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ABSTRACT

Little consideration has been given to the effect of
different segmentation methods on the variability of
data derived from microarray images. Previous work
has suggested that the signi®cant source of vari-
ability from microarray image analysis is from esti-
mation of local background. In this study, we used
Analysis of Variance (ANOVA) models to investigate
the effect of methods of segmentation on the preci-
sion of measurements obtained from replicate
microarray experiments. We used four different
methods of spot segmentation (adaptive, ®xed
circle, histogram and GenePix) to analyse a total
number of 156 172 spots from 12 microarray experi-
ments. Using a two-way ANOVA model and the co-
ef®cient of repeatability, we show that the method of
segmentation signi®cantly affects the precision of
the microarray data. The histogram method gave the
lowest variability across replicate spots compared
to other methods, and had the lowest pixel-to-pixel
variability within spots. This effect on precision was
independent of background subtraction. We show
that these ®ndings have direct, practical implica-
tions as the variability in precision between the four
methods resulted in different numbers of genes
being identi®ed as differentially expressed.
Segmentation method is an important source of
variability in microarray data that directly affects
precision and the identi®cation of differentially
expressed genes.

INTRODUCTION

Expression pro®ling using microarrays offers a powerful
technology to gain novel insights into different biological
phenotypes through studying genome-wide differences.
However, the technique suffers from an inherent lack of
precision owing to the multiple sources of variability in
processing a microarray experiment (1,2). The extent of this
variability can preclude the production of interpretable results.

It is therefore very important to understand and optimize the
variables that may introduce noise into the data analysis.

Variability in microarray experiments can arise from pre-
scanning and post-scanning steps. Pre-scanning steps include
methods of RNA extraction (3,4), different types of probe
preparation (3,5), probe labelling (6), hybridization and slide
quality (7,8). The second category includes image acquisition
and image/data analysis. Interestingly, relatively little atten-
tion has been given to the variability introduced by image
analysis methods as a potential source of noise. A previous
report suggested that variability introduced by image analysis
is predominantly determined by the method of estimating
signal background from a spot, and not the method of
segmentation (which identi®es the individual pixels that make
up a feature) (9). However, a pixel represents the basic unit
from which intensity values are derived. Brown et al. (10)
have shown that small- and large-scale ¯uctuations in pixel
intensities within a spot lead to uncertainty in microarray
quantitation, and that pixel-to-pixel variability correlates with
variability between replicate spots on duplicate slides. It
therefore follows that methods of summarizing individual
pixel data by segmentation could have major effects on the
precision of the data.

The algorithms used by different segmentation methods
have been previously described (9). Although the overall aim
of each of the methods is to summarize data obtained from
individual pixel intensities, there are striking differences in
how this is achieved. For example, the histogram method
samples only 15% of the pixel centiles for foreground and
background estimation. In contrast, the adaptive method
summarizes all the available pixels regardless of their centile
values. The implications of these variations on repeatability
have not been formally investigated. Most investigators are
unaware of these issues and simply use the commercial
software provided with their microarray scanner. Moreover,
further variability may be introduced as software packages can
offer a choice of segmentation algorithms or allow the centile
range for sampling to be determined by the user.

In this report, we show that the choice of segmentation
method signi®cantly in¯uences the precision of the data, and
this effect is independent of background subtraction but
dependent upon the ¯uor intensity of the hybridized probe. In
order to analyse differences between methods, independently
of other sources of possible noise, we initially performed
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signi®cance analysis on the correlation data from adaptive,
®xed circle and histogram segmentation using identical grid
placement from a single analysis package (QuantArray).
Having identi®ed signi®cant differences between the methods
we then used a more generalizable method of comparison, the
coef®cient of repeatability, to con®rm these ®ndings and
included an additional method (GenePix) in the analysis (11).

MATERIALS AND METHODS

Microarrays

Expression microarrays containing 6528 pairs of duplicate
cDNA spots were used (Cancer Research UK DNA
Microarray Facility at the Institute of Cancer Research;
CR-UK DMF Human 6.5k genome-wide array). All micro-
arrays used were from the same printing batch. Total RNA was
obtained from the cell line HCT116 and an isogenic daughter
line with a targeted disruption of the EP300 gene derived by
homologous recombination (N.G.Iyer, S.-F.Chin, H.Ozdag,
Y.Daigo, D.-E.Hu, M.Cariati, K.Brindle, S.Aparicio and
C.Caldas, submitted). Total RNA was used for reverse
transcription and indirect labelling with Cy3 and Cy5 dyes
(Amersham) using random hexamers as previously described
(12). Measurements of the amount of puri®ed cDNA and Cy3/
Cy5 incorporation were made before hybridization using the
Nanodrop ND-1000 spectrophotometer (Nanodrop
Technologies, Inc.). For all hybridizations, the ¯uor incorp-
oration was highly correlated to the mass of cDNA (data not
shown). Two sets of experiments (A and B) were carried out,
using six slides in each with a balanced dye-swap design (three
slides for each dye). Experiments A and B were identical but
used 10 and 15 mg total RNA for labelling for each
hybridization. Scanning was performed using the ScanArray
4000 (Perkin Elmer) at a resolution of 10 mm at maximum
laser power and photomultiplier tube voltage of 50±60%.
Segmentation was performed using QuantArray (Perkin
Elmer) and GenePix Pro 4.1 (Axon Instruments, Inc.)
software. All three methods of segmentation available within
the QuantArray package were evaluated. The default settings
for centile sampling were used for all the analyses. The
histogram, ®xed circle and adaptive methods sampled the
foreground intensity from centiles 80±95, 45±95 and 1±99,
respectively. The background was estimated by measuring
centiles 5±20, 5±55 and 1±99, respectively. The GenePix
method used all centiles within the de®ned foreground and
background areas. All raw image and derived data ®les are
available at the GEO repository (http://www.ncbi.nlm.nih.
gov/geo/; accession numbers GSM16895±42; series entity
GSE1054).

Statistical methods

All statistical analysis was conducted using the R environment
(13) and the R package `Statistics for Microarray Analysis'
(14). Log intensity ratios for each spot were obtained with and
without background subtraction. All spots from each micro-
array were included in the analysis. Data normalization was
performed using scaled loess normalization and differential
genes were identi®ed using an empirical Bayes method for
analysing replicated microarray data (15). Data precision was
initially assessed by using correlation coef®cients. Correlation

data were divided into three groups according to the segmen-
tation method used (adaptive, ®xed circle or histogram).
Analysis of variance (ANOVA) was used for testing the
correlation differences between the groups. Homogeneity of
the correlation values within the different groups was tested
using the Levene test of Homogeneity and between-group
comparisons of correlation values were performed using the
Tukey HSD test. Coef®cient of repeatability was used as an
alternative to testing correlation values (11). An annotated
script for the entire analysis is available as Supplementary
Material.

RESULTS

Segmentation method signi®cantly in¯uences within-slide
correlations

To investigate whether the segmentation method was an
important determinant of precision, we ®rst determined the
correlation between data obtained from within-slide replicates
as these data are relatively independent of variations in slide
printing or sample preparation. We used log ratios for
expression differences as these are more robust than single
channel data for normalization purposes and are more
biologically meaningful (15). We calculated the Pearson's
correlation coef®cient (r) for the M ratio values obtained from
6528 pairs of replicate spots from each of six hybridizations
(experiment A). The microarray images were analysed using
®xed circle, histogram and adaptive segmentation methods
resulting in 18 correlation coef®cients. To further minimize
noise, we used an identical grid placement for each method
as minor differences in grid registration can signi®cantly
affect correlations (data not shown). To avoid multiple
pairwise testing of differences between the means of categor-
ies (A<±>F, A<±>H and F<±>H), a one-way ANOVA
analysis was conducted using the segmentation method as
the independent variable and the r values as the outcome.

We found a signi®cant difference (P < 0.001) between the
three methods of segmentation at each level of comparison,
with the histogram method giving the highest correlation and
the adaptive method giving the lowest correlation (Fig. 1). As
the ANOVA model assumes equal variance we con®rmed this
in our data by carrying out formal testing for homogeneity
(Levine test; P = 0.6) and assessed the goodness of ®t using the
R-squared test (R2 = 0.84) as well as quantile±quantile plots
(data not shown). To evaluate whether the observed differ-
ences were merely because of differences in estimating
background values, the analysis was repeated without back-
ground subtraction. The overall difference between the
methods remained (P < 0.001) although the difference
between the histogram and ®xed circle method was no longer
signi®cant (Fig. 1).

Histogram segmentation gives lower pixel-to-pixel
variability

We hypothesized that the better precision for the histogram
method was because of less variability in pixel intensity, as
¯uctuations in pixel values have been shown to increase noise
(10). The histogram method summarizes centiles of pixel
intensities obtained from a square centred around the true spot.
From this, it follows that a narrow window of centiles will
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reduce the within-spot variability as compared to the other
methods of segmentation used here. We therefore calculated
the coef®cient of variability (CV) for foreground and back-
ground pixels for each feature in experiments A and B in both
Cy3 and Cy5 channels (Fig. 2). Experiments A and B differed
only in the amount of labelled RNA sample hybridized to each
array (see later). The histogram method had the lowest CV
values in both foreground and background.

Dye-swapping confounds the precision of between-slide
comparisons

We next studied the effect of segmentation on between-slide
variability by deriving a matrix of correlations for all possible
pair-wise comparisons between the slides for each method (15
comparisons for each of three segmentation methods). A one-
way ANOVA was conducted as above. In contrast to our
results from within-slide comparisons, no signi®cant differ-
ences in the correlations were found. The correlation coef®-
cients between slides with dye-swapping were mostly
negative, indicating low overall repeatability of the data
(Fig. 3a). As dye-swapping would be expected to alter
correlations between slides, we reanalysed the data by
restricting the comparisons to those between replicates in
which cDNA probes had been labelled with the same ¯uors.
As expected, comparisons between replicates with the same
dyes had higher correlations than between slides with swapped
dyes (Fig. 3a). However, the bene®cial effect of histogram
segmentation on correlation was observed for slides with the
same dye (Fig. 3b).

Precision is determined by choice of segmentation
method and amount of labelled probe

The impact of the quantity of RNA used on the overall
precision of microarray data has been previously reported
(16). In experiment A, we labelled 10 mg of total RNA for each
slide which yielded a median of 2.1 mg [interquartile range
(IQR) 1.1±3.1] of cDNA probe after puri®cation, and incor-
porated a median of 151 pmol (IQR 104±206) of each ¯uor. In

order to identify whether the low between-slide correlations
were caused by inadequate speci®c activity of our samples, we
repeated the experiment using starting material of 15 mg of
total RNA for each sample (experiment B; median labelled
cDNA 5.5 mg, IQR 4.6±6.6, median incorporation of each
¯uor 463 pmol, IQR 384±534). To examine both the effect of
the amount of labelled sample and the segmentation method,
we performed two-way ANOVA analyses by combining the
full data sets from experiments A and B (36 within-slide
correlations and 90 between-slide correlations).

For within-slide correlations, the amount of labelled sample
and method of segmentation independently and signi®cantly
(P < 0.001) in¯uenced correlations (Fig. 4). There was no
signi®cant interaction between the two variables and this
effect was still signi®cant with or without background
subtraction (P < 0.001) (data not shown).

For between-slide comparisons, using a larger amount of
labelled sample signi®cantly(P < 0.001) improved the correl-
ations independently of the segmentation method used (Fig. 4).
However, signi®cant interaction was observed between the
amount of labelled sample and the segmentation method.
Therefore, while there was no advantage for any segmentation
method when low amounts of labelled sample were used, there
were marked differences for the methods when using higher
amounts. These differences were independent of background
subtraction (data not shown).

Coef®cient of repeatability con®rms higher precision

A low value for the correlation coef®cient does not necessarily
mean low repeatability as the correlation coef®cient is not a
measure of sameness (17). Previous reports have shown
discrepancies between correlation coef®cients and repeatabil-
ity coef®cients (11,17). In order to con®rm our ®ndings, we
repeated the analysis using the coef®cient of repeatability
(CR) values to compare between the three different methods
of segmentation and included a fourth proprietary method
encoded within the GenePix software package. The box plots
for the sigma factors obtained for each feature from the slides

Figure 1. Segmentation method signi®cantly in¯uences precision for within-slide correlations. The dot plots show correlations between 6528 replicate spots
from six slides by segmentation method. The medians are indicated by horizontal lines. Left and right panels show the effect of background correction. The
Tukey HSD test showed no difference between the ®xed circle and the histogram method when background was not subtracted (A, adaptive; F, ®xed circle
and H, histogram method).
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from experiment B (no background subtraction) showed that
the histogram methods had the lowest median CR value (CR =
0.14) followed by the ®xed circle method (CR = 0.15), the
GenePix method (CR = 0.16), and the adaptive method (CR =
0.2) (Fig. 5).

The probability of a gene to be differentially expressed is
dependent on the variability of the data for that gene across the
replicates of an experiment (1). It follows from our ®ndings
that the segmentation method could have a direct effect on the
number of differentially expressed genes identi®ed. In order to
test this assumption, we used a Bayesian method to estimate
the number of differentially expressed genes at a P value of
0.01 from the data set of experiment B (15). The number of
genes identi®ed varied considerably depending on the method
of segmentation: 944, 967, 832 and 345 genes were identi®ed
for the GenePix, ®xed circle, histogram and adaptive methods,
respectively (Fig. 6).

DISCUSSION

A critical component of carrying out microarray experiments
is the segmentation of images following scanning. We show
here signi®cant differences in precision and the number of
differentially expressed genes using commonly used segmen-
tation algorithms.

Differences between segmentation methods could result
from differences in summarizing pixel-level data as pixel-to-
pixel variability has been shown to have important effects on
data quality (10). We were unable to obtain consistent ®ndings
to support this view. The histogram method yields the lowest
within-spot variability as measured by the pixel CV values
(Fig. 2) and performed best for within- and between-slide
variability (Fig. 4). However, pixel CV values for the ®xed
circle and adaptive methods were very similar for foreground
Cy3 and Cy5 measurements, but within- and between-slide

Figure 2. The histogram method yields less pixel-to-pixel variability compared to other methods of segmentation. The dot plot shows the distribution of med-
ian within-spot CV values by segmentation method and low and high amounts of labelled probe. The medians are indicated by horizontal lines (A, adaptive;
F, ®xed circle; H, histogram; low, experiment A; high, experiment B).
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correlations were very different. There were larger differences
in pixel CVs for background which would be consistent with
the ®nding that background estimation signi®cantly affects
precision (9). However, the loss of precision we observed for
within-slide correlations was independent of background
subtraction. These results could be explained by the sensitivity
of CV calculation to outlying pixel values and in these cases
using either the IQR or the repeatability coef®cient could
provide a more robust and therefore more reliable measure of
variation. We were unable to conduct this form of analysis as
none of the segmentation packages used report individual
pixel data.

The introduction of dye-swapping has been proposed as a
measure for accounting for preferential gene±dye interactions.
The evidence to support this hypothesis is weak (18). Our
®ndings suggest that dye-swapping introduces considerable
variability in the experiment. The use of a common reference

Figure 3. Dye-swapping decreases reproducibility at low probe concentration. (a) Dot plots show correlations for different dye (D) or same dye (S)
comparisons for six slides from experiment A (black circles, adaptive; magenta circles, ®xed; green circles, histogram). (b) Interaction plot shows the effects
of dye-swapping on the mean correlation coef®cients between replicate slides for each segmentation method. Note that for slides with the same dye, the
histogram method performed best and this was confounded by the dye swap (A, adaptive; F, ®xed circle; H, histogram).

Figure 4. Histogram segmentation improves within- and between-slide correlations. Interaction plots show the effect of the amount of labelled probe on the
mean correlations for all data from experiments A and B for each of the three segmentation methods. Left and right panels show within-slide (six data points
per category) and between-slide correlations (15 data points per category). The amount of labelled probe has a signi®cant effect (P < 0.001) as indicated by
the downward slope of the lines from high to low amounts. In between-slide comparisons, the bene®t of histogram segmentation is confounded by low
amounts of labelled probe (A, adaptive; f, ®xed circle; H, histogram).

Figure 5. Histogram segmentation results in the lowest coef®cient of
repeatability (CR). Box plots show the distribution of the CR values of each
of the 6528 spots in experiment B by four different methods of
segmentation (A, adaptive; F, ®xed circle; H, histogram; G, GenePix).
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design could eliminate the need for dye-swapping (18).
Indirect comparison to a common reference does introduce
more variance as compared to a direct comparison between
two samples, and therefore increases the number of replicates
required in an experiment (19). In a two-sample comparison
such as the one conducted in this paper, we feel that the
decision to use dye-swapping or a common reference design
should be based on the comparison of the noise introduced by
each method in pilot experiments. Our results, however,
demonstrate that at low probe concentration, dye-swapping
yields uninterpretable data and mostly negative correlations.
This has detrimental effects on gene discovery microarray
experiments.

In this report, we used both the correlation coef®cient and
the coef®cient of repeatability as measures of data quality.
However, having a higher precision should not automatically
be interpreted as better data. The investigator needs to
understand the principles of segmentation analysis and to
use the most appropriate methods for the experimental
conditions. For example, the histogram method may give the
best overall precision for slides that have low background, but
it performs badly when local background is higher than the
foreground spot intensity. These spots (`ghost spots') will be
erroneously reported with inverted foreground and back-
ground values. The use of plots and multiple comparisons
across the raw data set is of utmost importance in deciding on
the appropriate segmentation method. This should then lead to
careful consideration of whether the segmentation method
should be included as a variable in the statistical model for
identifying signi®cantly differentially expressed genes. Such
measures are easily automatable within a powerful statistical
environment as provided by the R language.

These ®ndings raise questions about how microarray data
should be reported and compared, as results could be
signi®cantly different when obtained by different segmenta-
tion methods. The MIAME standard de®nes information about
the type of scanning software used in microarray experiments
and the Microarray and Gene Expression Object Model
(MAGE-OM) includes the software version number (20). We
believe that it is absolutely essential to also report the exact
method used in segmentation. Ideally, raw image data should
always be publicly available to allow the most robust
comparison between different experiments.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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Figure 6. Volcano plots show likelihood of difference (LOD) for genes in experiment B by method of segmentation. Inset shows number of genes with LOD
> 0 (M, log ratio; A, adaptive; F, ®xed circle; H, histogram; G, GenePix).
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