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Abstract

Human leukocyte antigen (HLA) class I molecules are critical components of the cell-mediated immune system that bind
and present intracellular antigenic peptides to CD8+ T cell receptors. To understand the interaction mechanism underlying
human leukocyte antigen (HLA) class I specificity in detail, we studied the structural interaction characteristics of 16,393
nonameric peptides binding to 58 HLA-A and -B molecules. Our analysis showed for the first time that HLA-peptide
intermolecular bonding patterns vary among different alleles and may be grouped in a superfamily dependent manner.
Through the use of these HLA class I ‘fingerprints’, a high resolution HLA class I superfamily classification schema was
developed. This classification is capable of separating HLA alleles into well resolved, non-overlapping clusters, which is
consistent with known HLA superfamily definitions. Such structural interaction approach serves as an excellent alternative
to the traditional methods of HLA superfamily definitions that use peptide binding motifs or receptor information, and will
help identify appropriate antigens suitable for broad-based subunit vaccine design.
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Introduction

Human leukocyte antigen (HLA) class I molecules are cell

surface glycoproteins that play a critical role in cell-mediated

immune response [1]. They bind peptides derived from intracel-

lular pathogens and present them to CD8+ T cell receptors [2]. T

cell recognition of ligated HLA complex will initiate a cascade of

immunological events that leads to the clearance of pathogens.

The HLA binding site contains polymorphic cavities (or ‘pockets’)

that fit the side-chains of complementary (i.e. anchor) residues on

the binding peptide [3,4]. It is known that specific HLA alleles can

bind peptides with similar anchor residues and lead to the

definition of ‘‘peptide motif’’ for an array of class I and II alleles

[5,6]. The subsequent discovery that certain HLA alleles can

recognize very similar motifs resulted in the definition of HLA

‘‘supermotifs’’ or ‘‘supertypes’’ [7].

The characterization and classification of HLA alleles into

superfamilies is important for the development of epitope-based

vaccines [8–11]. By clustering HLA alleles on the basis of their

structural features and/or peptide binding specificities, promiscu-

ous T cell epitopes that bind multiple HLA alleles can be

identified. Such peptides are key targets for the design of broad-

based vaccines and immunotherapeutics because they are

applicable to higher proportions of human population. However,

experimental determination of binding specificities for even a

single HLA allele is an expensive, laborious and time consuming

process; and not practical for the study of HLA superfamilies that

involve large numbers of alleles [12–14]. In silico, bioinformatics

has been emerging as an alternative and viable approach for the

classification of HLA superfamilies [15–22]. A number of

clustering methods for HLA superfamily definitions are available,

including those based on local sequence similarities in binding

pockets [15–17], global sequence similarities [18–19] and peptide

binding motifs [20]. Where data is limited or there is bias in the

experimental binding motifs, mixed results have been reported

[23]. Previously, Doytchinova and colleagues [14,24] employed

the use of hierarchical clustering and principal component analysis

to classify HLA alleles according to their primary sequences and

structures. The approach successfully identified HLA class I and

class II supertype fingerprints and illustrated that only 1–3 amino

acids are sufficient for an allele to be classified within a particular

supertype. Kangueane et al. [25] defined critical polymorphic

functional residue positions within the binding grooves of HLA-A,

-B and -C alleles and grouped 47% of 295 HLA-A alleles, 44% of

540 HLA-B alleles and 35% of 156 HLA-C alleles to 36, 71 and

18 groups, respectively.

In this study, we explored the use of intermolecular bonding

patterns for in-depth analysis of 58 HLA-A and -B binding

characteristics. Our analysis showed that peptide/HLA structural

interaction patterns vary among different alleles and may be

grouped in a superfamily dependent manner. The results obtained

here shed new light into HLA superfamily definition, further

suggesting that HLA superfamily definitions may not be limited to

peptide binding motifs or receptor information. Instead, they can

be characterized at the intermolecular level that is based on the

interactions between HLA proteins and their associated peptides,
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and consistent with solutions from X-ray crystallography. Through

the use of structural interaction parameters described herein, a

novel HLA class I superfamily classification schema has been

developed for alleles with available binding sequences.

Results and Discussion

Significant Interactions
A total of 317 HLA-peptide interactions were identified using

the homology models of 16,393 HLA-peptide complexes. Out of

these, 230 interactions have less than 5% standard deviation in

their supports across all alleles. All of these interactions, with the

exception of H(159,1), have very low average supports below

6.92%. These interactions do not serve well to differentiate the

binding specificities of the HLA alleles and were not used for

further analysis. The remaining 87 HLA-peptide interactions, with

more than 5% standard deviation in interaction support, were

extracted and used as feature vectors representing the interaction

profiles of the alleles.

As shown in Figure 1, most of the significant interactions (with

more than 50% supports) are associated to the first three and last

positions of nonameric peptides, which is consistent with existing

HLA binding motifs [26,27]. H(159,1) and N(159,3) exhibited very

high average supports of 97.5% and 91.9% across all alleles.

Tyr159 is conserved across all HLA-A and -B alleles associated with

the current study and it has been observed to interact with all 20

naturally occurring amino acids on the amino terminal of the

peptide (position 1). This lack of selectivity in hydrogen bonding

suggests that the binding is independent of peptide side chain. The

exact atoms found to be involved in H(159,1) are the carboxyl

oxygen on the peptide backbone and the hydroxyl hydrogen on

the side chain of Tyr159. H(147,8) and N(143,9) have also been

found to have high average supports of 88.3% and 86.0% for all

the alleles except B*4001. For B*4001, amino acid substitutions of

Trp143 and Thr147 with Leu143 and Ser147 resulted in a complete

loss of hydrogen bonding at position 8 of the peptide, and

weakened hydrophobic interactions (24.1% support) at position 9

of the peptide.

The majority of the HLA-peptide interactions exhibited

differences in their interaction supports in a superfamily-depen-

dent manner. For example, the supports for H(7,1) are lower in A3

and B7 alleles with an average of 49.2% and 55.6% respectively,

compared to the average support of 86.0% in the rest of the alleles.

Such superfamily-dependent variability is more predominant in

interactions involving positions 1, 2 and 9 of the nonameric

peptides, whereas interactions involving the remainder positions

are mostly uniform across the alleles.

HLA-A Superfamilies
Five main clusters were observed: A1 (A*0101, A*2601,

A*2602, A*2603, A*2902, A*3002, A*8001), A2 (A*0201,

A*0202, A*0203, A*0205, A*0206, A*0207, A*0211, A*0212,

A*0216, A*0219), A3 (A*0301, A*0302, A*1101, A*3001,

A*3101, A*3301, A*6801), A24 (A*2301, A*2402, A*2403), and

A6X (A*6802, A*6901). Hydrophobic interactions between

peptide position 6 and receptor positions 70 and 73 are

predominantly found in HLA-A alleles, compared to their HLA-

B counterparts.

A1 alleles generally have very similar interaction profiles

compared to A3 alleles. This is consistent with the proximity of

the two clusters as shown in Figure 2. Although .20% differences

in average support between the two superfamilies can be observed

in H(7,1), N(63,1), H(171,1), N(159,2), N(66,4) and N(123,9), there

are no interactions which are exclusive to either A1 or A3

superfamilies. N(123,9) appears unique to A1 alleles (,79.0%

support). Comparable supports in N(123,9) are not observed in all

other superfamilies except B8 (,67.4%), which is intriguing given

that Tyr123 is conserved in all the alleles in this study.

A2 alleles, on the other hand, have interaction profiles similar to

those in A24 and A6X. At position 2 of the peptide, comparable

levels of support are observed in A2 and A24 alleles for majority of

the interactions, except for N(9,2), H(70,2) and N(99,2). For A2

alleles except A*0205/06, hydrophobic interactions between

peptide position 2 and Phe9 appears to be a dominant trait of

the superfamily, and its substitution with Ser in A24 alleles resulted

in the complete loss of hydrophobic interaction at this specific

position. At peptide position 9, H(77,9) and N(81,9) have higher

supports in A2 compared to A24 alleles. Similar loss of

hydrophobic interaction is observed for all the A24 alleles

whenever Leu is substituted with Ala at position 81 of the HLA

molecule (Figure 3). A loss of hydrogen bonding is also observed

when the predominant Tyr99 is replaced by Phe99 in A24 alleles.

A24 alleles also seem to interact with peptide position 5 more

frequently as compared to the rest of the alleles in the other HLA-

A superfamilies; as observed with the relatively higher supports in

N(70,5), H(73,5) and N(97,5).

As shown in Figure 3, A3 binding peptide repertoire is

characterized by a strong preference for positively charged basic

residues in position 9. This could be attributed to the combination

of acidic residues: Asp77 and Glu114/Asp116, which is unique to the

A3 alleles. The A*3201 allele, which lies in close proximity to the

A3 alleles in the dendrogram (Figure 2), however, does not exhibit

the same preference for basic residues on peptide position 9 as A3

alleles do, and neither does the allele possess the combination of

acidic residues mentioned above. The Asp77 conserved among A3

alleles is replaced by the neutral Ser77 residue in A*3201.

Therefore, it is likely that A*3201 does not belong to the A3

superfamily as proposed by Doytchinova et al. [23].

In previous classifications [20,24,28,29], A*6802 and A*6901

(herein referred to as A6X) have been grouped under the A2

superfamily. The sequences of A2 and A6X are highly conserved

in the F pocket region, which interacts with the C terminal region

of the peptides. Nine out of 10 positions in this pocket are fully

conserved (77, 80, 81, 84, 116, 123, 143, 146, and 147), while

position 95 is occupied by either Val, Leu or Ile. The two

superfamilies lie close to each other within the dendrogram

(Figure 2) and exhibited highly similar support levels for all

interactions involving peptide position 9. However, clear differ-

ences between the interaction profiles of these two superfamilies

could be observed at peptide positions 1 and 2. N(63,1), N(7,2),

N(9,2), N(45,2), H(63,2), H(66,2), N(67,2), and N(70,2) have

significantly lower supports (.20%) in A6X compared to A2

alleles. Furthermore, the hydrophobic interaction N(62,1), which is

completely absent in all A2 alleles, has a support of 18.7% in

A*6802 and 14.0% in A*6901. Hence, we have classified A*6802

and A*6901 as a separate superfamily.

HLA-B Superfamilies
Six clusters were obtained, with B*1801 excluded as an outlier:

B7 (B*0702, B*3501, B*5101, B*5301, B*5401), B8 (B*0801,

B*0802, B*0803), B27 (B*1402, B*2705, B*7301), B44 (B*4001,

B*4002, B*4402, B*4403, B*4501), B58 (B*1516, B*1517,

B*5701, B*5801), and B62 (B*1501, B*1502, B*1503, B*1509,

B*3801, B*3901). In general, hydrogen bonding interaction

H(45,2) and H(62,2) are exclusive to B27, B44, B*1509, B*3801,

and B*3901, and are missing in the HLA-A alleles. Similarly,

H(9,2) is also more highly supported (,34.6%) in B27, B44, B58,
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B62 superfamilies and B*1801 as compared to HLA-A alleles

(,2.6% support).

B7 alleles have few significant interactions observed in the B-

pocket region, which interacts with peptide position 2. A

characteristic of this superfamily is high support level (,84.6%)

for hydrophobic interaction between Tyr/Phe67 of B7 alleles and

peptide position 2.

The N(36,2) hydrophobic interaction is a distinctive character-

istic of B8 (18.4–44.1% support) and B62 (#12.9% support)

alleles. The serologically defined B8 alleles have been classified as

outliers by Sette and Sidney [30], and Sidney et al. [28]. In

general, the binding peptide repertoire of B8 is distinctively

different from the other superfamilies. The B8 alleles were shown

to exhibit preference for hydrophobic residues on peptide position

9, and basic residues Lys and Arg at the third and fifth positions.

H(156,3) hydrogen bond is another interaction unique to the B8

alleles. It is formed between the acidic Asp156 residue, which is

conserved across the B8 alleles and basic residues at peptide

position 3.

Among the HLA-B superfamilies, B27 alleles have the most

diverse interaction profiles (Figure 1). This is likely a manifestation

of the effect of small numbers of binding peptides collected for

B*1402 and B*7301; with 8 and 16 peptides respectively. The loss

of H(171,1) hydrogen bond as observed in B*1402 and B*7301, is

directly linked to the substitution of Tyr171 by His171. This

association is also observed in A*3301, B*1801 and B*5101.

Strong preference (97.4%) for negatively charged residues at

peptide position 2 is observed in B44 alleles. This preference is

attributable to the presence of the positively charged Lys45, which

is unique to B44 alleles. Similar observation is made with the B27

and B39 alleles, where the negatively charged Glu45 is prevalent at

the B-pocket.

Similar to B44 alleles, a strong preference (74.4%) for acidic

residues at peptide position 2, and hydrogen bonding at H(99,2) is

observed for B*1801, which has been classified under B44 and B7

superfamilies by earlier methods [24,28,29]. However, H(45,2)

and N(45,2), which occur with average supports of 55.6% and

15.3% in B44 alleles, are entirely absent in B*1801, which

contains the polar uncharged Thr45 instead of the positively

charged Lys45 in B44 alleles. Thr45 is also found in some of the B7

alleles (B*3501, B*5101, B*5301) and H(45,2) and N(45,2) are also

completely absent in these B7 alleles. While the binding repertoire

of B*1801 clearly resembles that of the B44 alleles and Thr45 is

found both in B*1801 and some B7 alleles, the interaction profile

of B*1801 does not conform fully to either of the two

superfamilies.

Compared to the other alleles, relatively high supports

(,47.4%) of H(66,3) are observed exclusively for B58 alleles

among the HLA-B family. While some HLA-A alleles also possess

Asn66, the support for H(66,3) is much lower (#17.4%) among the

HLA-A alleles.

Superfamily Assignment
The superfamily assignment to the alleles derived through our

classification method (Table 1) is compared to previous studies

[20,24,28,29]. Previous efforts to cluster HLA class I alleles have

consistently obtained cross-loci superfamilies comprising of alleles

from more than one locus; in Lund’s attempt [20], A*2902 and

B*1506 are grouped under the B44 and A1 superfamilies

respectively; in Reche and Reinherz’s classification [20], apart

from several new cross-loci superfamilies (namely ABX and B15)

Figure 1. Heatmap of HLA-peptide interaction supports. HLA-A and -B alleles are sorted according to their assigned superfamilies and then
by their allelic name. HLA-peptide interactions are sorted according to the interacting position on peptide ligand and then the position on the HLA
molecule. The 88 columns consist of the 87 interactions with more than 5% standard deviation in their supports and H(159,1), which has
exceptionally high supports (average of 97.5%) with low standard deviation (2.74%). Each interaction support value is color coded from red (0%
support) to blue (100% support). The interactions are sorted from left to right; first by peptide position then by HLA position involved in the
interaction.
doi:10.1371/journal.pone.0086655.g001
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proposed, B*3801 is classified under the A24 superfamily; in Hertz

and Yanover’s classification [29] based on learned peptide

distance function, A*2902 is classified under the B44 superfamily

and several alleles of B locus are grouped under A1 (B*1501,

B*1516, B*1517, B*5701 and B*5702), A2 (B*1512, B*1513, and

B*1518) and A24 (B*5801) superfamilies. Using our method, it is

conceivable to separate the HLA-A and -B alleles into well-

resolved, non-overlapping subtrees on the dendogram; with none

of the HLA-A alleles classified under the HLA-B superfamilies and

vice versa. A noteworthy observation is that some of these alleles

(A*2902, B*1516, B*1517, B*5701, and B*5801) which were

assigned cross-loci superfamilies in prior classifications could be

found near the boundary demarcating the HLA-A and -B subtrees

in our dendogram (Figure 2). Such observations clearly indicate

that previous methods may not be precise, and potential wrong

clustering could now be corrected using the new classification

method described here (Figure 4). The consensus between the

various methods and the one in this study, defined as the

proportion of the common alleles assigned to the same superfamily

in both methods compared, is given in Table 1. For A*2902 and

A*3001, which are assigned dual superfamilies by Sidney et al.

[28], they are now considered to be in agreement if they are

assigned to either superfamily in this method shown here.

The average agreement in the classification of HLA-A alleles is

75.3%. For this locus, our results and that of Sidney et al. [28] is

the highest (93.1%) among all other methods compared; the only

two HLA-A alleles which are not in agreement with Sidney et al.

[28] classification are A*6801 and A*6802, which are assigned to a

new superfamily A6X. Our superfamily assignment to A2 and A24

alleles are in perfect agreement with all prior assignment by other

Figure 2. Dendogram based on Manhattan pair-wise distance matrix. A total of 11 clusters, 5 HLA-A and 6 HLA-B clusters, are derived from
the clade topology and color-coded accordingly. The outliers (A*2501, A*3201, B*1801) are shown as single-leaf branches in light grey color. A26 and
B39 superfamilies, which are defined by Lund et al. [20], manifest as sub-clusters under A1 and B62 respectively and are demarcated by grey-colored
arches.
doi:10.1371/journal.pone.0086655.g002
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classifications (Table 1). For A1 alleles, the disagreement arises

from assignment of A26 superfamily proposed by Lund et al. [20]

and Hertz and Yanover’s [29] binding site approach. However, it

is interesting to observe that the A26 alleles defined by Lund et al.

[20] and Hertz and Yanover’s [29], to cluster as a subtree within

the A1 clade in the dendogram. Some disagreements are observed

for A3 superfamily, where A*0301 was assigned A1 superfamily by

Figure 3. Amino acid residues that occupy the 36 critical positions on the HLA-A and -B molecules. The 36 positions are involved in the
88 interactions shown in Figure 1. The consensus residue, which occurs with highest frequency, in each position is shown on the second and the last
row in the table in yellow shading. ‘.’ (a dot) represents that the allele possesses the same amino acid as the consensus residue.
doi:10.1371/journal.pone.0086655.g003
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Table 1. Superfamily assignment.

HLA
Allele

No. of
Complex This Study

Sidney
et al. [28] Hertz & Yanover [29]

Lund
et al. [20] Doytchinova et al. [24]

Peptide‘ BS* COMSIA MIF

A*0101 310 A1 A1 A1 A1 A1 A3 A3

A*2601 153 A1 A1 A1 A26 A26 A2 A3

A*2602 67 A1 A1 A1 A26 A26 A2 A3

A*2603 23 A1 A1 A2 A26 A26 A2 A3

A*2902 349 A1 A1 A24 B44 A1 outlier A3 A3

A*3002 243 A1 A1 A1 A1 A1 A3 A3

A*8001 65 A1 A1 – – A1 A3 A3

A*2501 47 outlier A1 – – A1 A2 A3

A*3201 310 outlier A1 – – A1 A3 A3

A*0201 2775 A2 A2 A2 A2 A2 A2 A2

A*0202 752 A2 A2 A2 A2 A2 A2 A2

A*0203 785 A2 A2 A2 A2 A2 A2 A2

A*0205 6 A2 A2 A2 A2 A2 A2 A2

A*0206 694 A2 A2 A2 A2 A2 A2 A2

A*0207 6 A2 A2 A2 A2 A2 A2 A2

A*0211 88 A2 A2 – – – A2 A2

A*0212 102 A2 A2 – – – A2 A2

A*0216 34 A2 A2 – – – A2 A2

A*0219 47 A2 A2 – – – A2 A2

A*2301 192 A24 A24 – – A24 A24 A24

A*2402 822 A24 A24 A24 A24 A24 A24 A24

A*2403 59 A24 A24 – – A24 A24 A24

A*0301 865 A3 A3 A3 A1 A3 A3 A3

A*0302 6 A3 A3 – – – A3 A3

A*1101 1161 A3 A3 A3 A1 A3 A3 A3

A*3001 438 A3 A1 A3 A1 A1 A1 A3 A3

A*3101 514 A3 A3 A3 – A3 A3 A3

A*3301 215 A3 A3 A3 A3 A3 A3 A3

A*6801 578 A3 A3 A3 A3 A3 A3 A3

A*6802 497 A6X A2 A2 A2 A2 A2 A2

A*6901 86 A6X A2 A2 A2 A2 A2 A2

B*1402 8 B27 B27 – – outlier B7 B7

B*2705 76 B27 B27 B27 – B27 B27 B27

B*7301 16 B27 B27 B27 B27 outlier B7 B7

B*4001 133 B44 B44 B7 B44 B44 B27 outlier

B*4002 162 B44 B44 B44 B44 B44 B27 outlier

B*4402 91 B44 B44 B44 B44 B44 B44 B44

B*4403 91 B44 B44 B44 B44 B44 B44 B44

B*4501 97 B44 B44 – – B44 B27 B7

B*1801 90 outlier B44 B44 B7 – B7 B7

B*1516 7 B58 B58 A1 B58 outlier B44 B44

B*1517 25 B58 B58 A1 B58 outlier B44 B44

B*5701 29 B58 B58 A1 B58 B58 B44 B44

B*5801 128 B58 B58 A24 B58 B58 B44 B44

B*1501 782 B62 B62 A1 B62 B62 B27 B7

B*1502 66 B62 B62 B62 B62 B62 B7 B7

B*1503 349 B62 B27 B62 B27 B62 B27 B7

B*1509 36 B62 B27 B39 B39 B39 B7 B7

Clustering HLA Class I Superfamilies
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Lund et al. [20] and A*3001, A*0301 and A*1101 by Hertz and

Yanover [29] using the protein-based approach.

The average percentage agreement for the HLA-B alleles is

59.3%. This is mainly due to a low consensus (23.1 and 26.1%)

with the classification of Doytchinova et al. [24]. This is due to the

fact that B58, B62 and B8 superfamilies found in all the other

studies, were not defined in the work of Doytchinova et al. [24].

For this locus, our results found high agreements with that of

Sidney et al. [28] (84.6%), Lund et al. [20] (85.0%) and Hertz and

Yanover’s [29] binding site approach (80.0%). However, a lower

percentage agreement of 57.1% is observed between our result

and Hertz and Yanover’s [29] peptide-based approach. This could

be caused by disagreements observed for alleles clustered under

B58 (0%) and B62 (33.3%) superfamilies. All the alleles in B58

superfamily are classified by Hertz and Yanover’s [29] peptide-

based approach as under HLA-A superfamilies (A1 and A24), and

Table 1. Cont.

HLA
Allele

No. of
Complex This Study

Sidney
et al. [28] Hertz & Yanover [29]

Lund
et al. [20] Doytchinova et al. [24]

Peptide‘ BS* COMSIA MIF

B*3801 7 B62 B27 B39 B39 B39 B44 B27

B*3901 31 B62 B27 B39 B39 B39 B7 outlier

B*0702 470 B7 B7 B7 B7 B7 B7 B7

B*3501 393 B7 B7 B7 B7 B7 B7 B7

B*5101 165 B7 B7 B7 B7 B7 B44 B44

B*5301 176 B7 B7 B7 B7 B7 B44 B44

B*5401 129 B7 B7 B7 B7 B7 B7 B7

B*0801 499 B8 B8 – – outlier B7 B7

B*0802 34 B8 B8 – – B8 B44 B44

B*0803 14 B8 B8 – – – B7 B7

Comparison of our results against earlier classifications by Sidney et al. [28], Hertz and Yanover’s methods [29]; which include both peptide and binding site approaches;
Lund et al. [20], and both methods by Doytchinova et al. [24]; which are based on COMSIA (Comparative Similarity Index Analysis) and MIF (Molecular Interaction Fields).
‘-’ denotes that the allele is not included for classification in the particular study.
*Superfamily definition based on learned distance function over the binding site of the alleles.
‘Superfamily definition based on peptide-peptide learned distance function.
doi:10.1371/journal.pone.0086655.t001

Figure 4. Dendrogram showing HLA-A and -B clusters generated using A) MHCcluster 2.0 Server [22], and B) our proposed method
for the 58 alleles used in this study. Clear separation of HLA-A and -B alleles into well resolved, non-overlapping clusters could be obtained using
our classification method, but not using the MHCcluster method. Blue: HLA-B alleles, black: HLA-A alleles.
doi:10.1371/journal.pone.0086655.g004
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three out of the six alleles in our B62 superfamily are assigned to

the B39, which is defined only in Lund et al. [20] and Hertz and

Yanover’s work [29]. Generally, the low consensus observed for

B62 alleles (25%) is either due to the absence of the superfamily

definition in the work of Doytchinova et al. [21] or the assignment

of B*1509, B*3801 and B*3901 to the B27 and B39 superfamilies

in the other methods.

Using HLA-peptide interaction patterns, we showed for the first

time that HLA-A and -B alleles could be grouped in a superfamily

dependent manner that is consistent with known HLA superfamily

definitions. This method would not only serve as an alternative to

the traditional binding motif-based approach, but could also

separate HLA alleles at a higher specificity than current state-of-

art. The use of generalized interaction profiles instead of HLA

binding motifs would address current limitations in clustering the

less-studied HLA molecules, and path the way for the grouping of

HLA molecules with poorly characterized binding motifs.

Methods

Data
A total of 16,393 non-redundant nonameric binding peptide

sequences from 58 HLA-A and -B alleles, which have a minimum

of six binding peptides each, were retrieved from the Immune

Epitope Database (IEDB) [31]. The sequences of the correspond-

ing HLA class I alleles were extracted from the IMGT/HLA

sequence database [32].

Template Assignment
The crystallographic structures of 90 HLA class I peptide

complexes from 17 HLA-A and -B alleles were extracted from the

Protein Data Bank (PDB) [33] and used as templates for homology

modeling. Template assignment was performed using a scoring

function that incorporates both HLA and peptide homology to

measure the suitability between each target sequence and the

templates. Pair-wise sequence similarities, S(C1,C2), between target

and template HLA class I alleles, C1 and C2, were estimated using

the Henikoff/Tillier Probability Matrix from Blocks (PMB) [34] as

implemented in the Protdist program from the PHYLIP software

package [35], where 0# S(C1,C2) #1, with 0 and 1 denoting 0%

and 100% similarity respectively. For a given peptide alignment,

the degree of conservation at position i, V(i), was defined as the

difference between the maximum entropy and the observed

entropy in that position, i.e. V(i) = log2N2(E(i)+e(n)), where N

( = 20) is the total number of equi-probable amino acid types,

E(i) = 2g(all x) P(x,i) log2P(x,i) is the observed entropy at position i

where x is one of 20 amino acid types, and e(n) is a correction

factor for datasets with few sample sequences [36]. P(x,i), the

probability of occurrence of amino acid x in position i, is estimated

by F(x,i), the frequency of amino acid x at position i in the

alignment. Thus, P(x,i)<F(x,i) = k(x,i)/L where k(x,i) is the number

of occurrence of amino acid x at position i and L is the height of

the column in the alignment, which is equivalent to the number of

sequences in the alignment. The scoring function M between two

HLA-peptide complexes, C1 and C2, is defined as

M(C1,C2) = S(C1,C2)Ng(V(i)Nbi(C1,C2), where bi(C1,C2) is the BLO-

SUM62 substitution score [37] for amino acids at peptide position

i of C1 and C2. Thus, M measures the overall degree of

conservation between the target and template ligands across all

peptide positions, weighted by the observed conservation of amino

acids among the templates at each position, and adjusted by the

similarity between the template and target alleles. When the scores

of two or more crystallographic structures are equal, the highest

quality template with the best resolution was selected among the

returned results. 571 HLA-peptide complexes which failed to

obtain a positive M score were removed.

Homology Modeling
The program MODELLER [38] was employed for compara-

tive modeling of all 16,393 template assigned HLA-peptide

complexes. The models were constructed by optimally satisfying

spatial constraints obtained from the alignment of the template

structure with the target sequence and from the CHARMM-22

force field [39].

Intermolecular Hydrogen Bonds
The number of intermolecular hydrogen bonds between the

bound peptide and MHC protein was calculated using HBPLUS

[40] in which hydrogen bonds are defined in accordance to

standard geometric parameters. Hydrogen bonding patterns of all

complexes presented in this study are available in MPID-T [41]

(http://surya.bic.nus.edu.sg/mpidt).

HLA-peptide Interactions
Intermolecular interactions between the bound peptide and

MHC protein were calculated using the program LIGPLOT [42]

in which hydrogen bonds and hydrophobic contacts are defined in

accordance to standard geometric parameters. We define H(r,p)

and N(r,p) as hydrogen bonding and hydrophobic interactions,

respectively, between position r on HLA molecule and position p

on the peptide ligand. We further define the support of an

interaction for an allele as the percentage of occurrence of the

interaction across all the HLA-peptide complexes involving the

allele. The average support of an interaction is its supports

averaged across all alleles in this study.

Clustering of HLA-peptide Interactions
A Manhattan pair-wise distance matrix was constructed to

quantify the differences between the interaction profiles of each

allelic pair. The Fitch-Margoliash algorithm [43] was then applied

for clustering the alleles using the distance matrix. A total of 1,000

trees were generated by randomizing the input order of alleles, and

optimization was performed through global rearrangement of

subtrees in each iteration of tree construction. Finally, the tree with

the lowest average percent standard deviation (APSD) was used in

this study. Clusters were derived based on the topology of the

clades observed in the unrooted dendrogram (Figure 3). The

branch lengths of the tree are scaled to the inter-allele distances, as

specified in the Manhattan pair-wise distance matrix with an

APSD of 8.163%. The percent standard deviations observed,

which represent estimates of the standard errors incurred by the

inter-allele distances depicted on the dendogram, range from 0%

to 14.194%. The alleles are color-coded according to the topology

of the respective clades that define the clusters.
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