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Introduction

Single-cell variation mediated heterogeneity presents a 
dilemma for biological research, especially for cancer research.1-3 
While most molecular biological dogma is based on experimental 
measures conducted at the cellular population level that utilize 
statistical averages, single cells produce a high level of variability 
that does not equate to the average cell.4 For example, individ-
ual cells may employ different genetic mechanisms for the same 
cellular process.2,5 This heterogeneity is fundamental for robust 
systems, evolution, and integral to understanding somatic cell-
mediated disease progression and its stochastic response to medi-
cal intervention.6,7

Single-cell heterogeneity has mainly been used to understand 
microbial resistance and evolution. Studies reveal that single cells 
exist in diverse phenotypic states that manifest in multimodal 
distributions at the population level. These studies illustrate 
interesting findings: stochastic fluctuations contribute to the 
formation of distinct cell states;8,9 individual cell states diversify 
populations that are important for cellular evolution;10-12 and par-
adoxically, while deterministic relationships can be established in 
cell populations under defined experimental conditions, causal 
relationships are not usually found in natural settings where sto-
chasticity is dominant.1,13

It was reasoned that novel regulatory mechanisms exist that 
lead to single-cell heterogeneity, given that cells are karyotypically 
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Multi-level heterogeneity is a fundamental but underappreciated feature of cancer. Most technical and analytical 
methods either completely ignore heterogeneity or do not fully account for it, as heterogeneity has been considered  
noise that needs to be eliminated. We have used single-cell and population-based assays to describe an instability-medi-
ated mechanism where genome heterogeneity drastically affects cell growth and cannot be accurately measured using 
conventional averages. First, we show that most unstable cancer cell populations exhibit high levels of karyotype hetero-
geneity, where it is difficult, if not impossible, to karyotypically clone cells. Second, by comparing stable and unstable cell 
populations, we show that instability-mediated karyotype heterogeneity leads to growth heterogeneity, where outliers 
dominantly contribute to population growth and exhibit shorter cell cycles. Predictability of population growth is more 
difficult for heterogeneous cell populations than for homogenous cell populations. Since “outliers” play an important 
role in cancer evolution, where genome instability is the key feature, averaging methods used to characterize cell popula-
tions are misleading. Variances quantify heterogeneity; means (averages) smooth heterogeneity, invariably hiding it. Cell 
populations of pathological conditions with high genome instability, like cancer, behave differently than karyotypically 
homogeneous cell populations. Single-cell analysis is thus needed when cells are not genomically identical. Despite 
increased attention given to single-cell variation mediated heterogeneity of cancer cells, continued use of average-
based methods is not only inaccurate but deceptive, as the “average” cancer cell clearly does not exist. Genome-level 
heterogeneity also may explain population heterogeneity, drug resistance, and cancer evolution.
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identical.4 Similar assumptions have been shared among many 
who study the status of cell populations and how genetic and non-
genetic components contribute to cell population dynamics.3,14 
However, recent studies challenge the assumption of karyotypic 
homogeneity in at least 3 ways. First, most cancer cell popula-
tions are highly heterogeneous, displaying different genomic 
alterations, especially at the karyotypic level.2,15,16 Second, since 
somatic cell reproduction applies less genomic constraint com-
pared to sexual reproduction, the assumption that “isogenic” 
cell populations that undergo asexual reproduction (including 
somatic cell division) are purely clonal is actually not correct.17-19 
There are increased numbers of studies that link somatic genome 
variations, termed somatic cell chimerism, to various physi-
ological conditions and diseases.20-27 The widespread penetrance 
of somatic chimerism challenges the commonly held view that 
cells from normal tissue should only display normal karyotypes. 
Third, genome theory suggests that the unit of evolutionary 
selection is the aggregate genome system, where genes serve as 
individual parts.1,2,13,16,21 Cancer evolution is mainly mediated 
by genome replacement (macrocellular evolution) illustrated by 
karyotype dynamics (the cycles of nonclonal chromosomal aber-
rations [NCCAs] and clonal chromosome aberrations [CCAs]). 
Since altered karyotypes change the genome context by introduc-
ing new genomic topology, karyotype changes create new systems 
by changing system inheritance. In contrast, during microcellu-
lar evolution, or the Darwinian evolution phase, gene-level and 
epigenetic change yields gradual genetic/non-genetic alterations 
when karyotypes are clonal.1,2,7,16

Taken together, genome-level heterogeneity may represent the 
most significant variation among cancer cells. Therefore, valida-
tion of genome heterogeneity becomes our first step in single-cell 
research. Analysis of genomic heterogeneity may resolve why nat-
ural settings are more different than controlled experimental set-
tings, where more genomically homogenous cell populations are 
used. Recently, multi-level landscape models have been proposed 
to address the relationship among multiple types of heterogeneity 
in cancer.2,15,28

Here, we investigated the degree of genome heterogeneity 
in ovarian surface epithelial cells deficient in Brca1 and p53 
and in spontaneously transformed mouse ovarian cancer cells 
to illustrate the importance of single-cell genomic study, how 
it is correlated with growth heterogeneity, and its implications 
on average-based technical and analytical methods routinely 
used in cancer research. Using single-cell culture and spectral 
karyotyping, we determined the degree of genome heterogene-
ity in different cell populations and compared karyotypic and 
growth profiles. Our data illustrate that genomically unstable 
cancer cell populations exhibit a large degree of heterogeneity, 

where single cells are characterized by high karyotypic hetero-
geneity, which subsequently leads to growth heterogeneity. The 
statistical average is inconsistent with single-cell contributed 
population dynamics, and thus represents a poor and mislead-
ing measure of the actual population. The instability-mediated 
mechanism of genome heterogeneity represents a key feature of 
cancer cell populations, especially when chromosome instability 
(CIN) is higher, and outliers play an important role for popula-
tion growth.

Results

Highly unstable cell populations are not clonable
Multi-level heterogeneity exists in most cancer types.29 

Heterogeneity, specifically karyotypic heterogeneity, is a com-
mon feature of cancer cell populations.16,30 However, the degree 
of heterogeneity in cancer cells has been downplayed, as focus 
has been toward the pattern of clonal evolution. For example, 
multiple cancer models indicate that clonal evolution is promi-
nent in tumors, where specific and sequential mutations among a 
population or subpopulation of cells result in tumor growth.31-33 
However, multiple single-cell approaches indicate that punctu-
ated evolution is prominent in tumors, making common mark-
ers/mutations difficult to identify, as each cell exhibits distinctly 
different genetic and genomic profiles.34,35 Because most of the 
heterogeneity is nonclonal, it is largely ignored by most molecu-
lar methods that generate average profiles. Therefore, to paint 
an accurate picture of cell population heterogeneity between 
cell generations, and to understand how the degree of genome 
heterogeneity affects cell growth and evolution, we performed 
serial dilutions to isolate single cells and generated pure popula-
tions from wild-type mouse ovarian surface epithelial (MOSE) 
cells that have spontaneously transformed in continuous cell cul-
ture. Spectral karyotyping (SKY) is then used to characterize 
the degree of karyotypic heterogeneity. As expected the parent 
population, which has been in culture for 365 d, exhibited a large 
degree of karyotype heterogeneity. In contrast, the subclones are 
not truly clonal, as they exhibit a high level of karyotype diver-
sity. After 3 weeks in culture, all isolated single-cell-derived sub-
populations similarly exhibited the same degree of karyotypic 
heterogeneity (Figs.  1A–E and 2A–E). Analysis of karyotypic 
abnormalities in subpopulations indicated that nonclonal chro-
mosomal aberrations or NCCAs greatly outnumbered clonal 
chromosomal aberrations or CCAs. De novo karyotypic inter-
mediates common to both subpopulations were not found, sug-
gesting that evolution is punctuated. Furthermore, analysis at 
subsequent time points demonstrated that karyotypic heteroge-
neity actually increased with time.

Figure 1 (See next page). Genomic heterogeneity of heterogeneous cell populations. (A) Heatmap karyotype of early passage (day 2) wild-type mouse 
ovarian surface epithelial cells. Most cells have a normal karyotype. (B) Heatmap karyotype of spontaneously transformed parent cell population after 
1 y in culture. Cell populations exhibit high aneuploidy and high NCCA frequency. (C and D) Heatmap karyotype of spontaneously transformed single 
cell-derived subpopulation S1 (C) 23 d after single cell isolation and subpopulation S2 (D) 40 d after single cell isolation. Both subpopulations exhibit a 
high degree of karyotypic heterogeneity. No direct intermediates were identified between both subpopulations and parent population. (E) Heatmap 
karyotype of subpopulation S1 117 d after single-cell isolation demonstrates increase in NCCA frequency. (F) Determination of sample size. Each series 
on the graph represents variation of a single chromosome, where sample size is plotted on the x-axis and standard deviation on the y-axis. Variation 
among all chromosomes decrease with increasing sample size, and begin to level off at approximately 15 cells. At least 30 cells/sample were analyzed.
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Figure 1. For figure legend, see page 3641.
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This observation is unexpected, since a clonal population 
should arise from a single cell, the basis for using cell lines for 
cancer research. After extended continuous culture, it is common 
practice to subclone cell culture lines to maintain its purity. It 
is also well known that subcloning is necessary after extended 
periods of culture time. Our data demonstrated that when the 
genome is unstable, cloning at karyotype level is not possible 
even within a short period of time. Each cell sampled exhibited a 
unique karyotype within a short time-span, making it clear that 

these karyotypes are not clonable. To illustrate that this is not a 
cell culture artifact, the same culture conditions were used for 
various cell lines with stable genomes, including HCT116 cells 
and HeLa cells. As expected, these cell lines cells exhibited mini-
mal karyotypic change in continuous culture even over extended 
periods of time.36,37 Thus, heterogeneity is dominant in genomi-
cally unstable cancer cell populations, where cell populations 
cannot be karyotypically cloned. Our data are consistent with 
previous studies that high levels of genome instability are associ-
ated with the phase of punctuated cancer evolution where sto-
chastic genome alterations dominate.13,34,38

Karyotype heterogeneity leads to growth heterogeneity
Single-cell genome heterogeneity may lead to significant 

consequences related to system dynamics in a cell population. 
Genome heterogeneity has been identified as a causal factor for 
transcriptional,15,39,40 and growth, and survival heterogeneity 
in various experimental systems.41,42 Therefore, we compared 
the effects of karyotype heterogeneity on cancer cell growth by 
tracing clones derived from a single cell. We use karyotypically 
clonal and nonclonal cell populations to compare how single-cell 
growth contributes to the population growth profile. Population 
doubling (PD) time is typically used to assess tumor growth.43 
Karyotypically unstable single-cell derived subpopulations all 
exhibited overall growth that is different between subpopula-
tions (Fig.  3A). We further compared PD times of replicates 
and observed considerable differences between doubling times 
(Fig. 3B). Regression analysis of doubling times showed no cor-
relation (Fig. 3C, r2 = 0.0068). Exclusion of some PD values may 
enhance the relationship to a weak positive correlation. However, 
this exclusion would not be an accurate assessment of the growth 
comparison, as each individual subpopulation may be indepen-
dently evolving and thus exhibiting its own unique PD rate. In 
addition, it would remove any contribution made by outliers at 
that particular time-point that may have increased or decreased 
the overall PD rate. Furthermore PD rates were variable between 
passages. As karyotype heterogeneity is high, the heterogeneous 
growth profiles and fluctuating PD rates suggests that cell growth 
may be highly variable for each single-cell derived clone.

To determine whether karyotypically unstable cells exhibit a 
high level of cell growth heterogeneity, we performed daily in situ 
monitoring of single cell growth (Fig.  3D). Single-cell derived 
subpopulations from conditionally inactivated Brca1/p53 mouse 
ovarian surface epithelial cells were thinly plated (400 cells/
flask) in gridded flasks. Single cells were identified on day  1, 
and growth was monitored for 6 d, or until colonies began to 
merge. Surprisingly, we observed that single-cell proliferation 
rates of karyotypically unstable cell lines are significantly more 
variable than karyotypically stable HCT 116 cell lines by almost 
3-fold (Fig. 3E–G). While each stable colony exhibited relatively 
similar proliferation (range 8–82 cells), unstable cells exhibited 
significantly different growth rates, where cells either did not 
divide or proliferated at a very fast rate. As an example, a single 
outlier cell was able to produce 593 cells within 6 d. Interestingly, 
a majority of unstable cell colonies exhibited moderate to slow 
growth, while few aggressively proliferative outliers exhibited 
shorter cell cycle times and drove overall population growth. In 

Figure 2. Representative karyotypes of cells from each cell population. 
Representative karyotypes of early passage MOSE cells (A), parent popu-
lation after one year in culture (B), single cell derived subpopulation 1, 
23 d post-single-cell isolation (C), single-cell-derived subpopulation 2, 
40 d post-single-cell isolation (D), and single-cell-derived subpopulation 
1, 117 d post-single-cell isolation (E). Structural NCCAs are circled in red; 
structural CCAs are circled in yellow. 
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contrast, karyotypically stable HCT116 cells all exhibited the 
same degree of proliferation. The disparity in growth among 
unstable cells indicates that traditional methods of analysis, such 
as the statistical average, may be inaccurate at assessing actual 
population growth.

Arithmetic mean is not a representative measure of unstable 
cell subpopulations

Genome instability-mediated growth heterogeneity has obvi-
ous biological significance. The highly dynamic evolutionary 
potential of unstable cell populations is represented through 
heterogeneous growth and transcriptome dynamics. However, 
the overwhelming level of heterogeneity in cell populations with 
unstable genomes deserves close attention, as it directly chal-
lenges most current strategies to profile these cell populations. 
For example, use of average-based technical and analytical meth-
ods for most cancer cell populations where genome instability is 
high will yield inaccurate results.

To quantitatively demonstrate inefficiency of average-based 
measures for unstable cell populations, single colony proliferation 
of single-cell-derived subpopulations of Brca1/p53 knockouts 
and stable HCT116 controls are compared with their averages 
(Fig.  4B and C). Unstable cell populations displayed a non-
normal growth distribution, while stable cells exhibited a nor-
mal distribution (n = 18; n = 24, Shapiro-Wilkes normality test, 
P ≤ 1.0−5; P ≤ 0.5, respectively); however, growth among unstable 
cells were drastically more diverse, as single colony proliferation 
had a much broader range than stable cells. Among the stable 
HCT116 cells, each colony contributed the same proportion of 
cells to the overall population total. In contrast, the unstable cell 
subpopulation exhibited widely different dynamics, as few cells 
were responsible for generating most of the population growth. 
For example, one single colony comprised over 70% of cell 
growth among unstable cells, while each stable cell colony con-
tributed no more than 10% of growth, indicating that average 
profiles are not suitable for cell populations with high genome 
heterogeneity (Fig.  4C). Use of the arithmetic mean (AM) in 
unstable cells estimated 73 cells per colony, where actual prolif-
eration ranged between 1–593 cells per colony. The 73-cell aver-
age fell well above a majority of the population, because highly 
proliferative outliers drove population growth, i.e., the arithmetic 
mean is much greater than the median. In contrast, for the stable 
cell population, the AM estimated 41 per colony, where actual 
number ranged between 8–82 cells.

Discussion

A high degree of heterogeneity is a well-accepted feature of 
cancer cells. While this feature is generally accepted, it is rarely 
documented and discussed much less. Here, we demonstrated 
that karyotypic heterogeneity exists at an alarming degree, 
where single cells of unstable cell populations are extremely 
difficult to clone. Furthermore, elevated karyotype heterogene-
ity drastically affects other features of the cell system, such as 
cell growth. Karyotype heterogeneity results in extreme growth 
heterogeneity. In contrast to the notion that all cells in a sin-
gle population are believed to divide at relatively the same rate, 

single cells in unstable cell populations have unique doubling 
times. Furthermore, while most cells exhibit slow-to-moderate 
growth, it is the outlier cells that contribute the most to overall 
population growth. These findings have significant research and 
clinical significance, and require a reevaluation of fundamental 
biological principles.

Genomic heterogeneity among cancer cells is common, but 
is usually not measured. Too often, studies report the arithmetic 
mean, and occasionally the geometric mean. Yet means and other 
statistics related to the first moment 

do not quantify heterogeneity. In fact, means smooth through 
heterogeneity, making it invisible. Heterogeneity is quantified by 
the second moment 

and its modifications, such as variance, standard deviation, 
coefficient variation, and average variation. While many of these 
indices incorporate both the first and second moment, means 
only include the first moment. Therefore, using means to study 
genomically heterogeneous cell populations compromises results, 
as average-based measures that exclude outliers are commonly 
used in biomarker discovery and drug design. Furthermore, 
while the standard deviation is often included in the graphical 
representation of data, it is not scale-free and thus cannot be used 
to compare against variation in other samples. To demonstrate, 
we generate a composite karyotype by averaging the frequencies 
of all chromosomal structures (Fig.  4A), where the composite 
karyotype renders heterogeneity invisible. Problems with only 
reporting means are also observed in cancer cell growth hetero-
geneity (Fig. 4B and C). While more appropriate averages, such 
as the geometric mean, can be used, these are also poor indica-
tors of population growth heterogeneity. Geometric mean yields 
a 19 cell/colony average that is more representative of individual 
colonies; however, it is not representative of the total population 
and does not highlight outliers that drive population growth 
(Table 1). It is worth mentioning, however, that statistical outli-
ers are not frequent events, or their occurrence is subject to prob-
ability. Despite this, multi-modal variation is present in unstable 
cell populations (Fig. 3G).  This underscores the contribution of 
both outliers and variation to population growth and indicates 
that means cannot characterize genome-mediated growth hetero-
geneity in genomically unstable cell populations.

Genome and growth heterogeneity have significant research 
and clinical implications that are related to cancer evolution and 
drug resistance. While the statistical mean can be reliably used to 
characterize genomically homogenous cell populations, like nor-
mal physiological or developmental conditions, this method is ill 
suited for profiling conditions of the pathological context with 
elevated genome heterogeneity. During the macro-evolutionary 
phase, the “average cancer cell” is nonexistent, as system het-
erogeneity is dominant. Use of the average is incorrect during 
this phase, because averages eliminate diversity, the very entity 
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Figure 3. Genome-mediated growth heterogeneity. (A) Population doubling rates of 2 subpopulations isolated from same parent. Each subpopulation 
exhibits unique growth rate. Variation in PD rates is moderate, as measured by CV (subpopulation 1, 40%; subpopulation 2, 42%) (B) PD rate comparison 
of 2 independent runs of same subpopulation. Each trial exhibits moderate variation in growth, despite being biological replicates. (Set 1 CV = 44%; 
Set 2 CV = 45%, n = 2) (C) Regression analysis comparing doubling times of 2 replicates of same subpopulation show no correlation (r2 = 0.0068) (D) 
In situ single cell growth. Single cells are identified on day 1 and monitored daily. (E) Growth is compared between HCT116 (n = 23) and unstable cells 
(n = 18). Unstable cells (CV = 200%) display significantly greater growth variation than karyotypically homogeneous HCT 116 cells (CV = 44%). (F-test, 
P ≤ 1.4 × 10−6) (F and G): Density growth distributions of stable (F) and unstable (G) cell population replicates. Growth distribution of stable cells are 
unimodal with a narrow distribution, while unstable cells are bimodal and exhibit extremely broad growth distributions.
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that defines cancer, which is reflected by the level of cells with 
NCCAs, and the dynamic relationship of the NCCA/CCA cycle. 
However, when cancer enters the micro-evolutionary phase, sta-
tistical averages can faithfully be employed, because system het-
erogeneity is low, and most change predominantly occurs at the 
gene-level. It is for this reason that averages work within specific 
stages for linear cancer models.19 Inappropriate use of statistical 

means is thus a significant issue in modeling and drug design, 
where improper target selection based on the average may lead 
to increased resistance and off-target effects.2,19,44 For example, 
PD rates are used in clinical settings to measure growth rates 
of tumors, despite its noted inaccuracies.43 A number of growth 
models that use alternative indices to measure tumor growth 
have been proposed. While some of these proxies may be superior 

Figure 4. Arithmetic mean is a poor measure for genomically heterogeneous populations. (A) Composite heatmap karyotype of parent population 
is completed by averaging chromosome and NCCA frequencies. The composite cell does not contain any NCCAs that are present in individual cells 
and does not reflect range of aneuploidy observed in all cells. (B) Schematic of single-colony growth. Daily proliferation was counted, averaged, and 
compared with high and low proliferating colonies. (C) Comparison of single cell colony proliferation to population average in Brca1/p53 unstable cell 
subpopulation and stable HCT116 cells. Average colony size is calculated at 73 cells in Sub1 and 41 cells in HCT116 (indicated by black columns on far 
right). Most colonies among the unstable cell population are well under the average, indicating that outliers dominate population behavior and the 
average is not a representative measure for genomically unstable cell population.
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to doubling rates, their use of averaging and stationary growth 
models make them poor at capturing the full spectrum of growth 
heterogeneity.43 Instead, variance and coefficient of variation are 
natural indices of heterogeneity and should be used more often 
when genome instability is high. Furthermore, average-based 
technical methods that use whole-cell lysate, such as genome 
sequencing, RNA-seq, expression profiling, etc. to generate an 
average nucleotide sequence or expression level based on the 
entire cell population are common for biomarker and drug target 
identification. While an increased number of studies are moving 
to a single-cell platform, efforts like the TCGA and other clinical 
sequencing projects maintain their use of an entire population 
of cells to characterize a tumor. While these strategies initially 
work, tumor growth almost always recurs, as these methods may 
only reflect more dominant subpopulations and do not target 
outlier cells that play a more significant role in cancer evolution.44

In vitro systems provide an excellent opportunity to system-
atically investigate how single-cell systems function under various 
conditions. Regarding the notion that heterogeneity might be a 
cell culture artifact, studies using human cancer samples indicate 
otherwise. For example, Navin et al. demonstrate through single-
cell sequencing of breast cancer cells that cancer evolves stochasti-
cally.35 Individual cells exhibited a large degree of mutations and 
copy number changes that were not conserved among cells. Baca et 
al. describe punctuated evolution of prostate cancer cells through 
a process termed chromoplexy, where chromosome regions inter-
act in a stochastic fashion to drive cancer evolution.45 Both cancer 
genome sequencing studies have confirmed the 2 phases of cancer 
evolution (punctuated phase and stepwise phase) initially pro-
posed based on karyotype analysis.2,17,22,34 Furthermore, genome 
heterogeneity is a common feature observed in healthy tissue. For 
example, healthy mammalian liver cells exhibit a greater degree 
of polyploidy than in vitro systems, ranging from 2N-16N.23,46 
In addition, an increased number of studies link the chimeric 
genome to various human diseases.20,24,27 Despite normal tissue 
having a relatively low frequency of genome level alterations as 
reflected by the low frequency of NCCAs (for normal individu-
als, the frequencies of NCCAs detected from short term blood 
culture is only a few percent), NCCAs are elevated under disease 
conditions. For example, NCCA frequency in lymphocytes of 
individuals with various illnesses including cancer can reach up 
to 20–40% (Heng et al., in preparation). In addition, we traced 
NCCA frequency in tumor growth of multiple mouse models and 
found a high degree of genome heterogeneity in each case.47 In 

cases where NCCA frequency is low, the statistical average will 
give an appropriate measure of population dynamics. However, 
the average will be an inefficient measure with elevated NCCA 
frequency in patient tumors and other pathological conditions.

Finally, we address the issue of “isogenic cells” with multi-
level heterogeneity, especially at the genome level. Most cancer 
cell populations are not isogenic. Multi-level heterogeneity in fact 
is a key feature of cancer that plays a significant role in popu-
lation dynamics and cancer evolution. A direct relationship may 
link genome heterogeneity to growth and other systems-based 
heterogeneity. For example, high degrees of heterogeneity have 
been observed in gene mutations,48 transcription,39,49 biochemi-
cal signaling pathways,50,51 the tumor microenvironment, and 
response to drug treatment due to differences in cell prolifera-
tion.52 Currently, it is challenging to study the relationship among 
them, as most studies that report heterogeneity do not address 
genome level heterogeneity. Since the genome is the highest level 
of genetic organization, and the genome package is responsible for 
the macrocellular evolution of cancer, our effort to unify genome 
heterogeneity with other types of heterogeneity is highly signifi-
cant. Such an analysis can also be used to profile the heterogeneity 
of dominant proliferating cells for drug treatment.52

Genome-based systems heterogeneity can explain why dif-
ferent labs often cannot validate published findings, as the cell 
lines or samples used might exhibit altered genomes.53 We dem-
onstrated this in a recent study in human fibroblasts, where 
increased karyotypic diversity results in high expression varia-
tion.39,49 Multiple mouse models have been developed to under-
stand the specific roles of deregulated genes and pathways.54 
While deregulation of a particular pathway can be highly pen-
etrant (owing to any member of that pathway being mutated), 
pathway switching is a dominant feature of heterogeneous can-
cers, like high-grade astrocytoma, that cancer cells readily exploit 
to acquire resistance.15,39,49 Interestingly, genome-based heteroge-
neity can also explain the gap between experimental systems and 
clinical samples, as clinical samples are often more complicated 
due to increased heterogeneity when compared to highly homo-
geneous inbred mouse strains. Together, genome heterogeneity is 
extremely significant as genome replacement is the key feature of 
cancer cell populations that is responsible for cancer initiation, 
progression, metastasis, and drug resistance. In particular, many 
firmly held beliefs regarding cancer cells that were deduced based 
on average-based methods require reexamination and reinterpre-
tation, as the average cancer cell clearly is nonexistent. 

Table 1. Inefficiency of statistical means to describe population growth

Mean colony size Est total population Difference from actual population

Arithmetic mean, Heterogeneous 
subpopulation

73 1314 cells 8 cells

Arithmetic, HCT 116 cells 41 943 cells 7 cells

Geometric mean, Heterogeneous 
subpopulation

19 342 cells 980 cells

Geometric mean, HCT 116 cells 37 806 cells 99 cells
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Materials and Methods

Cell lines
Spontaneously transformed cell line was isolated as previously 

described.55 Brca1/p53 conditional knockouts were obtained 
from the University of Ottawa.56 Single cells were isolated after 
1 y (spontaneously transformed) or 60 d (Brca1/p53 conditional 
knockout) in continuous culture through serial dilutions and iden-
tified by microscope. HCT116 cell lines obtained from ATCC.

Cell culture
Standard cell culture was used for all cell lines. All mouse lines 

were maintained in high-glucose DMEM, supplemented with 
4% FBS, antibiotics, and insulin, transferrin, sodium selenite 
growth supplement (BD Biosciences). HCT116 cells were main-
tained in RPMI, supplemented with 10% FBS and antibiotics.

Cytogenetic metaphase slide preparation and spectral karyo-
typing (SKY)

Cytogenetic slides were prepared as described. SKY was com-
pleted on metaphase spreads as described.34,38,47

Karyotypic analysis
Karyotypic analysis was completed as previously described.13,34 

Chromosomal heterogeneity was visualized on heatmaps. In each 
heatmap, each series on the y-axis corresponds to one cell. The 
x-axis represents chromosome structure (normal chromosomes 
and derivative chromosomes that include translocations, frag-
ments, and other cytogenetic abnormalities). The darkening of 
color intensity represents an increase in the frequency of a specific 
chromosome structure. Chromosomal aberrations are considered 
NCCAs (nonclonal chromosomal aberrations) if they are preva-
lent in less than 20% of the sample, or not present in the parent 
population. Chromosomal aberrations that are present in both 
parent population and single-cell subpopulation and prevalent 
in over 20% of cells are considered CCAs (clonal chromosomal 
aberrations).

Population-level counting
Cells were grown in T-75 flasks, passaged, and counted upon 

~80% confluency. Cells were re-plated in fresh flasks.
In situ single cell counting
Cells were plated in T-25 flasks, labeled with grids at a con-

centration of 400 cells/flask. Single cells were identified and 
growth was measured daily.

Statistical analysis
All chromosome structures within a cell were measured to 

determine degree of karyotypic heterogeneity. Two methods 
were used to determine sample size for SKY to ensure statisti-
cal robustness and to account for variation. First, a power cal-
culation was completed (α = 0.95, β = 0.9), yielding a sample 
size of 15 cells. Second, we examine variation of each chromo-
some by plotting standard deviation as a function of increasing 
sample size (Fig. 1F). Expectedly, variation among all chromo-
somes decreases with increasing sample size, where it levels off 
at approximately 15 cells. Based on these 2 parameters, at least 
15 cells were used per sample; at least 15 per sample were required; 
however, at least 30 cells per sample were analyzed.
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