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ABSTRACT

We report on a genome-independent microbial
®ngerprinting method using nucleic acid microarrays
for microbial forensics and epidemiology applica-
tions and demonstrate that the microarray method
provides high resolution differentiation between
closely related microorganisms, using Salmonella
enterica strains as the test case. In replicate trials we
used a simple 192 probe nonamer array to construct
a ®ngerprint library of 25 closely related Salmonella
isolates. Controlling false discovery rate for multiple
testing at a = 0.05, at least 295 of 300 pairs of
S.enterica isolate ®ngerprints were found to be
statistically distinct using a modi®ed Hotelling T2

test. Although most pairs of Salmonella ®ngerprints
are found to be distinct, forensic applications will
also require a protocol for library construction and
reliable microbial classi®cation against a ®ngerprint
library. We outline additional steps required to
produce such a protocol.

INTRODUCTION

The pace of technology and methods development for
microbial detection is exceptional and encompasses several
embodiments of nucleic acid microarrays, mass spectrometry,
microfabricated and/or fully automated PCR instrumentation,
capillary electrophoresis devices and a host of other on-chip
detection methods. However, current epidemiological and
forensic investigations of pathogenic microorganisms con-
tinue to use fairly standard, gel-based DNA ®ngerprinting
techniques (1±10).

In most cases, current DNA typing methods access a limited
complement of genetic information and the ®ngerprint is
based on DNA fragment sizing technology (i.e. gels). Despite
the widespread acceptance of gel-based DNA ®ngerprinting
techniques, however, they frequently fail to answer funda-
mental epidemiological questions. For example, Hancock et al.
identi®ed multiple sources of Eschericia coli O157:H7 in
feedlots and dairy farms, but were unable to discriminate

between isolates using PFGE (11). Thus, higher resolving
power is required to identify the source of disease outbreaks,
to determine how pathogens disseminate in the environment
and to investigate how genomic structure (or nucleic acid
signatures) change with time and cellular propagation. DNA
microarrays are one possible technology platform that
addresses the need for improved resolving power. More
importantly, however, microarray probes are ®xed in
(physical) space and the hybridization signal contains primary
genetic information (rather than size information). We there-
fore believe that DNA microarrays have the potential to
overcome most of the limitations of gel-based, DNA fragment
sizing methods in common use for DNA ®ngerprinting and
epidemiological questions.

In order to move beyond microbial identi®cation into
microbial forensics, the attendant technology also requires a
level of objectivity, quantitation and inferential rigor that can
withstand scrutiny in a court of law. Characterizing or
classifying a true unknown also implies that the technology
should not rely on a priori knowledge of the unknown's
suspected DNA sequence. Beattie et al. (12) were the ®rst to use
oligonucleotide microarrays for genomic ®ngerprinting applic-
ations in a technique very similar to the nucleic acid scanning-
by-hybridization membranes of Salazar and Caetano-AnolleÂs
(13) or the octamer genome scanning gels described by Kim
et al. (14). Nevertheless, microarrays have not yet been
developed for ®ngerprinting of closely related microorganisms
in the absence of speci®c DNA signature sequences (i.e. SNPs),
nor have the quantitative analysis and statistical tools been
developed to use microarrays for forensic analysis of micro-
organisms. The objective of this study was therefore to develop
a generic microbial ®ngerprinting method with the required
statistical foundations for quantitatively comparing ®ngerprints
of closely related microorganisms. The resulting methods are
generally applicable to any microorganism, without requiring
a priori knowledge of speci®c nucleic acid signatures.

MATERIALS AND METHODS

Bacterial isolates

A diverse panel of Salmonella enterica strains was assembled
from a large bank of isolates maintained by the Field Disease
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Investigation Unit at Washington State University (Pullman,
WA) (Table 1). Isolates were originally collected from
outbreak and surveillance work in the Paci®c Northwest
between 1987 and 2000 and represent no more than one isolate
from any single sampling event (15,16). Isolates were
propagated as described in detail elsewhere (15,16) and
bacterial serotype was determined by the National Veterinary
Service Laboratories (Ames, IA). All ®ve isolates having a
Typhimurium serotype were phage typed as DT104.

PCR ampli®cation

Repetitive extragenic palindromic (REP) consensus PCR
primers (17) were used to sample microbial genomes and
generate ampli®ed fragments for subsequent analysis on the
oligonucleotide microarray. Two PCR ampli®cations were
performed for every isolate. Cy3-labeled PCR primers
(REP1R-Dt 5¢, CY3-IIINCGNCGNCATCNGGC; REP2-D
5¢, Cy3-RCGYCTTATCVGGCCTAC, where I = inosine, R =
A or G, Y = C or T, V = G, A or C and N = A, C, G or T) were
obtained from Biosource International (Camarillo, CA). PCR
reagents were from a Qiagen HotStart Taq kit (Valencia, CA),
except for the dNTPs (Amersham-Pharmacia Biotech,
Piscataway, NJ). PCR ampli®cation was performed in 50 ml
total volume, using an MJ Research Tetrad Thermal cycler and
96-well plates (MJ Research, Watertown, MA). Final reaction
conditions were 150 ng genomic DNA or 3 ml cell suspension
and 13 PCR buffer (Qiagen), 2.5 mM Mg2+, 200 mM each
dNTP, 1 U Taq polymerase and 0.6 mM each REP primer.
Reagent grade water was used as a negative control and
Geobacter chapellei (a Gram-negative, metal-reducing bac-
terium) served as the out group. Thermal cycling conditions
were 95°C for 15 min, followed by 40 cycles of 95°C for 30 s,
40°C for 45 s, 72°C for 3 min and cooling to 4°C. PCR

ampli®cation was con®rmed by analyzing 20 ml aliquots of the
ampli®cation reaction on a 2% agarose gel in 13 TAE running
buffer. Aliquots of 20 ml of the remaining labeled ampli®ca-
tion products were hybridized directly to microarrays without
further manipulation, as described below. For conventional
gel-based ®ngerprinting, primer-labeled Salmonella REP±
PCR ampli®cation products were separated at 1±2 V/cm on
1.5% gels composed of a 50:50 mixture of SeaKem
GTG:Metaphor agarose (FMC Bioproducts, Rockland, ME)
in 13 TAE running buffer, both containing 3 mg/ml ethidium
bromide.

Microarray probes

A list of nonamer microarray capture probes was generated by
random computer selection based on the sequence of the E.coli
K12 genome (GenBank accession no. U00096). The selected
nonamer probes (Table 2) occur (on average) 35 times each
within the E.coli genome, with nearly equal probability of
hybridizing to each strand of the genome. In addition to the
nonamer capture probes, the microarray contained Cy3-labled
quality control probes (5¢-Cy3-TTGTGGTGGTGGTGTGG-
TGGTGGGGTTGGG TGGTGG-3¢) that served as positional
reference and spotting quality points and negative control
buffer blanks to test for non-speci®c interactions and residual
¯uorescence on the microarray surface.

Microarray fabrication

Microarrays were manufactured with amine-modi®ed oligo-
nucleotides and 6-well Te¯on-masked slides (Erie Scienti®c,
Portsmouth, NH) as previously described (18). Oligo-
nucleotide capture probes were resuspended in reagent grade
water and the concentration of each was measured in triplicate
by UV absorption (Bio-Rad Smartspec 3000; Bio-Rad,
Hercules, CA). Oligonucleotide capture probes were diluted
to 80±100 mM in 0.01% SDS, 50 mM NaOH print buffer.
Probes were printed with an Affymetrix 417 Pin and RingÔ
arrayer (Affymetrix, Santa Clara, CA), with two complete 192
probe microarrays contained within each well of a Te¯on-
masked slide. After printing, the slides were baked for 30 min
at 130°C and stored at room temperature in the dark.

Experimental design and microarray hybridization

In a prior work (19) we generated a binary ®ngerprint
signature for each array by measuring signal intensities and
declaring a probe spot `on' if pixels in the expected spot
location were more intense than adjacent pixels, so that the
hypothesis of a uniform neighborhood is rejected; otherwise
the spot was declared `off' for that replicate. For this study we
performed preliminary experiments of microarray fabrication
and method level variability before establishing the experi-
mental design outlined below. Twenty-four replicates were
required to begin to achieve a statistically reproducible binary
array signature for each organism and the set of 192
hybridized nonamer probes utilized herein. For the results
presented here, then, the microarray ®ngerprinting procedure
was de®ned by 24 microarray replications per isolate as {2
PCR ampli®cations per isolate 3 3 slides per ampli®cation
reaction 3 2 hybridization wells per slide 3 2 microarrays per
hybridization well}. The 25 Salmonella isolates were organ-
ized into nine separate `isolate blocks' (Table 1), where each
block (except for the last block) contains three isolates.

Table 1. Isolates utilized in this study

Blocka Isolate Serotype

1 1 Enteriditis
20 Arizona
21 Typhimurium

2 22 Dublin
29 Enteriditis
34 Arizona

3 35 Meleagridis
43 Typhimurium
45 Meleagridis

4 60 Hadar
78 Meleagridis
80 Arizona

5 92 Meleagridis
107 Hadar
115 Hadar

6 116 Typhimurium
117 Typhimurium
125 Enteriditis

7 141 Typhimurium
163 Arizona
165 Hadar

8 186 Meleagridis
191 Arizona
194 Hadar

9 198 Enteriditis

aBlock refers to the experimental design and statistical methods for creating
microbial ®ngerprints, as described in Materials and Methods.
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Isolates from the same block were compared directly on the
same slides (the slides thus provide a `blocking' effect for the
isolate triples).

Twenty microliters of Cy3-labeled REP±PCR products
were diluted to 70 ml in hybridization buffer to achieve a ®nal
concentration of 43 SSC (13 SSC = 0.15 M NaCl, 0.015 M
trisodium citrate, pH 7.0), 53 Denhardt's solution (1 g/l Ficoll
400, 1 g/l polyvinylpyrrolidone and 1 g/l ultra-pure bovine
serum albumin). Ampli®cation products were heat denatured
for 5 min at 95°C, snap cooled on ice and divided evenly
between two replicate wells per slide. Independent hybridiza-
tions were performed using six slides for each isolate block,
split evenly between two independent PCR preparations. The
®nal study design allowed decomposition of experimental
variability into three separately estimable components: (i)
variability between arrays within a slide; (ii) variability

between slides for the same PCR preparation; (iii) variability
between different PCR preparations.

Denatured amplicons (in hybridization buffer) were hybri-
dized overnight at 4°C and the slides washed ®ve times in an
ice-cold solution of 13 SSC. Slides were dried with
compressed air and imaged directly on an ArrayWoRx
Microarray Imager (Applied Precision, Issaquah, WA) using
548 nm excitation/595 nm emission ®lters and a 1.5 s exposure
time. ArrayWoRx analysis software was used to identify the
location and size of every spot in the array pattern using a
®xed grid and to extract an average pixel intensity value for
every spot and for the local background around every spot.

Statistics

The initial goal of the statistical development was to determine
whether the isolates have distinct microarray ®ngerprints. A

Table 2. Probe list

No. Sequence No. Sequence No. Sequence No. Sequence

1 GGCGATTAC 49 CCGCATATT 97 GACGGTTTC 145 TAATGTCGC
2 TATCCGCGT 50 GCTTACGCA 98 TTGTACCAG 146 GTGTTGTAC
3 CCAGCGATA 51 GTTCCACTG 99 TGTAGCGTT 147 TCTTGGCAT
4 CTTTGCCTG 52 TCTTCCACA 100 ATGTGACCA 148 GCCAAATGA
5 TAAACTGCC 53 GGTTTCCAC 101 GCGGCATAA 149 TCACGGTAG
6 TCGACAGTG 54 AGGCAATGA 102 ATCGTTGCA 150 CGAAGAAGG
7 TCACCACCT 55 GCGATGACA 103 CAGAACGAC 151 CGTAACCAT
8 CGGAACGTA 56 GCGCTGTAA 104 GAATGACCA 152 GGTGTACCA
9 TTATGCCGA 57 TCTATCTGC 105 GTTCAAGGT 153 CCCGCAAAT

10 AAGATGCCA 58 TTGGTCAGC 106 CGATGACTG 154 TTGGCATCC
11 AGGCCAGTT 59 CGTGGTATG 107 CGTCAACTT 155 ATAACGGCG
12 CTTTGCCCT 60 GTGGTTTCC 108 GCAGCAATT 156 CACCGCAAT
13 GATGTCGGT 61 GTGGTTTCC 109 ACCATTGTC 157 GTCAACTTC
14 TCGGCTTCT 62 ACTGACGCA 110 ATCGTGGTC 158 TTCTCGACA
15 GTTTCCTGT 63 CGAAGTGTT 111 ACTTCCGGT 159 CAACGGCTT
16 GGGCAATAC 64 GCAGACAAT 112 AGGAAGTGG 160 CCTCAGCAA
17 GCAAACAGC 65 CAGTACGTG 113 GACGCCATT 161 CTGGTCCAT
18 TGGCAACAC 66 ATCCAGACT 114 TTACCCACG 162 GCTTCGGTA
19 CACGGGTTA 67 GTTTGAGCG 115 ACGGTCGAT 163 CTGGTCGTT
20 GACAGAAGA 68 GCAGTAAGC 116 CGTAGCGTT 164 CGTTAGAAC
21 GCAAAGAGT 69 TTCAGCCAA 117 ACACGCAGT 165 TGCGACCAT
22 GGTTGCCAT 70 CGGGTAAAG 118 AGCCCATTA 166 GCTATTGCC
23 TGACTGATG 71 ACACAGCAG 119 CAACCCAAC 167 TAGCGGCTT
24 TGACGGTAA 72 AGAAAGCCT 120 CAGACAGAC 168 GCTAACTTC
25 CTGTAATGC 73 CATTGACGG 121 CCATGCGAA 169 CGACTGGTT
26 AAGCCTTTC 74 CACACCACA 122 CGAAAGCCA 170 GCCGTAAAG
27 TCCATCGGT 75 ACACAGCGA 123 GAAAGGCAG 171 CGACACGTT
28 TCACTTTGC 76 CTGCAAAGG 124 GCTGGTATA 172 GGGCCATAA
29 CCATGCAGT 77 TTCGGCAGT 125 GGTTTCGTC 173 CACGCGTAA
30 CTGTTGGTG 78 GTTGCCGAA 126 GTTGAGTTG 174 ACCGTTGGT
31 AATGAGCCA 79 ACCACCATG 127 TATACAGCC 175 ACGAGCATT
32 GAGGTTGTC 80 ATGCTCGTC 128 AATTGCACC 176 ATGGCACCT
33 TGGTGTCAC 81 AACCGATGT 129 CGTACCAAT 177 AGTAAGCGA
34 TGGCAATGC 82 AAGAAGAGG 130 TATATCGGC 178 TGTCGCCAA
35 ACAATCGCT 83 TGCAGAAGC 131 CAACCAACG 179 TGGTGAAGT
36 CGAGATGCA 84 TTCCAGTCA 132 TGCCATTGG 180 AGTGACCGA
37 TGCCGTTAA 85 TACGAATGC 133 CGAAGAGTG 181 TCGTTTCCA
38 CGTTATGCT 86 CTTCAATGG 134 AACTGCAAC 182 CCGTCTTTC
39 TCTGGTAAC 87 AACGTAACG 135 AACGCAGTA 183 AGTGGAGTA
40 TATCGTGGT 88 AGCGGCATA 136 TTAGCCACA 184 TACAGCGGA
41 TAACCAGGC 89 GCGAGAATG 137 CGGCTAAAC 185 GTCGTCAAT
42 GTTACAGGG 90 CGCTATCTC 138 TTACGCGAA 186 CAATGACAG
43 GTTGAAGGC 91 TCCGTCAGT 139 GCGTAACGA 187 CAGCTAATG
44 AGGGAATGC 92 GGCAAATGG 140 AATGCGGGT 188 CGTGCATAA
45 ATTTCGCAG 93 CTCAAGCCA 141 TCCATTTGC 189 ACGACTTCA
46 ATAACGCCT 94 GCCGTATCA 142 TCGGTTAGC 190 GACCACTTC
47 ACTGTTCCA 95 GGTGAAGTG 143 GAAGCAGGT 191 CGGTAACTC
48 CAGCCTTTG 96 ATGGGTGCT 144 TGGTGGCTT 192 ACGGAGTTA
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background-corrected intensity value was computed for each
spot by taking the (variance stabilizing) log transform of the
ratio of the mean spot pixel intensity to the mean background
pixel intensity, i.e. log(mean spot pixel intensity) ± log(mean
background pixel intensity). Following background correc-
tion, intensity values for each array were linearly transformed
to have mean 0 and standard deviation 1 to correct for
variations in brightness between arrays. The linear trans-
formation was not performed across entire slides, but only on
individual arrays within slides (note, there are 12 arrays
on each slide, representing three isolates). This self-
normalization to mean 0 and standard deviation 1 is somewhat
conservative and might mask real differences between isolate
®ngerprints. In fact, analysis of variance comparing array
average intensities for different isolates on the same slide
revealed a systematic difference in overall signal intensity
between isolates, suggesting that some discriminatory
information is lost in the self-normalization (not shown).

The variation between normalized spot intensities can be
described using a linear mixed-effects model. Let Yiplcr denote
the background-corrected, normalized spot intensity for the ith
isolate on the pth probe for the rth replicate array on the cth
slide for the lth PCR (i = 1¼25, p = 1¼192, r = 1¼4, c= 1¼6
and l = 1,2 within an isolate block). The model is

Yiplcr = mip + qipl + aiplc + eiplcr,

where mip is the average intensity for the ith isolate on the pth
probe, qipl ~ (0,dip

2) is a random between-PCR effect, aiplc ~
(0,tip

2) is a random between-slide effect, eiplcr ~ (0,sip
2) is a

residual term describing the variability between replicate
arrays on the same slide and qipl, aiplc and eiplcr are
independent. Variance components dip

2, tip
2 and sip

2 were
estimated separately over 24 replicates for each isolate/probe
combination using the restricted maximum likelihood method
(REML).

The sample mean over 24 replications for the ith isolate, pth
probe (denoted YÅ ip¼) has mean mip and variance Vip = dip

2/2 +
tip

2/6 + sip
2/24. If we make the simplifying assumption that

the relative proportions of variance components are the same
for all i, p, then Vip = rSip

2 for some constant r and where Sip
2

is the sample variance computed over the 24 replicates. In this
case, isolate averages YÅ ip¼. might be statistically compared
using sample standard deviations, thus simplifying computa-
tions. Importantly, we do not assume that the 24 replications
are independent (clearly, by design, they are not, so that the
effective sample size is <24). Instead, we use distribution-free
approaches to compare isolate ®ngerprints.

To identify probes with differential signal intensity between
pairs of isolates, we employed an empirical Bayes method
following the approach described in Efron et al. (20), which
provides a solution to the so-called simultaneous inference
problem, i.e. we are making inferences about 192 probes for
each of 300 pairs of isolates, or 57 600 total inferences. Failure
to account for chance effects due to the large number of
comparisons can result in overly optimistic conclusions. Using
the linear model (lm) function in the R computing environ-
ment (version 1.7.1; R Foundation for Statistical Computing,
Auckland, NZ), we computed the difference statistics between
pairs of isolates for each probe, pooling variance across all 25
isolates. As an alternative, and if we chose not to make the

simplifying assumption about variance component propor-
tions, we could employ the full linear mixed effects model,
computing difference statistics using the lme function in R. In
the empirical Bayes approach of Efron et al. (20), the
probability density of the difference statistic is expressed as a
mixture

f(z) = p0f0(z) + (1 ± p0)f1(z),

where p0 is the prior probability that there is no difference
between two isolates at a probe, f0 is the density of difference
statistics when there is no difference (the null density) and f1 is
the density when there is a difference. The statistical problem
is to estimate the (a posterior) probability that a probe
differentiates two isolates,

p1(z) = 1 ± p0f0(z)/f(z).

We estimated f by smoothed Poisson regression (B-splines,
6 df) ®t to the bin counts of the histogram (with 250 bins)
computed from the difference statistics. (Separate analyses
were performed for comparisons between isolates from the
same isolate block and for comparisons between isolates from
different isolate blocks. Test statistics for these two groups, by
design, will have different distributions.) The null density f0
can be similarly estimated from empirically derived null
difference statistics, computed for example using permutation
or re-sampling methods. When p0 is assumed to be near 1 (a
conservative assumption), Efron (Technical Report 2003-28B/
225, Department of Statistics, Stanford University) showed
how to obtain a reasonably accurate empirical null distribution
by ®tting the central peak of f to a normal density.

Next, we performed a multivariate test, comparing the entire
192 probe pro®les for each pair of isolates. Speci®cally, for
isolates i and i¢ we test H0: mi = mi¢ versus HA: mi ¹ mi¢. The usual
Hotelling T2 test statistic for multivariate two sample com-
parisons is proportional to the Mahalanobis distance,
dMah

2(i,i¢) = (yÅ i ± yÅ i¢)¢S±1(yÅ i ± yÅ i¢), where S is the (pooled)
within-isolate sample covariance matrix. Because of the large
number of probes relative to the number of samples, this
difference statistic can be very unstable and, depending on how
the co-variance matrix is de®ned, might not even be comput-
able (due to a singular covariance matrix). Thus, we computed
modi®ed Hotelling T2 difference statistics using a data
reduction approach proposed by Langsrud (21). The difference
statistic is obtained via singular value decomposition of the
combined data matrix for two isolates and is given by:

T2 = [(SS1 + L + SSk)/k] 4 [(SSk + 1 + d + L + SSn)/(n ± k ± d)],

where SSi is the sum of squares contribution of the ith
component, k is the number of retained components and d is
the number of buffer components, which were not included in
the test statistic [to prevent `contamination' of the numerator,
increasing the power of the test; see Langsrud (21)]. Of the 48
components, we (somewhat arbitrarily) retained the ®rst ®ve
and used the next 16 as buffers.

To test the signi®cance of the 300 computed T2 values, we
constructed an empirical null distribution for T2 (the distribu-
tion if there is no difference between isolate pairs) by re-
sampling (with replacement) error residuals Ripcr = Yipcr ±
medianr(Yipcr) and slide residuals Dipc = medianr(Yipcr) ±mip,
similar to the approach in Amaratunga and Cabrera (22). The
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corresponding vectors containing residuals for all 192 probes,
Dic and Ricr, were sampled and summed to mimic the
experimental design and T2 was computed for each simulated
experiment. We performed 5000 such experimental simula-
tions for both within-isolate block comparisons and between-
isolate block comparisons and computed P values by
comparing the 300 computed T2 values with the appropriate
empirical null distribution. We adjusted P values to control the
false discovery rate for the large number of tests using
Benjamini and Hochberg's sequential algorithm (23): let
p(1) < p(2) < ¼ < p(300) be the ordered P values. Find
r = max[i:p(i) < (ia/300)] and reject H(1)

0 ¼ H(r)
0. This

algorithm implicitly takes p0, the prior probability that isolate
pro®les are not different, to be 1, which is conservative.

RESULTS

Statistical analyses

Figure 1 shows the need for normalization across replicate
arrays. Scatter plots of median intensity values (by isolate)
across arrays on a slide (y-axis) versus median intensity over
all slides (x-axis) for the `isolate block' {35,43,45} are given
before (Fig. 1A) and after (Fig. 1B) self-normalization. The
un-normalized plots reveal a systematic difference in overall
brightness between two independent PCR preparations. Self-
normalization removes these differences. Similar results were
observed for the other isolate blocks (not shown).

The distribution of total variance for 192 probes, computed
separately for each isolate, is shown in Figure 2.
Approximately 20 probes have consistently larger than
average variance. There are additional differences between
individual isolates. On average, 80% of variability is attributed
to within-slide variation, 11% to variation between slides for
the same PCR preparation and 9% to variation between
independent PCRs (Fig. 3). Self-normalization successfully
removed most of the differences between slides and PCR
preparations.

Pairwise comparisons

Using the empirical Bayes method to identify probes with
differential signal intensity between pairs of isolates, and
making the conservative assumption that very few of the
differences are signi®cant, we found that all but ®ve of the 300
isolate pairs have at least one discriminating probe, i.e. for 295
of the 300 isolate pairs we conclude that Pr(two ®ngerprints
differ at one or more probes) > 0.95. Figure 4 displays the
number of discriminating probes for each pair of isolates
calculated in this manner.

Utilizing the modi®ed Hotelling T2 difference statistic, 296
of 300 pairwise comparisons were found to have distinctly
different ®ngerprints at a = 0.05. Figure 5A shows the
pairwise distances between isolates, from black (not signi®-
cantly different) to white (very different); Figure 5B shows the
results if we exploit the blocking advantage enjoyed by isolate
pairs found in the same `isolate block'. This analysis
subsumed between-PCR variability in the slide residuals,
largely to generate a large pool of between-slide residuals
from which to sample. We therefore performed another
analysis in which both between-slide (within PCR) and
between-PCR residuals were sampled. The effect on number

of signi®cantly different pairs was minimal: a few more
samples were found not different, but after adjusting p0 from 1
to its estimated upper bound according to p0 < min(f/f0) (20),
we found over 295 pairs to be statistically different.

Isolate pro®le plots

We constructed a synthetic gel image or isolate pro®le plot to
visually compare microarray data to conventional gel images
(Fig. 6). For a given isolate, probe spots shaded black
differentiate the isolate from the average of all other isolates
(Fig. 6A). These are probe spots for which the contrast
between the isolate and the average of all other isolates
(computed using the lm function in R) is signi®cantly larger
than 0 (a = 0.01). An ANOVA-based clustering of isolates
(again for each probe) was obtained by rank ordering the
average intensity levels for each isolate and segmenting into
two groups to maximize their contrast (using t values from
group contrasts in the ANOVA model). Probes falling into the
high intensity group are shaded gray in Figure 6A (if they have
not already been shaded black). The pro®les are relative,
because they depend on which other isolates are present in the
study. Alternative views can be obtained, for example, by
comparing each isolate to a standard reference isolate.

The number of discriminating probes in the (relatively
simple) microarray ®ngerprints (Fig. 6A) far exceeds the
number of discriminating bands in the corresponding standard
REP±PCR gel (Fig. 6B). The pattern of discriminating probes
shows (qualitatively) that a relatively simple ®ngerprinting
chip and protocol can detect and project differences between
S.enterica strains. In contrast, the REP±PCR gel ®ngerprints
did not even qualitatively distinguish between several of the
strains (Fig. 6B, e.g. isolates 43, 45, 60 and 92 and 115 and
117).

Towards a classi®cation protocol

Although we have evidence that most pairs of Salmonella
®ngerprints are distinct, it does not necessarily follow that
unknown samples can be reliably classi®ed. Dudoit et al. (24),
for example, described some of the challenges of microarray
classi®cation and performed a comparison of well-known
classi®cation algorithms. In forensic applications, the number
of classes (isolates) is potentially very large, which increases
the likelihood of misclassi®cation. In addition, some un-
knowns do not belong to any of the pre-de®ned classes,
requiring an approach to identify new classes. In forensic
applications of microarray technology we have the luxury of
replication (to a degree), i.e. given an unknown sample, we
can perform independent PCR ampli®cations and obtain
multiple hybridizations across multiple slides. We can more
accurately classify the average over replicate hybridizations
than a single hybridization.

We performed simple classi®cation experiments separately
for each isolate block. Using ridge discriminant analysis and
self-normalized arrays, we used leave-one-out-cross-
validation to assess the performance of classifying: (i)
individual arrays; (ii) the average of four arrays across a
slide. Classifying each `unknown' to one of three groups, we
correctly classi®ed: (i) 84% of individual arrays; (ii) 90%
of array averages (132/144). However, nine of the 12
misclassi®cations resulted from confusion between the isolate
pairs (43,45) and (107,115), which were barely distinct in the

1852 Nucleic Acids Research, 2004, Vol. 32, No. 5



Figure 2. Box plots of total variance for 192 probes, computed separately
for each isolate. The median value is represented by a line within the rect-
angular box, which captures half of the 192 observations (the lower and
upper edges of the rectangle represent the ®rst and third quartiles, respect-
ively). The `whiskers' in each box plot extend to the extremes of the data,
and very extreme points (individual probes with extremely high variance)
are represented as individual data points (circles). Vertical lines delineate
`isolate blocks'.

Figure 3. Proportion of total variance attributed to variation between arrays
within slides, computed separately for each isolate using REML. Each box
plot summarizes the distribution over 192 probes. On average, 80% of
the variance is attributed to within-slide variation, 11% to variation
between slides for the same PCR preparation and 9% to variation between
independent PCR ampli®cations. Vertical lines delineate `isolate blocks'.

Figure 1. Plots of median chip intensity (y-axis) versus median intensity over all chips (x-axis) for the `isolate block' {36,43,45}before (A) and after (B) self-
normalization. Plotting characters represent isolates. Before normalization, there appears to be a signi®cant lot effect (A). The normalized plots (B) suggest
that between slide repeatability is high and that a linear normalization is appropriate. The lots represent independent PCR preparations. The three slides
(independent hybridizations) within a lot were prepared on three separate days.
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multivariate test (Fig. 5). In fact, they are not distinct in the
multivariate test that ignores blocking; likewise, the dis-
crimination ignores blocking. The other three misclassi®ca-
tions are from the isolate block {116,117,125}, where isolate
pair (116,117) is not signi®cant in the multivariate test that
ignores blocking. Thus, for ®ve of the eight blocks tested we
achieved 100% classi®cation. If we remove the 24 `unknowns'
corresponding to isolates (43,45) and (107,115), we might
claim a success rate of 97% (117/120).

It is important to note that there might be a small upward
bias in the statistical classi®cation estimates used to identify
an unknown relative to a reference library. In the work
presented here, for example, there are six slides for each
isolate block, three slides from each of two independent PCR
preparations. In the cross-validation assessment, ®ve slides
were used to construct a `library' at each step and one slide
was treated as the `unknown' to be classi®ed (actually three
unknowns, as there are three isolates per slide). Thus, two
samples used to construct the library came from the same PCR
as the unknown sample, suggesting a possible upward bias in
the estimated success rate. Therefore, classi®cation perform-
ance might be improved by averaging across slides and PCR
ampli®cations (we did not have a large enough sample to fairly
test this hypothesis). If we try to classify individual arrays to
one of 25 isolates, for example, we correctly classify 48%
(which is much higher than the 4% expected under random
chance, but still inadequate for forensic applications). Using
the average of four arrays improves performance to 63%
correctly classi®ed isolates.

DISCUSSION

Objective ®ngerprinting

A central tenet of forensics is that genetic data withstand the
scrutiny of a trial in a court of law. From our perspective, this
tenet is manifest in more conventional microbiology applica-
tions as the need to objectify and quantify the DNA
®ngerprinting analytical process, data extraction and pro®le
analysis procedures. Traditional PCR or multi-locus ®nger-
printing techniques are relatively simple to objectify and
quantify, because the target signatures are discreet, known and
limited in number, and the basal detection limit for the
analytical method (e.g. single-locus PCR) is easily discerned.
The detection and identi®cation of true `unknowns', however,
more often requires genome scanning techniques such as

Figure 5. (A) Matrix of pair-wise comparisons using a modi®ed Hotelling T2 test to correct for multiple testing (a = 0.05) and using the conservative p0 = 1.
(B) The effect of exploiting blocking structure for comparisons within an `isolate block'. The gray scale corresponds to the distance between isolate pro®les,
from white (large) to black (small). All but four of the 300 pairs are statistically distinct after correction for false discovery. The four non-signi®cant pairs are
colored black.

Figure 4. Matrix of discriminating probes for each pair of isolates from no
discriminating probes (black) to many discriminating probes (white).
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ampli®ed fragment length polymorphism, mini- and micro-
satellite ®ngerprinting and similar data-rich analysis methods
(3,25). The inability to quantify multiplex (genome scanning)
PCR detection limits for all ampli®ed fragments is but one
complication of DNA ®ngerprinting that is not inherent in
conventional nucleic acid signature analysis. Thus, traditional
gel-based ®ngerprinting methods are presently descriptive, not
quantitative, which can limit their utility for some microbial
forensics, epidemiology and source attribution applications.
Our overarching objective is therefore to convert from a
descriptive to quantitative microbial ®ngerprinting method
that is reproducible through time and space and across
laboratories and users. It is only through method level
replication and objective data analysis that this objective
will be realized.

From gels to microarrays

Objective identi®cation or de®nition of a gel band continues to
be problematical (25) (Fig. 6B), especially with smeared
backgrounds (e.g. isolate 141) or low and high intensity bands
(e.g. isolates 34 and 191). Criteria for including or excluding
bands above or below a given size are arbitrary and a single
gel cannot simultaneously resolve low and high molecular
weight bands. Gels are also susceptible to warps, bubbles,
distortions and other anomalies that are dif®cult to objectively
correct within or between gels, even with internal standards

and advanced computer software (3). For these reasons, gel
electrophoresis (fragment sizing) frequently cannot even
descriptively resolve near neighbors, as illustrated for
S.enterica isolates 43, 45, 60 and 92 in Figure 6B. More
importantly, the migrational variability of nucleic acids in
sieving media make gels ill-suited for automated, objective
band scoring across gels for forensic applications. The
fundamental problem of positional variability in gel-based
fragment sizing techniques therefore led us to develop
microarrays for genomic ®ngerprinting.

Although Figure 6A is conceptually similar to a standard
®ngerprinting gel (bands and estimates of median or average
band intensity), it is important to re-emphasize that the
microarray ®ngerprint pro®les were generated from 24
replicates arrays (recognizing that the effective number of
replicates is less than 24) and only re¯ect those probes (or
bands in the on±off plot) that are objectively determined to be
discriminatory. Replication allows the opportunity to quantit-
atively assess the signi®cance of observed differences between
isolate ®ngerprint pro®les, in contrast to simply visualizing
differences between gel-based ®ngerprints via dendrograms,
principal component analysis or cluster analysis.

The conceptual similarity between the biochemistry of
microarray and gel ®ngerprinting also translates into similar
sources of measurement variability, including variable back-
grounds, identifying and de®ning a `band' (or spot) amidst a
variable background, a low signal-to-noise ratio and variable
performance across gels, microarrays or users. Thus, while the
linkage between microarrays and gel ®ngerprinting is obvious
and a natural extension of prior work (12), the statistical
foundation for image analysis, assay replication, de®ning a
microarray DNA ®ngerprint and quantitatively comparing
®ngerprint pro®les is not.

Quantitative ®ngerprint comparisons

Because we cannot know or quantify a priori the presence,
ampli®cation ef®ciency or hybridization ef®ciency of every
REP-based amplicon in every genome, any detectable micro-
array signal above background is, in principle, a signi®cant
datum in a microbial ®ngerprint. However, it is well known
that variability in microarray manufacture, data and image
analysis is signi®cant (for reviews see 26,27). The challenge
for quantitative microarray-based microbial ®ngerprinting
therefore becomes one of scoring reproducible hybridization
events, such that true biological variability exceeds the
inherent noise of the analytical process. Only then can
®ngerprints generated on one day be reliably classi®ed to a
®ngerprint reference library. Process improvements for reduc-
ing method level variability may include non-contact micro-
array printing, alternative microarray substrates, increased
image acquisition times and/or amplicon fragmentation and
labeling prior to hybridization. We are con®dent that
continued process level improvements in microarray manu-
facturing and use will ultimately result in a very practical
microarray ®ngerprinting protocol (much fewer than 24
replicate arrays) that can be easily and readily applied to the
analysis of unknown isolates in a high throughput manner.

The ability to quantitatively compare ®ngerprints in this
manner is a signi®cant advance over gel-based dendrograms
and comparative analyses and provides the basis and direction
for the development of quantitative microbial forensics tools.

Figure 6. (A) Relative pro®les for 25 Salmonella isolates. Black bands (or
probes) differentiate the isolate from the average of all other isolates. These
are probes for which the difference between the isolate and the average of
all other isolates is signi®cantly larger than 0 (a = 0.01). Probes falling into
the high intensity group from the ANOVA-based clustering are shaded gray
(if they have not already been shaded black). This signature is useful for
making relative comparisons, but it is not the signature used for
classi®cation. (B) REP±PCR agarose gel ®ngerprints from the same 25
isolates.
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Developing a protocol for comparing unknown samples with a
reference library, however, will require careful consideration
of replication requirements, both at the library construction
stage and at the classi®cation stage. Establishing useful
(practical) replication requirements for library construction
and library comparisons will also require continual monitoring
of process controls: as the process improves, replication
requirements might be relaxed. A common hybridization
control, for example, may more faithfully preserve true
®ngerprint differences (in particular, differences due to
elevation and scatter effects). Additional improvement might
be obtained by averaging data at multiple levels (e.g. slides),
increasing the number of probes (e.g. several of the isolates
had very few discriminating probes) or increasing the number
of samples in training library (thus increasing the precision of
isolate library `pro®les'). Future efforts will focus on
improving microarray fabrication and process controls,
increasing the number of probes on the array, expanding the
®ngerprint library and developing the statistical algorithms to
quantitatively compare new ®ngerprint pro®les against a
reference library.
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