 8,
per group; * indicates vs. vehicle). (C) 22Na+ clearance
from isolated, ventilated, and perfused rabbit lungs,
treated with vehicle (blue) or low temperature (8 °C,
red), ouabain (10 μM, purple); TGF-β (10 ng/mL in ELF,
green], SB431542 (SB, 10 μM in ELF, yellow), and
TGF-β after SB431542 preapplication (brown). Data
quantified from multiple experiments (n = 8, per
group; * indicates vs. vehicle) for passive transport,
determined from [3H]mannitol flux, and the active
component of 22Na+ clearance. (D) Effects of ami-
loride (Amil, 10 μM in ELF, orange) and PO (1 μM in
the ELF, yellow) alone, and amiloride (black) and PO
(brown) applied 30 min before TGF-β application.
Data quantified described for A. Data represent
mean ± SD; *P < 0.05. NS, not significant.
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a positive control, did. Taken together, these data demonstrate
that TGF-β applied to the alveolar airspaces blocks alveolar
fluid reabsorption.

TGF-β Blocks Active 22Na+ Efflux from the Alveolar Airspaces in
Isolated, Ventilated, and Perfused Rabbit Lungs. Transepithelial
Na+ transport out of the alveolar airspaces drives alveolar fluid
clearance (18). Application of TGF-β (10 ng/mL in ELF) re-
duced the active component of 22Na+ efflux from the alveolar
airspaces by 80% (Fig. 1 C and D) in isolated, ventilated, and
perfused rabbit lungs. This effect was blocked by preapplication
of SB431542 or PO, consistent with our net steady-state lung
mass and ELF volume data (Fig. 1B). Also consistent was the
observation that the effects of TGF-β alone and TGF-β + ami-
loride applied together were not additive over TGF-β alone (Fig.
1 C and D), suggesting that both agents shared the same target in
the lung. These treatments did not impact passive (paracellular)
permeability, assessed by [3H]mannitol flux (Fig. 1 C and D),
although TGF-β signaling was demonstrably active in isolated
lungs (Fig. S1G). Taken together, these data demonstrate that
TGF-β blocks active 22Na+ efflux from the alveolar airspaces in
isolated, ventilated, and perfused rabbit lungs, but it does not
promote overt alveolar flooding, because endothelial barrier
permeability was not increased.

TGF-β Targets Amiloride-Sensitive Na+ Channels, but Not the Na+/K+-
ATPase in Lung Epithelial Cells. Transepithelial Na+ transport
across the alveolar epithelium is undertaken by the concerted
action of the Na+/K+-ATPase and ENaC. Although TGF-β
signaling was active in both A549 and primary mouse alveolar
type II (ATII) cells (Fig. S2A), TGF-β (0.01–10 ng/mL) did not
impact ouabain-sensitive 86Rb+-uptake by either cell type within
150 min (Fig. S2B) of TGF-β treatment, thereby excluding the
Na+/K+-ATPase as a target of TGF-β. However, in patch-clamp
studies on primary mouse ATII cells, TGF-β clearly blocked ion
currents, as revealed by the current density versus voltage re-
lationship (Fig. 2 A and B) and whole-cell current (Fig. 2C).
Consistent with previous reports (19) amiloride significantly
inhibited the currents (Fig. 2B). TGF-β and amiloride applied
together had no additive effect over TGF-β applied alone (Fig.
2B). Similarly, in A549 cells, TGF-β blocked both amiloride-
sensitive (Fig. S3) and benzamil-sensitive (Fig. S4) currents. The
amiloride-sensitivity is consistent with reports from another
group (20), and the effects of amiloride or benzamil applied
together with TGF-β were not additive, suggesting that TGF-β
did target amiloride/benzamil-sensitive Na+ channels in A549
cells. Both SB431542 and PO inhibited the effects of TGF-β,
confirming a role for the TGF-β/Tgfbr1/Smad2/3 signaling axis, as
well as actin mobility, consistent with observations made in live
rabbits and isolated rabbit lungs. Thus, an amiloride-sensitive
Na+ channel, most likely ENaC, was targeted by TGF-β.

TGF-β Drives Internalization of αβγENaC in Lung Epithelial Cells.
Stimulation of A549 cells and primary mouse ATII cells with
TGF-β for 150 min did not alter steady-state mRNA levels of the
genes encoding the three classic ENaC subunits: αENaC,
βENaC, and γENaC (Fig. S2C). ENaC complexes have very low
cell-surface abundance in primary mouse ATII and lung epi-
thelial cell-lines (21), thus both human (A549) and mouse
(MLE-12) lung epithelial cell lines were transfected with epi-
tope-tagged ENaC subunits for surface abundance studies, and
cells were pretreated with brefeldin A, to prevent retrograde
ENaC trafficking to the cell surface after internalization (22).
Several cross-reacting bands were evident when A549 cell
extracts were probed with anti-FLAG or anti-V5 antibodies (Fig.
3). These cross-reacting bands conveniently served as loading
controls (see untransfected and empty vector-transfected lanes
in Fig. 3). Stimulation of transfected A549 cells with TGF-β (10

ng/mL) for 30 min or 150 min had no impact on the cell-surface
abundance of human αENaC (Fig. 3 A and D) or γENaC (Fig. 3
B and D) when these two subunits were expressed alone. How-
ever, a rapid and dramatic loss of βENaC from the cell surface
was noted (Fig. 4 C and D). The βENaC “smear” is typical be-
cause of posttranslational processing (23), and less loading (2-μg
input) and shorter exposure time resulted in a single well-resolved
band for the cell-surface fraction (Fig. S2D). Identical trends
were observed for mouse βENaC in a mouse lung epithelium cell-
line (Fig. 3D and Fig. S2E). Because ENaC subunits are assem-
bled together in the endoplasmic reticulum before trafficking
(24), all three ENaC subunits were expressed together (25),
TGF-β reduced the surface abundance of the αENaC and
γENaC subunits (assessed together) and the βENaC subunit
(Fig. 3D and Fig. S2F). These data demonstrate that TGF-β
can rapidly promote loss of ENaC complexes from the surface
of lung epithelial cells. Because no αENaC was detected in
cell-culture supernatants after TGF-β treatment (Fig. S2G),
internalization—perhaps by endocytosis—rather than plasma
membrane shedding of ENaC, was believed to be the underlying
mechanism, an idea that is further supported by the PO data in
rabbit lungs. It is important to emphasize that TGF-β would drive
internalization of the entire αβγENaC into lung epithelial cells
using the βENaC located in these αβγENaC. No change in the
gene-expression levels of any ENaC subunit in response to TGF-β
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TGF-β. (D) TGF-β promoted the internalization of αENaC from the surface of
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from cells isolated from the lungs from two different patients is illustrated,
with replica determinations from each patient). Internalization was assessed
by flow cytometry. *P < 0.05, comparing mean fluorescence values from
TGF-β–treated versus untreated cells. (E) Representative scatter plot of hu-
man ATII cells screened by flow cytometry surface αENaC. The ATII cells, from
the same patient, were either untreated (green) or treated with TGF-β (10
ng/mL, 30 min, red).
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is suggested by our data (Fig. 3 A–C, input lanes, and Fig. S2C),
thus the formation, for example, of αENaC homomeric com-
plexes generating a nonselective 20 pS channel versus a selective
4 pS (26) is not anticipated or proposed here. Application of
SB431542 (10 μM) (Fig. 4A and Fig. S5A) or PO (1 μM) (Fig. 4A
and Fig. S5B) blocked the ability of TGF-β to promote ENaC loss
from the lung epithelial cell surface, underscoring roles for
Tgfbr1-mediated signaling and actin mobility. Furthermore, ge-
netic ablation of Smad2 and Smad3 by siRNA also blocked the
effects of TGF-β on βENaC surface abundance (Fig. 4A and Fig.
S5C). To independently support this idea, the surface expression
of αENaC, which can be detected on ATII cells by flow cytometry
(Fig. S4F), was assessed in mouse (Fig. 2D) and human (Fig. 2 D
and E) ATII cells before and after a 30-min exposure to TGF-β
(10 ng/mL). These data clearly revealed that TGF-β promoted
a significant loss of αENaC (a surrogate for αβγENaC) in primary
mouse and human ATII cells. This observation is particularly
important because the flow cytometry studies explored endoge-
nous ENaC, where subunits were expressed without an epitope
tag, and at endogenous levels, establishing confidence in the data
generated using epitope-tagged ENaC subunits overexpressed in
lung cell-lines.

TGF-β Is the Active Principle in the Lung Fluids of ARDS Patients That
Promotes Loss of ENaC from the Lung Epithelial Cell Surface, and TGF-β
Mediates Lung Fluid Balance in Bleomycin-Induced Lung Injury. In lung
tissue from patients with ARDS, no increase in the expression of
genes encoding αENaC or γENaC was observed, compared with
healthy lung tissue, although βENaC expression was elevated (Fig.
4B). BAL fluids from ARDS patients could rapidly drive βENaC
internalization, in comparison with BAL fluids harvested from
healthy volunteers (Fig. S6A). This effect could be blocked when
BAL fluids from ARDS patients were preincubated with a pan–
TGF-β1, -2, -3 neutralizing antibody (nAb) (Fig. 4 C and D) or
when A549 cells were pretreated with SB431542 (Fig. 4D and
Fig. S6B). These data indicate that TGF-β is the active prin-

ciple in BAL fluid from ARDS patients that can drive in-
ternalization of βENaC.
Lung injury induced by intratracheal instillation of bleomycin

is a widely used model of lung injury characterized by alveolar
edema in the early (>7 d postbleomycin administration) “exu-
dative” phase of lung injury (27). TGF-β signaling was neutral-
ized in vivo by administration of the orally bioactive SB431542
analog SD-208, initiated one day after bleomycin administration
to mice (Fig. S5D). Smad2 phosphorylation in the lung paren-
chyma was used as a surrogate readout of TGF-β signaling, which
was clearly dampened by SD-208 administration (Fig. 4E). The
administration of SD-208, applied in a therapeutic regimen 24 h
after bleomycin administration, led to normalization of lung fluid
balance in bleomycin-treated mice on day 5 postbleomycin ad-
ministration, as assessed by lung wet/dry ratio (Fig. 4F).

TGF-β Effects on ENaC Surface Abundance Depend on Phospholipase
D1 and PIP5K1α.A broad screen of candidate signaling molecules
ruled out several key cell-signaling pathways that have been
previously demonstrated to impact alveolar ion transport, in-
cluding Ca2+/calmodulin (28), protein kinase C (PKC) (29), and
phosphoinositide-3-kinase (15) pathways, where the following
inhibitors did not inhibit TGF-β–stimulated internalization of
βENaC: N-(p-amylcinnamoyl)anthranilic acid (25 μM; phospho-
lipase A2 inhibitor), isotetrandrine (1 μg/mL; the phospholipase
A inhibitor), BAPTA-AM (25 mM, Ca2+-chelator,), STO-609
(20 μg/mL; Ca2+/calmodulin-dependent protein kinase kinase
inhibitor), bisindolylmaleimide I [1 and 10 μM; a PKC inhibitor,
which discriminates between atypical (PKC-ι and PKC-ζ) and the
remaining unique and classic PKC isoforms], wortmannin (100 nM,
phosphoinositide-3-kinase inhibitor); and c-jun N-terminal kinase
inhibitor II (50 μM) (Fig. S7). However, 0.1% (vol) l-butanol could
block the impact of TGF-β–induced βENaC internalization, impli-
cating phospholipase D (PLD) (Fig. S8A). Genetic ablation of
PLD1 by siRNA blocked the ability of TGF-β to drive βENaC in-
ternalization (Fig. 5A). Expression of a dominant-negative PLD1
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variant in A549 cells also markedly reduced the ability of TGF-β to
drive βENaC internalization (Fig. S8C). TGF-β drove production of
both phosphatidylbutanol (PBut, which is diagnostic for PLD ac-
tivity) as well as phosphatidic acid (PA, a natural product of PLD
activity) by A549 cells (Fig. S8B). Genetic ablation of Smad2/3
blocked TGF-β–induced PBut, formation (Fig. S8B), placing PLD
activity downstream of Tgfbr1-induced Smad2/3 phosphorylation in
this pathway.
The PA generated by PLD1 is a regulator of phosphoinositide

signaling (30), because PA activates phosphatidylinositol-4-phos-
phate 5-kinase 1α (PIP5K1α), which generates phosphatidylinosi-
tol (4,5)-bisphosphate [PtdIns(4,5)P2], a phosphoinositide that has
been implicated in the positive (31) and negative (32) regulation of
ENaC activity. No specific inhibitor of PIP5K1α exists; however,
knockdown of PIP5K1α expression in A549 cells prevented TGF-
β–induced internalization of βENaC (Fig. 5B) but did not impact
TGF-β–driven PA production (via PLD1) (Fig. 5C). Thus,
PIP5K1α lies downstream of PLD1 in the TGF-β/βENaC in-
ternalization pathway. As expected, a dominant-negative PIP5K1α
expressed in A549 cells also prevented βENaC internalization
driven by TGF-β (Fig. S8D).

TGF-β Effects on ENaC Surface Abundance Depend on ROS Generated
by NADPH Oxidase 4. ROS and NO can regulate alveolar fluid
clearance (33) and ENaC activity (34, 35). During a pathway
screen, the cell-permeable nonspecific ROS quenchers poly-
ethylene glycol (PEG)-complexed superoxide dismutase (Fig.
S9A) and EU.K.-134 (Fig. S9C) both blocked the TGF-β–driven
βENaC internalization, although L-NAME (100 mM; an in-
hibitor of NO generation by NO synthases) was without effect

(Fig. S9D). TGF-β could drive ROS production in A549 cells
using an H2O2-coupled assay (29) (Fig. S9B), which was blocked
with SB431542 and Smad2/3 knockdown (Fig. S9F). Inhibitors of
complexes I–III of the mitochondrial electron transport chain
did not block TGF-β–induced ROS production, including 3-
nitroproprionic acid (complex II), thenoyltrifluoroacetone (com-
plex II), antimycin A (complex III), and rotenone (complex I)
(Fig. S9G). However, NaN3 (an inhibitor of complex IV and
NADPH oxidases) (Fig. S9G) and apocynin [a general ROS
quencher (36) and NADPH oxidase inhibitor (Fig. S9 E and
G)] did block TGF-β–driven ROS production and βENaC in-
ternalization. Genetic ablation of NADPH oxidase 4 (NOX4)
blocked TGF-β–stimulated ROS production (Fig. S9B) without
impacting baseline ROS levels (Fig. S9B, Inset) and also pre-
vented the TGF-β–induced βENaC internalization (Fig. 6A).
Thus, NOX4 is the source of TGF-β–induced ROS in A549
cells. Ablation of both PLD1 and PIP5K1α cells prevented
TGF-β–stimulated ROS production (Fig. S9B), demonstrating
that NOX4 lies downstream of both PLD1 and PIP5K1α in the
TGF-β/βENaC internalization pathway. Thus, NOX4 repre-
sents the most distal branch of the TGF-β pathway that regu-
lates ENaC trafficking. In support of a pathophysiological role
for NOX4 in regulating fluid balance in injured lungs, lung in-
jury was induced by bleomycin in mice in which Nox4 expression
was ablated by gene deletion. The nox4−/− mice (37) were de-
ficient in nox4 mRNA (Fig. S9H). The nox4−/− mice were fully
protected against disturbances to lung fluid balance that are
elicited by bleomycin application, which was revealed by nox4−/−

mice having a comparable lung wet/dry ratio to control mice
that received intratracheal administration of vehicle without
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group), with original representative experiments illustrated in Fig. S5. (B) Levels of mRNA transcripts encoding αENaC (SCNN1A), βENaC (SCNN1B), and γENaC
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or an asterisk (*) indicates P < 0.05. UT; untransfected; EV, empty vector-transfected.
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bleomycin (Fig. 6B; compare with positive control data in Fig.
4F). These data point to a key role for Nox4 in mediating
perturbed fluid balance in bleomycin-induced lung injury
in mice.

TGF-β Signaling Targets Cys43 of βENaC in Human and Mouse Cells.
Cysteine residues react with ROS and H2O2, and ethanol-induced
oxidation of cysteine residues in αENaC can modulate ENaC
transporting activity (38). Therefore, all cysteine residues in the
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cytosolic domains of βENaC (Fig. S10A) were converted to
serine residues. Conversion of Cys10, Cys30, Cys557, and Cys595

mouse βENaC to a serine residue (Fig. 6C) did not impact TGF-
β–driven βENaC internalization in mouse MLE-12 cells (Fig.
7C), but conversion of Cys43 completely blocked this effect.
Identical trends were observed using human βENaC, where
conversion of Cys43 (Fig. S10C) but not Cys30 (Fig. S10B)
blocked TGF-β–induced βENaC internalization by human A549
cells. The conversion of Cys43 to a serine or alanine residue did
not impair delivery to the cell surface, as is evident in the “no
TGF-β” lanes in Fig. 6C. A surface half-life was assessed by
pulse-chase surface labeling for the wild-type and Cys43 βENaC
variants expressed alone in A549 cells at 94 ± 18 min and 79 ±
19 min, respectively. As such, the delivery and baseline stability
of both βENaC variants does not appreciably differ (P = 0.70).
Furthermore, although mutational studies have revealed that
cysteine residues in the conserved cysteine-rich domains can
impact channel expression at the cell surface (39), Cys43 is not
among these cysteine residues. Additionally, although in-
tracellular thiols are known to modulate ENaC activity (40),
when all intracellular cysteine residues in αβγENaC were replaced
simultaneously (including Cys43 in βENaC, together with seven
other Cys residues), there was no appreciable impact on baseline
activity assessed in Xenopus oocytes. Interestingly, Cys30and Cys43

are the only two intracellular cysteine residues in human βENaC,
and their positions are exactly conserved comparing mouse and
human ENaC. Thus, the conserved Cys43 appears to represent
a direct or indirect target of TGF-β–induced ROS, generated by
NOX4. In response to TGF-β stimulation, the oxidation of Cys43

was revealed by the OxyBlot protein oxidation-detection method-
ology, which identifies the oxidation of cysteine residues in protein
(Fig. 6D).
The ubiquitination of ENaC by neural precursor cell

expressed, developmentally down-regulated (Nedd)4-2 ubiquitin
ligases is also recognized as a key regulatory mechanism of
ENaC trafficking (25, 41–44), and specifically related to the lung,
genetic ablation of Nedd4-2 in mice disturbs ENaC trafficking
and causes premature fetal lung fluid clearance (45) and cystic
fibrosis-like disease (46). Therefore, a role for Nedd4-2 in the
regulation of ENaC trafficking by TGF-β and the impact of TGF-
β on βENaC ubiquitination was also assessed. Knockdown of
Nedd4-2 expression by siRNA had no impact on the ability of
TGF-β to drive βENaC internalization (Fig. S11A), suggesting
that Nedd4-2 did not participate in the TGF-β/ENaC trafficking
pathway described here. Nedd4-2 has also been described as
a Smad2/3 E3 ubiquitin ligase (47). Although hypoxia was able to
promote increased ubiquitination of βENaC (48) (used here as
a positive control), there was no appreciable impact of TGF-β on
βENaC ubiquitination over a 150-min time course (Fig. S11B).
As such, ubiquitination does not play a role in TGF-β–mediated
trafficking of βENaC.
The preceding data, therefore, establish the sequence of this

unique TGF-β signaling pathway, where (i) TGF-β, acting via the
type I TGF-β receptor Tgfbr1, drives (ii) Smad2/3 phosphory-
lation, and (iii) PLD1, (iv) PIP5K1α, and (v) NOX4 activation,
which generates ROS and promotes βENaC internalization
through interaction or recognition of an oxidized Cys43. This
pathway is illustrated schematically in Fig. 7.
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Discussion
The data presented here demonstrate that TGF-β plays a key
role in the acute regulation of ENaC activity, and hence can
impact alveolar ion and fluid transport. These observations are
relevant to pathological conditions characterized by a failure of
fluid reabsorption, exemplified by alveolar edema in patients
with ALI/ARDS. TGF-β has already been implicated as an im-
portant mediator of ALI/ARDS; however, to date all proposed
roles for TGF-β in ALI/ARDS have been ascribed to long-term
effects dependent upon transcriptional regulation (9, 10, 13).
Further in vivo studies have demonstrated that intratracheal
instillation of TGF-β into live rats impedes fluid reabsorption in
the lung (13), and administration of a soluble type II TGF-β re-
ceptor, which sequesters free TGF-β during experimental lung in-
jury, attenuated the degree of pulmonary edema (9). In a clinical
setting, increased abundance of TGF-βmRNA and protein in lung
tissue fromARDSpatients (12) and increased active TGF-β1 levels
in BAL fluids from ARDS patients have been described (11, 12).
Notably, lower BAL fluid TGF-β levels in ARDS patients were
correlated with improved survival in ARDS (11). In our study, we
estimated active TGF-β levels in ARDS patients at 7–14 ng/mL in
the ELF, approximately double that of plasma TGF-β levels in
healthy subjects [4.1 ± 2.0 ng/mL (49)] but lower than TGF-β levels
in the pleural fluid during thoracic empyema [40 ng/mL (50)].
The activity of ENaC may be regulated chronically (at the gene-

transcription level), which may have pathological consequences.
For example, SCNN1G (encoding γENaC) transcription is im-
paired by TNF-α in Crohn disease (51), leading to impaired so-
dium transport across the colon epithelium (52). Related to our
study, TGF-β can down-regulate the SCNN1A gene (encoding
αENaC) in alveolar epithelial cells after a 96-h exposure to
10 ng/mL TGF-β (13). However, TGF-β did not impact mRNA
levels of genes that encode α-, β-, and γENaC subunits over the
short (30 min to 2 h) time course in our study, ruling out gene
regulatory effects.
The primary mechanisms regulating ENaC activity are acute,

allowing the cell to rapidly respond to fast-changing needs in
sodium absorption. These mechanisms include the regulation of
channel open probability (Po) (23, 53, 54) or channel trafficking
(55, 56), which alters channel cell-surface abundance, because
only a small fraction of ENaC channels reside on the plasma
membrane, the remainder being located in subapical compart-
ments that are rapidly delivered to the plasma membrane by the
appropriate stimulus (55). ENaC activity is negatively regulated
by internalization of channel complexes into clathrin-coated pits
(56), but the pathways directing ENaC internalization are un-
clear (56). In this study, we identify the β-subunit of ENaC as
a target for TGF-β–driven internalization. Appropriately, the
β-subunit of ENaC is the regulatory subunit responsible for
stabilizing ENaC complexes in the plasma membrane (4). This
finding represents a hitherto undescribed ENaC regulatory
pathway that relies on ENaC trafficking.
Disturbances to ENaC trafficking, which lead to abnormal cell-

surface stability of the αβγENaC complex, cause severe disease,
such as Liddle Syndrome, where mutations in the SCNN1B and
SCNN1G genes generate βENaC and γENaC variants, re-
spectively, that are truncated at the C terminus (57), leading to loss
of a critical PY recognition domain that prevents ubiquitination
and subsequent internalization (58), leading to increased cell-
surface stability and thus, hyperabsorption of sodium. In our study,
however, a role for ubiquitination in the trafficking of βENaC in
response to TGF-β, including ubiquitination mediated by the
Nedd4-2 ubiquitin ligase, has been ruled out.
In this study, we describe what may be a unique ENaC traf-

ficking defect, where TGF-β can drive abnormal internalization
of the αβγENaC complex, leading to a pronounced reduction in
αβγENaC complexes at the lung epithelial cell surface, and

hence, reduced sodium and fluid reabsorption. Importantly, BAL
fluids from healthy volunteers did not drive ENaC internalization,
but BAL fluids from ARDS patients did, indicating that BAL
fluids from ARDS patients contain a factor that drove ENaC in-
ternalization in alveolar epithelial cells. In this study, using neu-
tralizing antibodies or a TGF-β inhibitor (SB431542), TGF-β was
identified as being the factor in ARDS patient lungs that was ex-
clusively responsible for driving ENaC internalization by alveolar
epithelial cells. This observation makes a strong case for a role
for TGF-β in the impaired alveolar fluid reabsorption observed
in ARDS patients, thereby contributing to the rapid onset and
dangerous persistence of alveolar edema in these patients. In the
longer term, these effects would be exacerbated by the chronic
effects of TGF-β on the transcriptional regulation of ion-trans-
porting machinery and alveolo-capillary barrier permeability
described by other investigators (9, 13, 14), an idea supported by
the observation that live rats exhibit a reduction in distal airspace
fluid clearance 24 h after intratracheal instillation of TGF-β (13).
We have gone on to clarify seven steps of an entirely unique

TGF-β signaling pathway (Fig. 7) that underlie this ENaC traf-
ficking defect. Unique for TGF-β signaling—which generally
affects gene regulation—this pathway drives a rapid (within 30
min) and dramatic (>80%) reduction in the cell-surface abun-
dance of ENaC on lung epithelial cells. This pathway is activated
by TGF-β acting through Tgfbr1, which drives Smad2/3 phos-
phorylation, but then diverges from the classic TGF-β gene
regulatory pathway at this point by activating PLD1, a phospho-
lipid phosphohydrolase that generates PA (30). PA can activate
PIP5K1α (59), which we confirmed in this study to play a role in
the TGF-β/βENaC internalization pathway, contributing to
a growing and complex discussion about how phosphoinositides
regulate ENaC (53). PIP5K1α was located upstream of the ROS-
producing oxidase, identified as NOX4, and it is speculated that
PtdIns(4,5)P2 generated by PIP5K1α activated NOX4 (Fig. 7).
The activation of NADPH oxidases (although not NOX4) by
PIP5K1α enzymatic products is not without precedent, because
PtdIns(4,5)P2 can regulate the subcellular distribution and ROS
production by NOX5 (60). The proper cellular localization of
NADPH oxidases is critical for NADPH oxidase function (61);
therefore, PtdIns(4,5)P2 might directly activate NOX4, or might
recruit or position NOX4 to drive βENaC internalization. This re-
port, demonstrating that TGF-β can drive ROS production by
NOX4 in the absence of transcriptional regulation of the NOX4
gene, is unique. The findings presented here documenting the acute
negative regulation of ENaC activity by ROS are interesting, con-
sidering that neutralization of ROS in animal models of ARDS—by
application of the membrane-permeable aminothiol N-acetylcys-
teine in an acute pancreatitis rat model (62), or application of the
ROS quencher EU.K.-8 in a porcine LPS model (63)—attenuated
alveolar edema. It is tempting to speculate that these results might
have been in part because of neutralization of NOX4-generated
ROS, which would drive ENaC internalization. The observation
that nox4−/− mice are fully protected against the perturbations to
lung fluid balance that are characteristic of bleomycin-induced lung
injury highlight Nox4 as a candidate interventional target for the
management of disturbed fluid balance.
ROS, NO, and H2O2 are second messengers (33), and both ROS

and NO regulate ENaC activity (33). Additionally, reports exist
that indicate that oxidative stress, including exogenously applied
H2O2, can both negatively (64) and positively (65, 66) regulate
ENaC expression and activity, demonstrating that the regulation of
ENaC by oxidizing agents is complex, and that the source and
compartmentalization of the oxidative agent likely influence the
outcome of oxidative reactions on ENaC function. We demon-
strate here that NOX4-generated ROS (measured as H2O2) reg-
ulate ENaC internalization in response to TGF-β. Although H2O2
is a mild oxidant, H2O2 has signaling activity that is attributed to
chemo-selective oxidation of cysteine residues (67). A critical role
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for a conserved cysteine residue, Cys43, in both mouse and human
ENaC was demonstrated in our study, as was the oxidation of Cys43

in response to TGF-β. This finding suggests that the TGF-β/ENaC
internalization pathway is a conserved means of ENaC regulation
across many species [Cys43 is also conserved in rabbits (GenBank
accession no. NP001076197) and dogs (GenBank accession no.
XP534912), for example]. This βENaC Cys43 oxidation by NOX4-
generated ROS could serve as a trigger for βENaC internalization.
Some studies have reported that intracellular cysteine residues
regulate channel properties of ENaC expressed in Xenopus oocytes
(39, 40); however, channel trafficking was not assessed in those
studies. Our data clearly point to Cys43 as the cysteine residue that
exclusively mediates TGF-β–driven channel trafficking. The Cys43

residue appears to be an excellent candidate as a target for reaction
with ROS or H2O2 because of the adjacent acidic residue (Glu),
which confers special reactivity conducive to oxidative modification
(67). Interestingly, of all cysteine residues, only Cys43 was con-
served between human and mouse βENaC, where an adjacent
acidic residue was also present (Fig. S10A). Alternatively, NOX4-
generated ROS might target an intermediate signaling molecule
that recognizes the oxidized Cys43 in βENaC and promotes βENaC
internalization. These observations contribute to a growing body of
evidence implicating NOX4 (61, 68) and thiol regulation of ENaC
function as an important player in lung pathophysiology.
In summary, a unique TGF-β signaling pathway that acutely

regulates the activity of ENaC in the alveolar epithelium is de-
scribed herein. This regulatory pathway appears to be conserved
across several species, and may also represent a normal ENaC
regulatory mechanism in healthy tissues. Given the pathological
roles played by TGF-β in conditions associated with a failure of fluid
reabsorption, such as ARDS, this pathway represents a candidate
pathomechanism at play in affected lungs. Delineation of this sig-
naling pathway revealed several candidate enzyme systems thatmight
be targeted in an attempt to normalize alveolar fluid clearance in
affected patients, including targeting phosphoinositide metabolism
and ROS. Additionally, this pathway may also be operative under
physiological and pathological conditions in other organs where
ENaC plays an important role, including the collecting tubules of the
kidney and the colon.

Materials and Methods
Human Patient Material. Investigations involving human subjects received
institutional approval by the Ethik-Kommission of the Faculty of Medicine of
the University of Giessen (the equivalent of an Institutional Review Board in
Germany) (under approvals 84/83 and 29/01 for BAL and lung autopsy ma-
terial, and 10/06 for lung tissue from patients that underwent lobectomy),
and written informed consent was obtained from all patients or their next-
of-kin. All ARDS patients required mechanical ventilation. BAL fluid was
obtained by flexible fiberoptic bronchoscopy within the first 72 h after ini-

tiation of mechanical ventilation. The patient groups consisted of: (i) eight
control patients (44.9 ± 4.6 y; five male/three female) who were healthy
volunteers without history of cardiac or pulmonary disease; (ii) eight patients
with ARDS with nonpulmonary origins (sepsis, n = 5; pancreatitis, n = 1; other,
n = 2; 53.7 ± 7.7 y; five male/three female; PaO2/FiO2, 157.7 ± 21.9); and (iii)
nine patients with ARDS resulting from pneumonia (47.8 ± 5.0 y; five male/
four female; PaO2/FiO2, 159.2 ± 20.1). This patient population has been fully
described in another report from the authors (69). Lung tissue was also har-
vested at autopsy from five ARDS patients. All patients met all of the clinical
American-European Consensus Conference criteria, and died in the early
phase, with a mean duration of mechanical ventilation of 92 h. The clinical
characteristics of these patients are illustrated in Table 1. Control lung
specimens were obtained at autopsy from four patients who died of myo-
cardial infarction, with no evidence of pulmonary disease.

Ventilation of Live Anesthetized Rabbits. Animal investigations received gov-
ernment approval from the responsible Regierungspräsidium, which houses
the equivalent of an Institutional Animal Care and Use Committee in Germany
(Regierungspräsidium Darmstadt under approval number B2/330). New Zea-
land White rabbits (Bauer; 3 ± 0.5 kg) were anesthetized by a bolus of 0.3 mL
xylazine (Rompun, 20 mg/mL) and 0.2 mL ketamine (100 mg/mL). Animals
were artificially ventilated via a tracheal cannula with room air (tidal volume 6
mL/kg; 30 breaths per minute, I:E 1:1). Deep anesthesia was maintained by 25
mg/mL ketamine/1% xylazine in 0.9% NaCl infused at 8 mL/h via the left ear
vein. Arterial and venous blood pressures were monitored via sensors in the
left carotid artery and right ear vein. After a 30-min equilibration period, 0.5
mL saline alone or containing TGF-β (yielding 10 ng/mL in the ELF) was neb-
ulized into the lungs. After 30 min, 1 mL saline as a fluid challenge, with or
without amiloride (yielding 10 μM in the ELF), was nebulized to the lungs.
Ventilation was maintained for 60 min, after which the bronchoalveolar space
was lavaged with 50 mL iso-osmolar mannitol, and the ELF volume was
measured as described previously (70, 71).

Other Techniques. Radioactive tracer analysis in isolated, ventilated, and per-
fused rabbit lungs, 86Rb+ uptake, patch-clamp, real-time RT-PCR (primers de-
scribed in Table S1), immunoblotting, site-directed mutagenesis, transient
transfections, cell-surface biotinylation, PLD activity assays, siRNA interference,
half-life measurements, H2O2 assays, and in vivo neutralization of TGF-β or
application of nox4−/− mice in the bleomycin model of lung injury were all
conducted exactly as previously described, and are outlined in detail in the SI
Materials and Methods.

Statistics. Values represent mean ± SD. Means of unpaired experiments were
compared by the nonparametric Mann–Whitney U test. For the comparison of
dependent means, a paired Student t test was used. For electrophysiological
studies, values are mean SE, where intergroup differences were assessed by
a factorial analysis of variance with post hoc analysis with Fisher’s least-sig-
nificant difference test. Statistical significance was defined as P < 0.05.
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