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Abstract
We propose a general class of quantile residual life models, where a specific quantile of the
residual life time, conditional on an individual has survived up to time t, is a function of certain
covariates with their coefficients varying over time. The varying coefficients are assumed to be
smooth unspecified functions of t. We propose to estimate the coefficient functions using spline
approximation. Incorporating the spline representation directly into a set of unbiased estimating
equations, we obtain a one-step estimation procedure, and we show that this leads to a uniformly
consistent estimator. To obtain further computational simplification, we propose a two-step
estimation approach in which we estimate the coefficients on a series of time points first, and
follow this with spline smoothing. We compare the two methods in terms of their asymptotic
efficiency and computational complexity. We further develop inference tools to test the
significance of the covariate effect on residual life. The finite sample performance of the
estimation and testing procedures are further illustrated through numerical experiments. We also
apply the methods to a data set from a neurological study.
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1. Introduction
Residual life is defined as the remaining time to event given the fact that the survival time T
of a patient is at least t, i.e., T − t|T ≥ t. In many clinical studies, especially when the
associated diseases are chronic or/and incurable, knowing residual life is the major concern
to patients. Modeling and estimating the mean of residual life has generated a large
literature, for example, Oakes and Dasu (1990, 2003), Chen and Cheng (2005, 2006), Chen,
Jewell and Cheng (2005), Müller and Zhang (2005), and Chen (2007). Compared with mean
residual life models, quantile residual life models provide more complete and informative
interpretation, especially when the distribution of the residual life is non-symmetric or
skewed. Researches in this area are fairly recent, and include Jeong, Jung, and Costantino
(2008), Jung, Jeong, and Bandos (2009), and Ma and Yin (2010). The quantile residual life
models considered in the current literature focus on modeling and estimation at a single
fixed t. Our interest here is in investigating the covariate effects along a range of times t. We
take the covariate effects to be time variant, smooth functions of t in a varying coefficient
quantile residual life model.
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Our research is initially motivated by a clinical study on MELAS (mitochondrial myopathy,
encephalopathy, lactic acidosis, and stroke-like episodes), which is a rare genetically-
inherited neuroglial disease. Once the disease starts, MELAS patients suffer from
progressive encephalopathy and stroke-like episodes that lead to disability and early death.
There is as yet no effective treatment for this devastating condition, hence at each patient’s
hospital visit, both the patient and the clinician are mainly interested in how much longer the
patient can survive. When a patient is known to be a carrier of such genotype as yet without
the disease, the time to disease onset becomes of central interest. Quantile analysis is more
informative comparing to the classical mean approach. For example, the patients might be
more interested in knowing how long their remaining time is with a 90% probability, rather
than in knowing the average residual time. Our proposed method answers such questions,
taking into consideration the patient’s characteristics.

We first represent the coefficient functions in the quantile residual life models by
normalized B-splines, and estimate the spline coefficients using the residual life model
jointly at different time points. This is what we refer to as one-step estimation. A second
approach is a modification, in which we estimate the time varying coefficient function
values at a set of different time points first, and then use a spline representation to
approximate the coefficient functions based on estimated function values. This is what we
refer to as two-step estimation. A similar two-step estimation is also used in a longitudinal
data setting in Fan and Zhang (2000). We show a close link between the two estimation
procedures, and point out computational advantage of the two-step procedure. We also study
the large sample properties of the estimation procedures. To the best of our knowledge, this
is the first time the residual life model has been considered simultaneously over a range of
times.

The remainder of the paper is organized as follows. In Section 2, we present the quantile
residual life model in its general form and show that the model is well-defined. We
introduce two estimation procedures in Section 3. The one-step estimation procedure is
discussed in Section 3.1, where we establish its root-n consistency and asymptotic
normality. We further develop a simplified two-step estimation procedure in Section 3.2,
and point out how the two estimation procedures are related in Section 3.3. Testing
procedures are subsequently developed in Section 4, and we perform numerical analysis
through simulation studies and a data analysis on the MELAS study in Section 5. We finish
the paper with some discussion in Section 6, and collect the technical details and proofs in a
web Appendix.

2. Censored Quantile Residual Life Model
Let (Xi, Ti, Ci), i = 1, …, n, be identical and independently distributed (i.i.d.), where Xi is a
covariate vector, Ti is the event (death) time, and Ci is a competing censoring time. Assume
the censoring time Ci to be independent of the event time Ti and the covariate Xi. Let Yi =
min(Ti, Ci) and Di = I(Ti ≤ Ci), the binary index of censoring. As a typical situation in
survival data analysis, we take the actual observations to be (Xi, Yi, Di) for i = 1, …, n. For
notational convenience, we assume the observations are sorted in increasing order, 0 < Y1 ⋯
≤ Yn. The quantile residual life model we consider has the general form

(2.1)

where Qτ (T|A) denotes the τth conditional quantile function of a random variable T
conditional on an event A, τ is a quantile level ranging between 0 and 1, and t is the time at
which the residual life is considered. Here, m(·) is a parametric function of covariate X,
while the parameter β(t) = {β1(t), β2(t), …, βp(t)}T consists of p unknown smooth functions
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of t. Model (2.1) basically assumes that, given the covariate Xi, and the fact that Ti > t, the
τth conditional quantile of the residual life Ti − t can be characterized by a parametric
function m with its coefficient β(t) varying with time t. Our main interest is in estimating
β(t), as well as testing the effect of certain components in the covariate vector X. A special
case of the model is the familiar linear varying-coefficient model,

Here we let the first component of Xi be 1, hence the model includes a time-dependent
intercept term. By taking into consideration that β(t) is a smooth function of t, we can obtain
a unified presentation of the residual life over a period of time, which is of interest in many
applications. Moreover, compared to estimating the residual life at given times separately,
we can achieve a more efficient estimator by estimating β(t) globally.

Before proceeding to the estimation of β(t), we first establish that there indeed exists a
survival model that satisfies the quantile restriction in (2.1), simultaneously for all t ≥ 0.
Note that if the model is only required to hold at an arbitrary fixed t, identifiability is not an
issue. If S(t|X) = Pr(T ≥ t|X) is the survival function of T given the covariate X, then (2.1) can
be written as

for any t ≥ 0. This functional equation can be recognized as a special case of a Schröder’s
equation, and a solution for S exists as long as for all t ≥ 0, m{X, β(t)} is positive and
continuous with respect to t, and t + m{X, β(t)} is strictly increasing as a function of t (Gupta
and Langford (1984)). These are moderate conditions and are easily satisfied for a large
class of m functions. Hence the model in (2.1) is well defined and self-coherent. In the next
section, we proceed to describe the estimation algorithm for β(t).

Here and throughout the text, the op or Op notation is component-wise in the case of vectors;
‖·‖ refers to the L2 or l2 norm according to the content.

3. Estimation
3.1. One-step estimation of β(t)

In this section, we propose one-step estimation equations for β(t) based on normalized B-
spline approximation. Specifically, we take b(t) = [π1(t), …, πkn (t)]T as kn B-spline basis
functions given a set of internal knots and the order of spline, and then approximate β(t) by
β(t) ≈ αb(t), where α is a p × kn matrix of unspecified parameters. Although many other
nonparametric methods exist in the literature, we use B-spline approximation due to its
convenience in implementation. In this notation, (2.1) can be approximated by

For a fixed basis b(t), this can be treated as a parametric model. At any fixed t = t0 and for a
general m function, a slight modification of the estimator in Jung, Jeong, and Bandos (2009)
yields the estimating equation

Ma and Wei Page 3

Stat Sin. Author manuscript; available in PMC 2014 January 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3.1)

Here α is a length pkn vector formed by concatenating all the rows of α, G is the censoring
process survival function, G(t) = Pr(C ≥ t). In practice, G is typically estimated by a Kaplan-
Meier estimator.

A careful inspection of ∂m{Xi, αb(t0)}/∂α reveals that it equals ∂m{Xi, αb(t0)}/∂{αb(t0)} ⊗
b(t0), where ⊗ denotes a Kronecker product. Hence (3.1) includes only p independent
estimating equations, hence does not suffice to estimate all the pkn elements in α. However,
since (2.1) holds for all t > 0, one can estimate α by assembling a collection of equations of
type (3.1) at (tj : j = 1, …, J), a set of distinctive values of the observed Yi’s. Specifically, we
propose to obtain α through minimizing

(3.2)

where υ⊗2 denotes υTυ for any vector υ. Using α̂ to denote the estimate obtained from
minimizing (3.2), the estimator of β(t) is β̂(t) = α̂b(t). Obviously, several tuning parameters
need to be decided in this procedure. First, to select the number of basis functions kn, we
could use some standard selection criterion such as BIC. Specifically, we estimate α̂(kn) for
a fixed candidate kn, and form s{α(kn)}. We then select the optimal kn through minimizing
s{α(kn)} + log(n)kn. In the following, we discuss the selection of the other tuning parameters
J and the tj’s that are more specific to the residual life model.

The choice of tj’s. One can choose an arbitrary set of times t1,…, tJ in (3.2) as long as at
least kn of the J corresponding equations of the form (3.1) are linearly independent, for then
the estimator given in (3.2) is uniquely defined. Note that this requires that J ≥ kn, so the
number of distinctive event/censor times is larger than the number of B-spline basis
functions. Our subsequent theoretical development further requires that there exist ε > 0 so
that J = o(n1/2−ε). A natural choice is to let t1 = 0 and tj+1 = Yj, the jth event or censoring
time, for j = 1, …, J − 1. Since the distribution of the Yi is usually continuous over [0, T],
this choice generally satisfies the requirement. Computationally, when tj increases, fewer
observations contribute to the corresponding estimating equation. In addition, the estimated
Ĝ also becomes less reliable. Hence, we recommend in practice to stop the summation over j
in (3.2) at a value between kn and one third of the total number of distinct Yi values. The
same rule is also applied to the two-step estimation approach introduced later in Section 3.2.

Asymptotic properties—In this section, we give the convergence rate and asymptotic
distribution of β̂(t) and α̂ obtained from minimizing (3.2). Let t = (t1, …, tJ) and

It is easy to see that the estimator in (3.2) satisfies an estimating equation of the form
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for any ε > 0. In what follows, we outline conditions under which we derive the asymptotic
properties of α̂.

A1 : The true time-varying coefficient vector β0(t) consists of p smooth functions defined on
a closed interval [0, T], and each of them has a bounded rth derivative with r ≥ 2.

Under Condition A1, there exists a B-spline approximation α0b(t) and a constant C1 such

that  (Schumaker (1981)).

A2 : The quantile function m(x, β) has a bounded second derivative with respect to β.

Let

be the functional estimation equations for β(t) (without B-spline approximations).

A3 : The functional estimating equation ESn{β(t)} = 0 has a unique solution β0(t). In
addition, there exist a compact set Ω ∈ Rp+1 such that the p curves contained in β0(t) form an
interior point of Ω. Note that this implies each curve in β0(t) is uniformly bounded.

A4 : The censoring survival function G(t) and the event survival function S(t) are
differentiable; g(t) = G′(t), and s(t) = S′(t) are bounded away from zero and infinity and are
bounded for all t ∈ [0, T].

A5 : maxi supt E‖si{t, β(t), G}‖2 = O(1).

A6 : The first derivative of each component of fi{β(t), G} with respect to G is uniformly
bounded. That is, there exists a constant C > 0 such that |∂ fi{β(t), G}/∂G| < C for all β(t), G
and i = 1, …, n.

With those conditions, we summarize the asymptotic properties of α̂ in two theorems. The
proofs are deferred to a web Appendix.

Theorem 1. Under A1–A6, if the number of B-spline basis function, kn, satisfies n1/4r << kn
<< n1/4 for r ≥ 2, then

(3.3)

It follows from the Theorem 1 that β̂(t) is uniformly consistent for t ∈ [0, T], i.e. supt∈[0,T] ‖β̂

(t) − β(t)‖2 = Op(kn/n). We now define the following notations relate to the asymptotic
distribution of α̂. Let
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where

Here h(s) = E(Y1 ≥ s), ΛG is the cumulative hazard function of the censoring process, and

The difference of si and νi is a consequence of the Kaplan-Meier estimation of G(t). With
this notation, the following theorem summarizes the asymptotic distribution of α̂.

Theorem 2. Under A1–A6, for any η ∈ Rpkn and ‖η‖ = 1, n1/2ηT(α̂ − α0)/σ → N (0, 1) in
distribution when n → ∞, where σ2 = ηT , and = ℬ T, ℬ = (MMT)−1M.

From Theorem 2, we can see that estimating the censoring process survival function G(t)
does not bring additional bias while it has an impact on the estimation variance. With β̂(t) =
α̂b(t) = α̂T{Ip ⊗ b(t)}, it follows from Theorem 2 that, for any given time t, β̂(t) is
asymptotically normal with mean β(t) and variance-covariance matrix {Ip ⊗ b(t)}T Ip ⊗
b(t)}/n.

The one-step estimation procedure introduced here requires intensive computation, since the
dimension of the unknown parameter α in (3.2) is pkn. In Section 3.2, we propose a two-step
approach to reduce the computational burden. A discussion comparing the two approaches is
provided in Section 3.3.

3.2. An alternative two-step estimation approach
It is worth noting that the nonparametric function estimation for β(t) differs from the
conventional one in an important aspect. In a classical regression, β(t) contributes to a
relation as a function of all t’s in a valid range; in the residual life model, β(t) contributes to
a relation only as a function value at a fixed t. At different tj, β(tj) is subject to a different
requirement. Other than β(t) being sufficiently smooth, β(tj) at different tj values are not
inherently related via these requirements. Thus, intuitively, one can estimate β(t) at a large
set of t values to obtain {tj, β̌ (tj)}, j = 1, …, J, and then use these as pseudo observations to
perform a nonparametric fitting using, say, splines.

To be precise, select tj, j = 1, …, J, as in Section 3.1. At each tj, obtain β̌(tj) from
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(3.4)

then obtain an estimator of α from minimizing . The minimizer α̃
has the explicit form

As before, we construct the two-step estimator of β(t) using β̃(t) = α̃b(t).

Note that the estimator α̃ can be written as

(3.5)

where

and Ip stands for p-dimensional identity matrix. Since β̌(tj) → β(tj) for any 1 ≤ j ≤ J, as long
as the B-spline basis is adequate, α̃b(t) is a consistent estimate of the true coefficient
function β(t). Let ℳ = diag(∂E [si{t1, β(t1), G}]/∂β(t1)T, …, ∂E [si{tJ, β(tJ), G}]/∂β(tJ)T),,

Theorem 3. Under the regularity conditions of Theorem 1, for any η ∈ Rkn and ‖η‖ = 1, we
have n1/2ηT(α̃ − α0)/σ → N (0, 1) in distribution when n → ∞, where σ2 = ηT , where =

−1 ℳ−1)T T.

Theorem 3 can be proved similarly as Theorem 2 by grouping J estimating equations in
(3.4) together and using the relation (3.5). We omit the proof.

As before, it follows from Theorem 3 that, for any given time t, β̃(t) is asymptotically
normal with mean β(t) and variance-covariance matrix {Ip ⊗ b(t)}T Ip ⊗ b(t)}.

3.3. Relation between one-step and two-step approaches
The two estimation approaches are essentially two ways of linking point-wise curve
estimation and the spline curve representation. Specifically, the one-step estimation imposes
the spline representation before forming an estimate, with α̂ obtained through a one-step
optimization. In contrast, the two-step approach forms an estimate at various time points
first, then links the results to the spline representation. In terms of computational cost, the
one-step estimation is more expensive, since it means solving a pkn-dimensional estimation
equation, while the two-step approach solves J separate p-dimensional estimating equations,
followed by a simple matrix-vector multiplication. Both estimators are consistent and enjoy
asymptotically normality. We now investigate in detail the estimation efficiency of the two
approaches.
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Recall that and are limiting variance-covariance matrices for the one-step estimator α̂
and two-step estimator α̃, respectively. The two matrices share the same pivotal component

 To understand the it differences, we first establish the association between M and ℳ.

Let (MT)jl be the (j, l)th size p × kn block of MT, ℳjj the (j, j)th size p × p block of ℳ, jl
the (j, l)th size kn × p block of  el the length p vector with ith entry 1 and all others 0. Then

Assembling the blocks of MT  and defining a hat matrix

we obtain the relationship between M and ℳ that MT = ℳ(H⊗Ip). Therefore,

Consequently, can be written as

while the component H ⊗ Ip is simply replaced by the identity matrix in the expression for
 We conclude the following,

1. If J = kn, then =  and the two estimators are equivalent. For, in this case, H =
Ikn.

2. If J > kn, then − can have zero, positive, and negative eigenvalues, and hence
there is no definitive winner between the two estimators in terms of efficiency.

In practice, a relative small kn is often sufficient to approximate the smooth components in
β(t). However, to fully utilize the model structure in (2.1), as long as computational stability
is retained, one would choose a large J. Thus, J = kn almost never happens in reality. The
two-step estimator has appealing computational advantages over the one-step estimator and,
at the same time, is not inferior in terms of estimation efficiency. We hence recommend
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using the two-step procedure in practice. In fact, both the one-step and the two-step
procedures can be improved through better weighting, as we now discuss.

Equivalence between optimized α̂ and α̃—We could view the one-step estimator α̂
and the two-step estimator α̃ as special cases of two families of estimations. First, instead of
forming the sum of squares of the estimating equation terms, we could form the sum of
weighted squares using the Generalized Method of Moments (GMM). We define a family of
GMM estimator by

(3.6)

where W1 is a pJ × pJ-dimensional weight matrix. It is easy to see that, when W1 = IpJ is the
identity matrix, the GMM estimating equations at (3.6) reduce those at (3.2), and
consequently α̂ is a special case of a GMM estimator. Second, we define a family of
Weighted Least Squares (WLS) estimators by

where W2 is a pJ × pJ-dimensional weight matrix. Similarly, the two-step estimator α̃ is a
special case of an WLS estimator when W2 = IpJ is the identity matrix.

It is well-known that the most efficient WLS estimator is reached when the weight matrix
W2 is the inverse of the variance-covariance matrix of β̌. i.e. W2 = {ℳ−1 ℳ−1)T}−1. The
same results in Theorem 3 holds for the optimal WLS estimator with limiting matrix 
replaced by 𝒲̃ = (FℳT −1ℳFT)−1, where F = {Ip ⊗ b(t1), …, Ip ⊗ b(tJ)}. On the other
hand, the most efficient GMM estimator is the one with W1 = −1, the inverse of the
variance-covariance matrix of the estimating equations that invokes (3.1) at t1, …, tJ. The
resulting optimal GMM estimator has a limiting variance-covariance matrix 𝒱̃ = ((M

−1MT)−1 to the first order. It is not difficult to verify that M = FℳT to the first order,
hence the estimation variance of the optimal one-step GMM estimator is the same to the first
order as the optimal two-step WLS estimator, that is, they are effectively equivalent.

Although ideally a weighted approach should be used, it is not recommended in practice,
because the optimal weights involve density estimation in the quantile regression
framework. This is known to be unreliable. One could use the bootstrap to generate the
variance estimation, but it is computationally undesirable. For these reasons we focus our
discussion on the unweighed estimations β̂(t) and β̃(t).

We summarize the differences between the two estimations as follows. First, their
constructions are different. The one-step estimation incorporates the spline representations
first to reduce the problem into a parameter estimation problem, it then constructs different
estimating equations at various times. Because the number of parameters is likely smaller
than the number of the resulting estimating equations, it falls in the category of GMM
estimation. The two-step approach estimates the function values at various individual time
points, then links the results to the spline representation. Because the number of spline
coefficients is likely smaller than the function values obtained, this falls to the linear
regression category and calls for a LS criterion. Computational complexities are also
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different. The two-step approach reduces a pkn-dimensional estimation equation to J p-
dimensional estimations. Hence it is computationally less challenging and more efficient.
Finally, in terms of estimation variance, the two approaches are equally efficient when the
respective optimal weights are used. The proposed α̂ and α̃ use equal weights, which leads
to different efficiency losses. The efficiency loss of α̂ is the type of loss seen in the
regression context with heteroscedastic error when the error variance is treated as a constant.
Hence the amount of loss in practice depends on the error variance structure. The efficiency
loss of α̃ is the type of loss seen under the GMM framework when the performance
difference of available estimation equations and their correlations are ignored. Hence the
amount of loss in practice depends on how different and how correlated these estimating
equations are. Neither of α̂ and α̃ is uniformly better than the other. When we reduce the
dimension of the estimation equations to the parsimonious case of J = kn, the two estimators
are again equivalent. Accordingly, we recommend the two-step approach in practice.

4. Inference Tools
Once we obtain the estimate of β(t), the next step is to test the covariate effect on the τth

quantile of residual life. To this end, we write , where β1 (t) and β2(t)
are p1- and p2-dimensional sub-vectors of β(t), (p1 ≤ p, p2 ≤ p). We assume that, through
proper parameterization, interest is in testing whether β2(t) is a zero function. Thus, the null
and alternative hypotheses are respectively

(4.1)

Under the same spline representation for β(t), testing (4.1) is equivalent to testing

Here, , where α1 and α2 are sub-matrixes of α with dimensions p1 × kn and p2
× kn, respectively, the spline coefficients associated with β1(t) and β2(t). Under Theorems 2
and 3, we could construct Wald-type statistics

where 22 and 22 are, respectively, p2kn × p2kn lower-right sub-matrixes of and 
associated with α2. Under the null hypothesis, Tn,1 and Tn,2 are asymptotically chi-square
distributed with degrees of freedom p2kn.

Both 22 and 22 involve unknown components that need to be estimated empirically. Two
estimation approaches exist. In large sample situations, we can use asymptotic results. To
estimate M in  we use the sample average to replace the expectation, i.e.,

, and use a numerical difference for the
derivative. Following the same line, we can estimate ℳ in  In the web Appendix we show
that can be approximated by
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where

(4.2)

, and

We then assemble empirical estimates of 22 and 22, and substitute for the true ones in
Tn,1 and Tn,2.

A more precise and stable approach is to use the bootstrap method to estimate 22 and 22,
especially when sample size is not large. The cost of bootstrap is in computation intensity.
This is the standard bootstrap used in quantile regression, so we omit implementation
details. We also do not propose the score test for the quantile residual life model because, in
the model we consider, the score test loses its typical advantage over Wald test. Since the

residual life model holds for all t, we also need  for all t to enjoy the
advantage of the score test. Such condition cannot be satisfied without violating the original
model assumptions. For this reason, the score test is not recommended in our context.

5. Numerical Results
5.1. Simulation

We conducted simulation studies to investigate the finite sample performance of the
proposed method. The first quantile residual life we study has the form Qτ (Ti − t|Xi, Ti ≥ t)
= β1(t) + β2(t)Xi, where Xi is the ith subject’s covariate, τ = 0.5, and β1(t) and β2(t) are time
varying intercept and slope coefficients that are linear functions of t: β1(t) = β1c + β1lt and
β2(t) = β2c + β2lt. We write βc = β1c + β2c and βl = β1l + β2l. To generate data sets, we adopt
the model with survival function

Data generated here satisfy the quantile residual life model as long as β1(t) and β2(t) do not
simultaneously degenerate to a constant function. In fact, when the slopes in both β1(t) and
β2(t) are zero, the above survival function does not exist, and we need to generate data from

in order to satisfy the corresponding quantile residual life model. We study all four
situations, in which β1(t), β2(t) can be either a linear function or a constant function.
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We generated the covariates Xi’s from a uniform distribution in [0, 2], and we generated the
censoring distribution from a mixture of infinity and an exponential distribution, so that the
censoring rate was approximate 15%–20%. The sample sizes were n = 100, 200, 300, and
1,000, and we chose the first one-third of the yi values to form the tj values in calculating the
β̂j’s. One could of course put more values into the collection of tj’s, but, as pointed in
Section 3.1, the effective samples participating in the estimation of β̂j are the ones with Yi ≥
tj. Thus, a larger value of tj yields less efficient estimation of β̂j. When the effective sample
size is too small, the asymptotic results may not be relevant, and various numerical issues
also occur. For computational stability, we chose the tj values to ensure that there were at
least one third of the observations contributing to the estimation of β̂j. The quadratic spline
basis functions were selected, we put four knots at the boundary and equally spaced
positions between the boundaries. A total of 1,000 simulations was conducted in each
model.

To illustrate the performance of the method on a non-polynomial functional form of β(t), we
conducted a second simulation study with the quantile residual function m{X, β(t)} =

e−2Xβ1(t) + e−Xβ2(t). Here β1(t) = {log(1 − τ)}2 and  at a = 0.01.
It can be verified that the random process with survival function

yields a τth quantile residual of the desired form. We generated the covariate Xi’s from a
uniform distribution in [−1.5, 0.5] and a censoring time from a mixture of infinity and
exponential distribution as before to retain a similar censoring rate.

We present the mean squared error (MSE) of the estimation for different models and sample
sizes in Table 1. Here for each function βj(t), the MSE was calculated using ∑i(β̂j(ti) −
βj(ti))2, where ti’s are equally spaced on the range of t considered. For comparison, we also
present the MSE of the estimation with smoothing the pointwise estimates of β(t). Clearly,
for all the models and the sample sizes, our method yields an estimate with smaller MSE
than the pointwise procedure. The improvement is especially dramatic when sample size is
small or moderate. When sample sizes are 1,000, presented for comparison purposes, the
improvement becomes less impressive, although still quite important. To provide a visual
inspection of the estimation for both the linear and nonlinear model, we also plotted the
mean estimated curves together with the true curves and 90% pointwise confidence bands in
Figure 1. As can be seen, the estimated average curves are rather close to the truth,
indicating the validity of our proposal. We point out here that the confidence bands in Figure
1 contain a constant curve, hence at the 10% level, one may not conclude that the varying
coefficient model is really necessary. This is caused by the small sample size. With n
=1,000, the 90% confidence bands corresponding to the nonlinear true function no longer
contain any constant curve.

We also implemented the Wald test procedure, where the interest is in testing whether the
slope function in the linear models or the coefficient function of e−X in the nonlinear model
β2(t) is the zero function. To test the level precision, we let β1(t) = 1 and 1 + t for the linear
models, and generated the data from S(t|Xi) = exp {te2Xi/log(1 − τ)} for the nonlinear model.
We considered the levels 0.01, 0.05 and 0.1. The results for various sample sizes are given
in Table 2. They indicate that the test levels are close to the nominal values when the sample
size is n = 300 for the linear models, while they generally perform well even for smaller
sample sizes for the nonlinear model. We point out that, because of the nature of the model,
the residual life at t practically relies only on the observations that are both uncensored and
still surviving at t; the sample size n = 200, for instance, only yields an effective sample size
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of about 100 in our simulation set up. Thus it is not a surprise to see this kind of level
performance. To demonstrate the local power of the test, in the linear models we kept the

same β1(t) with  and  for c = 5, 10. For the nonlinear model, we set

β1(t) = {clog(1 − τ)}2/n,  for c = 40 and a = 0.01. and

generated data from . The local power results for
various sample sizes are given in Table 3. One notices that the power does not necessarily
increase as the sample size increases. This is because we are performing a local test where
the local alternative is at a root n distance from the null, while the typical convergence rate
of β(t) is slower than root n. We view the results in Table 3 as a worst case scenario of the
power result.

5.2. Application: MELAS study
For illustrative purpose, we applied Model (2.1) to part of the data from the aforementioned
MELAS study, consisting of 135 MELAS mutation carriers followed up over the past 10
years (Kaufmann et al. (2009)). We chose the disease onset as the time when the patient fails
to perform the daily activities of healthy people. The Karnofsky score is common
measurement for functional impairment, ranging from 0 to 100. A healthy subject should be
scored at 100. We take Ti to be first year that the ith patient’s Karnofsky score is at 90 or
lower. About 30% patients are censored since they are still neurologically fully functional at
the end of the study. The researchers found that male patients tend to have earlier disease
onset. It is of clinical interest to confirm whether MELAS affects male and female patients
differently in terms of residual life time. Using gender of a patient as a predictor, we applied
a varying coefficient linear median residual life model.

The estimation of the constant coefficient function β1(t) and the time varying gender effect
β2(t), along with their upper and lower 5% quantile bootstrap confidence bands are given in
Figure 2. Specifically, β1(t) depicts the median residual life time to disease onset of male
MELAS patients at various ages. For example, at birth, the median time to disease onset of a
male MELAS patient is about 34 years, while at year 16, the median residual time is about
20 years. Here β2(t) describes the difference in median residual time between male and
female patients, with confidence bands largely situated above the zero level. Indeed, a
formal testing procedure using the method developed in Section 4, yields a p-value 2.35e−7

that strongly suggests a gender difference. In Particular, the female residual survival is
superior to that of the male, with the median residual time of female patients about 15 years
longer than that of male patients. Such a difference slightly increases after birth, and
decreases again after age 8.

We also estimated the male and female residual life time at the 0.25 and 0.1 quantile levels.
As with the median, the female has later disease onset time at each age. For example, given
that a patient survived to age 4, a female’s residual life is 17 years longer than that of a male,
with probability 0.9. This is the age at which the female 10% residual life advantage is the
largest. This advantage slowly declines when the patient continues to survive. At age 16,
90% of the surviving females have at least 6 years advantage over males, and 75% of them
have at least 11 years advantage. The plots of the 25% and 10% residual life and their
corresponding confidence intervals are also in Figure 2. Similar to the median, a test on no
gender differences at these two quantile levels yield p-values of 3.94e−4 and 0.0255
respectively, hence it is quite clear that a female has superior residual survival time at these
two quantile levels as well.

One may notice from Figure 2 that, at the 80% confidence level, some confidence bands
contain a constant curve. In other words, one might adopt a constant coefficient assumption
to model the residual life in those cases. This is a rather typical trade-off between the model
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complexity and flexibility – whether or not to use a constant coefficient model here
depending on how comfortable one feels to make this simplification at a 80% confidence
level. One also needs to note that a constant coefficient model may be sufficient at one τ, but
may not be so for other τ values. Our methods can help in the decision of whether or not to
adopt a constant coefficient assumption.

6. Discussion
We have proposed a time-varying coefficient residual life quantile model. This model allows
one to simultaneously model the residual life at different times, yet still ensure the self
coherence of the model. Compared to modeling the survival time directly, it allows more
flexibility and enables one to describe the residual life directly. We proposed a practically
feasible estimation procedure using the spline representation to approximate the time-
varying coefficient function, and demonstrated its validity through asymptotic properties.
We emphasize here that slightly more complex, yet still feasible, estimation procedures
based on quadratic inference functions (Qu, Lindsay, and Li (2000)) can be used to improve
the efficiency of the unweighted estimation procedure. We further proposed inference
procedures to test the covariate effect. We applied both the estimation and testing
procedures in simulations studies as well as to MELAS data.

We have not included the special case where some coefficient might be fixed instead of
varying with time. It is easy to see that this can be handled by restricting the spline
approximation to the time varying coefficient functions that include the fixed unknown
parameter in the set of α’s. The developed inference tools can be used to determine whether
a certain coefficient indeed varies with time. Specifically, we can reparameterize to a

coefficient function , where , and proceed to test . As in
Jung, Jeong, and Bandos (2009) we have assumed the censoring process to be independent
of the covariates X, a reasonable assumption for MELAS data. If, however, this assumption
is violated, we only need replace the Kaplan-Meier estimator of the censoring survival
function with a suitable local Keplan-Meier estimator for G(t|x). For example, we can use

to replace Ĝ(t), where K is a kernel function and h is a bandwidth, and keep all the
remaining procedures unchanged. In the simulation, we used quadratic spline basis functions
with a fixed number of knots. If this is not sufficient and more sophisticated spline
smoothing techniques, for example the P-spline or the regression spline, are needed, one can
use smoothing parameter selection techniques on the pseudo observations (tj, β̂j), j = 1, …, J.
Because the β̂j’s are estimated at a root-n rate, while the spline smoothing rate is slower than
that, the consistency of the estimated coefficient functions is preserved without any special
treatment of the β̂j’s. Finally, instead of splines, other basis functions, such as wavelets or a
Fourier basis, can be implemented. A kernel based approach can also be explored, but
research in these areas is clearly beyond the scope of this paper.

Acknowledgments
Ma’s research was supported by a grant from the National Science Foundation (DMS-0906341) and the National
Institute of Neurological Disorders and Stroke (R01-NS073671). Wei’s research was supported by the National
Science Foundation (DMS-0906568) and a career award from NIEHS Center for Environmental Health in Northern
Manhattan (ES009089).

Ma and Wei Page 14

Stat Sin. Author manuscript; available in PMC 2014 January 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
Chen YQ. Additive expectancy regression. J. Amer. Statist. Assoc. 2007; 102:153–166.

Chen YQ, Cheng S. Semiparametric regression analysis of mean residual life with censored survival
data. Biometrika. 2005; 92:19–29.

Chen YQ, Cheng S. Linear life expectancy regression with censored data. Biometrika. 2006; 93:303–
313.

Chen YQ, Jewell NP, Cheng SC. Semiparametric estimation of proportional mean residual life model
in presence of censoring. Biometrics. 2005; 61:170–178. [PubMed: 15737090]

Csorgo, S.; Horvath, L. The Rate of Strong Uniform Consistency for the Product-Limit Estimator.
Berlin: Springer; 1983.

Fan J, Zhang JT. Two-step estimation of functional linear models with applications to longitudinal
data. J. Roy. Statist. Soc. Ser. B. 2000; 62:303–322.

Fleming, TR.; Harrington, DP. Counting Processes and Survival Analysis. New York: Wiley; 1991.

Gupta RC, Langford ES. On the determination of a distribution by its median residual life function: a
functional equation. J. Appl. Probab. 1984; 21:120–128.

He X, Shao XM. On parameters of increasing dimensions. J. Multivar. Anal. 2000; 73:120–135.

Jeong JH, Jung SH, Costantino JP. Nonparametric inference on median residual life function.
Biometrics. 2008; 64:157–163. [PubMed: 17501936]

Jung SH, Jeong JH, Bandos H. Regression on quantile residual life. Biometrics. 2009; 65:1203–1212.
[PubMed: 19432781]

Kaufmann P, Engelstad K, Wei Y, Kulikova R, Oskoui M, Battista V, Koenigsberger D, Pascual JM,
Sano M, Hinton V, Hirano M, Millar WS, Shungu DC, Mao X, DiMauro S, De Vivo DC. Protean
Phenotypic Features of the A3243G Mitochondrial DNA Mutation. Achieves Neuro. 2009; 66:85–
91.

Müller HG, Zhang Y. Time-varying functional regression for predicting remaining lifetime
distributions from longitudinal trajectories. Biometrics. 2005; 61:1064–1075. [PubMed:
16401280]

Ma Y, Yin G. Semiparametric median residual life model and inference. Canad. J. Statist. 2010;
38:665–679.

Oakes D, Dasu T. A note on residual life. Biometrika. 1990; 77:409–410.

Oakes, D.; Dasu, T. Inference for the proportional mean residual life model. In: Kolassa, JE.; Oakes,
D., editors. Crossing Boundaries: Statistical Essays in Honor of Jack Hall. Vol. 43. Institute of
Mathematical Statistics: Hayward, CA; 2003. p. 105-116.Institute of Mathematical Statistics
Lecture Notes Monograph Series

Qu A, Lindsay BG, Li B. Improving generalized estimating equations using quadratic inference
functions. Biometrika. 2000; 87:823–836.

Schumaker, L. Spline Functions: Basic Theory. New York: Wiley; 1981.

Ma and Wei Page 15

Stat Sin. Author manuscript; available in PMC 2014 January 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Curve fitting for β1(t) and β2(t) in different models. Top row: m(x, β) = β1(t) + β2(t)X, β1(t) =
1 + t, β2(t) = 0.5 + t. Bottom row: m(x, β) = e−2X β1(t) + e−X β2(t), β1(t) = (log(2))2,

. True curve (’−’), median estimated curve (’−.’), and 90% pointwise
confidence band (’−’). Sample size n = 300.
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Figure 2.
Estimated time varying intercept function (left) and slope function (right), and their
confidence bands (upper and lower 10% quantile) in MELAS study for median (upper),
lower quartile (middle) and 10% quantile (lower) residual life time.
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Table 2

Level precision of the Wald tests for H0 : β2(t) = 0, H1 : β2(t) ≠ 0.

n 0.01 0.05 0.1

linear model

100 0.1170 0.2350 0.3050

β1(t) = 1 200 0.0650 0.1610 0.2270

300 0.0090 0.0500 0.1050

100 0.0590 0.1230 0.1790

β1(t) = 1 + t 200 0.0460 0.1120 0.1580

300 0.0150 0.0550 0.0940

nonlinear model

100 0.0240 0.0490 0.0800

β1(t) = {log(1 − τ)}2 200 0.0260 0.0590 0.0960

300 0.0160 0.0520 0.0900
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Table 3

Power of the Wald tests for H0 : β2(t) = 0, H1 : β2(t) ≠ 0.

n 0.01 0.05 0.1

100 0.8640 0.9390 0.9650

β1(t) = 1 200 0.5470 0.7240 0.7980

300 0.2840 0.5110 0.6270

100 0.9660 0.9920 0.9970

β1(t) = 1 200 0.7470 0.8480 0.8920

300 0.4900 0.7050 0.7850

100 0.3510 0.5680 0.6760

β1(t) = 1 + t 200 0.2530 0.4450 0.5750

300 0.1140 0.2610 0.3830

100 0.4000 0.6160 0.7170

β1(t) = 1 + t 200 0.2970 0.4850 0.6010

300 0.1290 0.2790 0.3820

100 0.7700 0.8590 0.8940

β1(t) = 1 + t 200 0.7240 0.8530 0.8850

300 0.5900 0.7410 0.8090

100 0.8330 0.9070 0.9340

β1(t) = 1 + t 200 0.7520 0.8560 0.9050

300 0.6000 0.7480 0.8100

100 0.7470 0.8140 0.8340

β1(t) = {40log(1 − τ)}2/n 200 0.6600 0.8230 0.8820

300 0.4080 0.5830 0.6930
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