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Abstract

Cryptococcus neoformans is an opportunistic fungal pathogen that causes lung inflammation and meningoencephalitis in
immunocompromised people. Previously we showed that mice succumb to intranasal infection by induction of pulmonary
interleukin (IL)-4Ra–dependent type 2 immune responses, whereas IL-12-dependent type 1 responses confer resistance. In
the experiments presented here, IL-4Ra2/2 mice unexpectedly show decreased fungal control early upon infection with C.
neoformans, whereas wild-type mice are able to control fungal growth accompanied by enhanced macrophage and
dendritic cell recruitment to the site of infection. Lower pulmonary recruitment of macrophages and dendritic cells in IL-
4Ra2/2 mice is associated with reduced pulmonary expression of CCL2 and CCL20 chemokines. Moreover, IFN-c and nitric
oxide production are diminished in IL-4Ra2/2 mice compared to wild-type mice. To directly study the potential
mechanism(s) responsible for reduced production of IFN-c, conventional dendritic cells were stimulated with C. neoformans
in the presence of IL-4 which results in increased IL-12 production and reduced IL-10 production. Together, a beneficial role
of early IL-4Ra signaling is demonstrated in pulmonary cryptococcosis, which contrasts with the well-known IL-4Ra-
mediated detrimental effects in the late phase.
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Introduction

Cryptococcus neoformans is an opportunistic, facultative intracellular

basidiomycete acquired by inhaling spores or desiccated fungi. C.

neoformans has the potential to cause life-threatening meningoen-

cephalitis in immunocompromised individuals such as organ

transplant recipients or HIV-infected patients [1–3]. In fact, HIV-

related cryptococcal meningitis is responsible for more than half a

million death cases per year in sub-Saharan Africa and represents

the fourth most common cause of death after malaria, diarrheal

diseases, and childhood-cluster diseases excluding HIV [4].

Moreover, C. neoformans can cause an allergic bronchopulmonary

mycosis characterized by production of Th2 cytokines (e.g.

interleukin (IL)-4, IL-5, and IL-13), elevated levels of serum IgE,

recruitment of eosinophils, and alternative activation of macro-

phages [5–8]. Together with mucus hyperproduction by bronchial

epithelial cells all of these features are characteristic for allergic

asthma, and lead to smooth muscle hyperreactivity and chronic

airway obstruction. The differentiation of Th2 cells plays an

important role in asthma and Th2 cytokines, especially IL-4 and

IL-13 which both can bind to the IL-4 receptor-alpha chain [9]

(IL-4Ra) and exacerbate disease [10,11]. Finally, mice succumb to

C. neoformans infection if no protective Th1 polarization is induced

[12–15]. In contrast, depending on the mouse strain used, the

route of infection, the size of the inoculum, and the strain of C.

neoformans IL-4 deficiency was found to lead either to increased or

reduced survival times [5,14,16,17]. For some other infection

models, including a fungal pathogen (e.g. Candida albicans), it was

shown, that IL-4 can be involved in the induction of Th1 immune

responses and elevated IFN-c production [18–20]. Due to the

protective in vivo effect researchers turned their focus on the target

cells for IL-4 and it has been shown that in human mononuclear

cells as well as in human and mouse dendritic cells IL-4 exerts a

positive effect on the production of bioactive IL-12 most likely by

inhibiting IL-10 expression [21–23].

IL-4 can mediate its effects by binding to two different types of

heterodimeric IL-4 receptors designated as the type I and the type

II IL-4R. Both types share the IL-4Ra chain and are able to

respond to IL-4 as it binds to the IL-4Ra chain with high affinity

[9]. To form the type I receptor, the IL-4Ra chain interacts with

the common c chain. After cloning and characterization of the low

affinity IL-13Ra1 and the high affinity IL-13Ra2 chain it became

evident that the IL-4Ra chain is also part of the IL-13 receptor

[24–26]. Binding of IL-13 is restricted to IL-4R type II, whereas

IL-4 can bind both receptor types. The common c chain

expression is restricted to hematopoietic cells. Therefore, type I

IL-4R is mainly expressed in hematopoietic cells, whereas type II

IL-4R is ubiquitously expressed [27].
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In the experiments described here, we analyzed the impact of

IL-4Ra expression on the early immune responses in a chronic

pulmonary cryptococcosis model. We show that, in contrast to the

late Th2-driven phase of infection, within the first two weeks of

infection IL-4Ra signaling is able to elicit potent macrophage and

dendritic cell recruitment and elevated production of IFN-c and

nitric oxide associated with better fungal growth control. This

beneficial role of early IL-4Ra function is intriguing as wild-type

(WT) mice that are protected in the initial phase of infection show

features of an otherwise type 2-biased immune response.

Materials and Methods

Ethics statement
All mouse experiments were performed according to protocols

(Permit number: 24-9168.11/14/19) approved by the Animal

Care and Usage Committee of the Landesdirektion Sachsen. All

efforts were made to minimize suffering.

Mice
For all experiments female mice on C57BL/6J background

were used. Age-matched (8 to 14 weeks) wild-type (WT) mice

(Janvier, Le Genest Saint Isle, France) and IL-4Ra deficient mice

(IL-4Ra2/2) [28], backcrossed onto C57BL/6J background for 9

generations, were kept under specific pathogen-free conditions in

accordance with the guidelines approved by the Animal Care and

Usage Committee of the Landesdirektion Sachsen. The mice were

tested periodically for pathogens, in accordance with the

recommendations for health monitoring of mice provided by the

Federation of European Laboratory Animal Science Associations

accreditation board. No pinworms and other endo- and ectopar-

asites were detectable. Sterile water and food were given ad libitum.

Infection of mice with C. neoformans
Encapsulated C. neoformans, strain 1841, serotype D, originally

obtained from F. Hoffmann-La Roche Ltd, Basel, Switzerland

[14], was kept as a frozen stock in skim milk and was grown in

Sabouraud dextrose medium (2% glucose and 1% peptone;

Sigma, Deisenhofen, Germany) overnight on a shaker at 30uC.

Cells were washed twice in sterile phosphate-buffered saline (PBS),

resuspended in PBS, and counted in a hematocytometer. Inocula

were diluted in PBS to a concentration of 2.56104/mL for

intranasal (i.n.) infection. Mice were infected by i.n. application of

20 mL volumes containing 500 colony forming units (CFUs).

Before infection, mice were anesthetized intraperitoneally with a

1:1 mixture of 10% (w/v) ketamine and 2% (w/v) xylazine (Ceva

Tiergesundheit, Düsseldorf, Germany).

Isolation of pulmonary leukocytes and determination of
fungal lung organ burden

The preparation of a single cell suspension from lung tissue and

isolation of leukocytes was described elsewhere [29]. Briefly, at the

time points indicated infected mice were anesthetized with CO2,

sacrificed by exsanguination, and the circulation was perfused with

sterile 0.9% (w/v) sodium chloride solution (Baxter, Unters-

chleibheim, Germany). Lungs (left lobe, cranial and caudal right

lobe) were removed aseptically, minced with scalpel blades and

digested for 30 min at 37uC in RPMI1640 supplemented with

1 mM sodium pyruvate (AppliChem, Darmstadt, Germany),

Collagenase D (0.7 mg/ml; Roche Diagnostics, Mannheim,

Germany) and DNase IV (30 mg/ml; Sigma Aldrich, Taufkirchen,

Germany). After passage through a 100 mm cell strainer (BD

Biosciences, Heidelberg, Germany) single cells were resuspended

in 1 ml PBS containing 3% (v/v) heat-inactivated fetal calf serum

(FCS) (Life Technologies, Darmstadt, Germany) and serial

dilutions of aliquots were plated on Sabouraud dextrose agar

plates for lung organ burden determination. The plates were

incubated for 72 h at 30uC and grown colonies were counted.

Following red blood cell lysis and washing with PBS containing

3% (v/v) FCS remaining cells were resuspended in 70% (v/v)

Percoll (GE Healthcare Europe GmbH, Freiburg, Germany) and

layered under 30% (v/v) Percoll. After density gradient centrifu-

gation cells were removed from the interphase, washed with

Iscove’s Modified Dulbecco’s Medium (IMDM) (GE Healthcare

Europe) supplemented with 10% (v/v) FCS, 100 U/ml penicillin,

and 100 mg/ml streptomycin, counted using a hematocytometer

and used for flow cytometric analyses. For ex vivo stimulation, cells

were pooled from 3–4 animals, adjusted to 16107/ml and

stimulated with PMA (40 ng/ml; Enzo Life Sciences, Lörrach,

Germany) and ionomycin (1 mg/ml; Sigma Aldrich).

Monoclonal antibodies
Unless otherwise described antibodies labeled with different

fluorochromes were from BD Biosciences, eBioscience (Frankfurt,

Germany), and BioLegend (Fell, Germany). Following clones were

used: anti-CD4 (clone RM4–5), anti-CD11c (clone N418), anti-

CD45 (clone 30-F11), anti-Siglec-F (clone E50-2440), and anti-

T1/ST2 (clone DJ8, MDbiosciences, Egg, Switzerland). Isotype-

matched control antibodies, rat IgG2a (clone eBR2a), Armenian

hamster IgG (clone HTK888), rat IgG2b (clone RTK4530), and

rat IgG1 (clone eBRG1) were used in all experiments. To detect

dead cells and to block unspecific antibody binding cells were

incubated with the LIVE/DEADH Fixable Aqua Dead Cell Stain

Reagent (Life Technologies) and rat-anti-mouse CD16/32 (Bio-

Legend, clone 93) prior to incubation with fluorochrome-labeled

antibodies.

Analysis of pulmonary leukocytes by flow cytometry
Purified lung single cells were stained with antibodies described

above in different combinations. Briefly, forward scatter vs. dead

cells was used to identify living cells. After gating on CD45+

leukocytes expression of Siglec-F vs. CD11c was used to identify

eosinophils (Siglec-F+, CD11cneg/dim), alveolar macrophages

(Siglec-F+, CD11c+), and dendritic cells (Siglec-Fneg, CD11c+)

[30]. The frequency of T1/ST2+ cells was determined after gating

on living CD4 expressing cells.

Cells were acquired on a BD FACSCanto II, BD FACS LSRII,

and BD LSRFortessa (BD Biosciences) and data were analyzed

using FlowJo 7.6.5 (Treestar Inc., Ashland, OR, USA) software.

Analysis of mRNA expression in lung tissue
From lungs prepared as described above the accessory lung lobe

and the lower part of the middle right lung lobe were snap frozen

in liquid nitrogen and stored at 280uC until mRNA isolation.

Afterwards, snap frozen samples were homogenized in InvisorbH
lysing solution (Invitek, Berlin, Germany) during thawing by

means of Ultraturrax tissue homogenizer (Jahnke and Kunkel,

Staufen, Germany) and treated with 4 mg/ml proteinase K for 1 h

(Clontech Laboratories). Isolation of total cellular RNA was done

by use of InvisorbH RNA kit II (Invitek). Messenger RNA was

reverse transcribed and analyzed in triplicate assays by TaqMan

PCR using the ABI Prism 7700 Sequence Detection System

(Applied Biosystems, Weiterstadt, Germany) as described previ-

ously [31,32]. The appropriate assays including double-fluorescent

probes in combination with assay for the murine house-keeping

gene hypoxanthine phosphoribosyl-transferase 1 (HPRT) were

developed by ourselves (HPRT and IFN-c) or purchased from

Applied Biosystems (CCL2, CCL20). The following primers and

IL-4Ra-Dependent Fungal Growth Control in Lung
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probes were used: HPRT for: 59-ATCATTATGCCGAG-

GATTTGGAA-39, rev: 59-TTGAGCACACAGAGGGCCA-39,

probe: 59-TGGACAGGACTGAAAGACTTGCTCGAGATG-

39; IFN-c for: 59-CAACAGCAAGGCGAAAAAGG-39, rev: 59-

AGCTCATTGAATGCTTGGCG-39, probe: 59-TGCATTCAT-

GAGTATTGCCAAGTTTGAGGTC-39. Expression levels were

calculated relative to the data for HPRT obtained with the every

matching assay.

Histopathological analysis
To evaluate the pulmonary inflammation, distribution of

cryptococci and mucus production by bronchial epithelial cells

the upper part of the middle right lung lobe was fixed in 4%

neutral-buffered formaldehyde (Carl Roth GmbH, Karlsruhe,

Germany) and embedded in paraffin. Sections were stained with

H&E for the detection of eosinophils and other leukocytes or with

periodic acid Schiff reagent to visualize mucus production by

bronchial epithelial cells and distribution of cryptococci. The

percentage of PAS+ brochial epithelial cells was determined by an

independent investigator by counting PAS+ and PAS2 bronchial

epithelial cells of 5 cross-sections of proximal bronchi of two slices

per lung (different lung regions), with a total of 10 cross sections

per mouse [33].

Generation and stimulation of conventional dendritic
cells

Bone marrow derived dendritic cells (BMDC) were generated as

described earlier [34]. Briefly, femur and tibia of C57BL/6J mice

were removed and the bone marrow was flushed out with PBS

containing 5% (v/v) FCS. Conventional dendritic cells were

generated by cultivation of bone marrow cells (26105/ml) for 8

days in RPMI 1640 supplemented with 10% (v/v) FCS, 100 U/ml

penicillin, 100 mg/ml streptomycin, 1% (v/v) essential and non-

essential amino acids (GE Healthcare Europe) 1 mM sodium

pyruvate, 50 mM b-mercaptoethanol (Sigma-Aldrich) and 10% (v/

v) GM-CSF containing supernatant at 37uC in a humidified

atmosphere containing 5% (v/v) CO2. After harvesting, the cells

were adjusted to 56105/ml and stimulated with C. neoformans,

strain 1841 in the presence or absence of 25 U/ml recombinant

IL-4 (Peprotech, Hamburg, Germany). For control, cells incubated

with medium alone were used.

Detection of cytokines and nitric oxide in cell culture
supernatants

Cytokines in cell culture supernatants were measured by

sandwich ELISA. For the measurement of IFN-c the rat IgG1

monoclonal antibody AN18 was used as a capture antibody.

Detection was performed using a rat IgG1 monoclonal antibody

XMG1.2 labeled with horseradish peroxidase (both antibodies

were provided by F. Hoffmann-La Roche Ltd, Basel, Switzerland).

IL-12p70 was analyzed by coating ELISA plates with monoclonal

antibody 2B5 and detection was done with biotinylated goat-anti-

mouse IL-12p40 IgG (provided by M. Gately, F. Hoffmann-La

Roche Ltd, Nutley, NJ, U.S.A.). IL-10 was detected by using the

murine IL-10 development kit (Peprotech) according to manufac-

turer instructions.

Biotinylated antibodies were visualized by incubation with

horseradish peroxidase labeled streptavidin (Southern Biotechnol-

ogy Associates, Birmingham, AL, U.S.A.) and the TMB Microwell

Peroxidase Substrate System (Gaithersburg, MD, U.S.A.). The

reaction was stopped by the addition of 1M H3PO4 and optical

densities were determined at 450 nm (reference 630 nm) using a

Spectra-max 340 ELISA reader (Molecular Devices, Munich,

Germany).

To analyze the production of nitric oxide a colorimetric

reaction (Griess reaction) was used. The supernatants from density

gradient purified and pooled lung leukocytes (3–4 animals per

group) stimulated with PMA/ionomycin were incubated with

equal amounts of a freshly prepared 1:1 mixture (Griess reagent) of

1% (w/v) Sulfanilamide (Sigma) in 5% (w/v) H3PO4 and 0.1%

(w/v) N-(1-Naphthyl)ethylenediamide (Sigma). Following incuba-

tion for 10 min in the dark plates were read at 550 nm (reference

690 nm) with the ELISA reader described above. For the

calibration curve ranging from 200 mM to 3.125 mM sodium

nitrite was used as standard.

Results

Lack of IL-4Ra chain results in increased early fungal
organ burden but late resistance against C. neoformans

Infection with Cryptococcus neoformans mainly occurs by inhaling

dust particles (e.g. soil, pigeon excreta) contaminated with

cryptococcal spores or desiccated cryptococci [35]. Therefore,

we used a well-established chronic intranasal infection model to

mimic the natural course and route of infection [29]. To analyze

the role of the IL-4Ra during cryptococcosis in the initial period of

infection we inoculated WT and IL-4Ra2/2 mice with 500 colony

forming units (CFU) of the highly virulent C. neoformans strain 1841

(isolated from a HIV/AIDS patient with cryptococcal meningitis

[14]) and analyzed the animals starting at 7 days post infectionem

(dpi). Surprisingly, mice deficient in IL-4Ra expression show

significantly higher lung burdens at early time points after

infection (i.e. 7 and 14 dpi) but not at later time points (i.e. 21

and 42 dpi) (Figure 1), when the IL-4Ra2/2 mice exhibit

significantly lower fungal burdens in the lung. At 70 dpi WT

mice continued to show significantly higher lung load than IL-

4Ra2/2 mice (data not shown), as previously published [36].

These data reveal that, for the first two weeks of infection, control

of pathogen load in the lung depends on IL-4Ra expression.

Reduction of early fungal growth control in the absence of the type

2 response-associated IL-4Ra signaling was unexpected. There-

Figure 1. Early fungal growth control in pulmonary infection
with C. neoformans in the presence of IL-4Ra signaling. Wild-type
(WT, open circle) and IL-4Ra2/2 (gray circle) mice on C57BL/6J
background were infected intranasally with C. neoformans. Analysis of
fungal burdens in the lung was done at different days post infectionem
(dpi) as indicated. Shown is data from n = 7 mice per group from one
representative of three independent experiments (14 dpi) or from two
independent experiments (7; 21 and 42 dpi). Statistical analysis was
done using the unpaired Student’s t-test (7 dpi) or Mann-Whitney test.
*P,0.05; **P,0.01.
doi:10.1371/journal.pone.0087341.g001
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fore, we focused our further analysis on early time points of the

infection (i.e. 7 and 14 dpi).

IL-4Ra2/2 mice show a defect in recruitment of
leukocytes to the lung within the first two weeks of
infection

In order to characterize the cellular response to the fungus at

the site of infection we analyzed the pulmonary inflammatory

infiltrates in situ by histopathological analysis. 14 days after

infection, stronger pulmonary infiltration of leukocytes is visible in

WT mice (Figure 2A and C) as compared with IL-4Ra2/2 mice

(Figure 2B and D). Despite the significantly higher fungal burdens

in the lungs of IL-4Ra2/2 mice (Figure 1) fewer infiltrating

pulmonary leukocytes are observed than in WT mice, consisting

mainly of lymphocytes (Figure 2F). In WT mice not only

lymphocyte-rich foci are observed, but also more macrophages

(with some multinucleated macrophages) participated in the

pulmonary inflammatory response (Figure 2E). This is consistent

with the quantitative difference in total numbers of alveolar

macrophages found by flow cytometry-analysis, described below

(see Figure 3B). WT mice, but not IL-4Ra2/2 mice, develop a

pronounced eosinophilia (Figure 2E and F). Similarly, bronchial

mucus production was found in WT but not IL-4Ra2/2 mice

(Figure 2G and H).

IL-4Ra2/2 mice show a defect in macrophage and
dendritic cell recruitment to the lung

To characterize and quantify the pulmonary inflammatory

response in more detail in infected WT and IL-4Ra2/2 mice we

used flow cytometry for analysis of lung leukocytes. As shown in

Figure 3A we observed an increasing number of pulmonary

leukocytes (i.e. CD45+ cells) in WT mice over the time. This

increase is much less pronounced in the IL-4Ra2/2 group even at

14 dpi when lung fungal burdens in IL-4Ra2/2 mice are

significantly higher than in WT mice (Figure 1). Recently we

demonstrated that IL-4Ra expression on Th cells and macro-

phages plays a key role in the course of pulmonary cryptococcosis

[37,38]. When analyzing these leukocyte subpopulations, we

observed a comparable increase in the number of Th cells in WT

and IL-4Ra2/2 mice (Figure 3A), whereas the number of alveolar

macrophages and dendritic cells was significantly higher in WT as

compared with IL-4Ra2/2 mice at 14 days after infection

(Figure 3B).

In the murine pulmonary model of infection with C. neoformans,

WT mice show a pronounced type 2 immune response that leads

to susceptibility against the fungus [16,17,39]. In order to study

whether the apparent early resistance of WT mice is associated

with early Th2-like immune response parameters, we analyzed the

lung leukocytes of infected mice by flow cytometry in more detail.

As mentioned before and depicted in Figure 2E the number of

eosinophils is elevated in the WT group at each time point

analyzed and hence even in the early phase of infection

(Figure 3C). Eosinophils account for approximately half of the

difference in total leukocyte cell numbers observed between the

two groups after infection (Figure 3A). This is noteworthy as

eosinophilia is linked to susceptibility [39,40]. Recently we could

show at a late time point of infection with C. neoformans that the

Th2 cell marker T1/ST2 is associated with enhanced Th2 cell

activation and polyfunctionality, ultimately resulting in defective

pulmonary fungal control [33]. Interestingly, as early as 14 days

after infection, significantly higher frequencies of T1/ST2+ Th2

cells are found in WT mice (Figure 3D). Additionally, when

counting periodic acid Schiff staining in lung tissue sections we

observed prominent mucus production in the WT group,

indicated by PAS+ epithelial cells (Figure 3E). Taken together,

typical features of Th2-related susceptibility can be found early in

cryptococcal infection and accompany the early beneficial activity

of IL-4Ra signaling. Despite the expected IL-4Ra-dependent type

2 phenotype (i.e. eosinophilia, mucus production, and develop-

ment of T1/ST2+ Th2 cells) WT mice unexpectedly more

efficiently control the early fungal growth. This raises the question

of additional simultaneously operating type 1 response mecha-

nisms such as IFN-c-dependent chemokine regulation leading to

enhanced phagocytic influx and elevated NO production early

during infection.

Reduced macrophage attracting chemokine and IFN-c
expression with compromised production of nitric oxide
in lung tissue of IL-4Ra2/2 mice

Figure 2E and 3B show an increased influx of macrophages and

dendritic cells to the lungs of infected WT mice. We hypothesized

that the underlying mechanism of this cellular infiltration is due to

differences in expression of chemokines between the two groups.

To examine chemokines involved in the attraction of monocytes/

macrophages and dendritic cells we studied mRNA expression of

Figure 2. Stronger pulmonary inflammation, eosinophilia, and
mucus production in WT as compared with IL-4Ra2/2 mice.
Lung slices from WT and IL-4Ra2/2 mice infected for 14 days were
stained with H&E (A-F) and periodic acid Schiff reagent (G, H). Leukocyte
infiltration and fungal load are depicted in panels A, C and B, D. Sites of
inflammation contain eosinophils (arrowheads) and large, multinucle-
ated macrophages (E) or lymphocytes (F). Mucus production by
bronchial epithelial cells is depicted in G and H. One representative
experiment out of three with n = 6–7 animals per group is shown.
doi:10.1371/journal.pone.0087341.g002
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CCL2 (monocyte chemoattractant protein-1, MCP-1) and CCL20

(macrophage inflammatory protein-3a, MIP-3a) in lung tissue

[41,42]. Indeed, pulmonary CCL2 and CCL20 expression is

significantly higher in WT than IL-4Ra2/2 mice infected for 14

days. Naı̈ve WT mice show similar expression of CCL2 and

CCL20 as compared with naı̈ve IL-4Ra2/2 mice, and for both

naı̈ve genotypes the levels are considerably lower than upon

infection with C. neoformans (Figure 4A).

Concomitantly, reduced production of nitric oxide (NO) in the

supernatants of lung leukocytes stimulated in vitro using PMA/

ionomycin (Figure 4B) is detectable in the IL-4Ra2/2 group.

Antigen-specific stimulation of pulmonary leukocytes using heat-

inactivated acapsular C. neoformans strain CAP67 [29] showed a

Figure 3. Enhanced alveolar macrophage and dendritic cell infiltration in the presence of IL-4Ra signaling. Lung leukocytes were
isolated from WT (open circle) and IL-4Ra2/2 (gray circle) C57BL/6J mice infected intranasally with C. neoformans at the time points indicated (A, C-E)
or at 14 days after infection (B). After perfusion with PBS, density gradient purified cells analyzed by flow cytometry and total numbers of leukocytes
(A, left panel), CD4+ Th cells (A, right panel), CD11c+ Siglec-F+ alveolar macrophages (AM, panel B), and CD11c+, Siglec-F2 dendritic cells (DC, panel B)
are shown. Each time point depicts data from n = 6–7 mice of up to two independent experiments. Statistical analysis was done using the unpaired
Student’s t-test or Mann-Whitney test (21 dpi). *P,0.05; **P,0.01 One representative out of two independent experiments is shown (n = 6–7 mice
per group) (A, B). Density gradient purified cells were analyzed by flow cytometry and total numbers of CD11cneg/dim, Siglec-F+ eosinophils (C) and
frequency of T1/ST2+ CD4+ T helper cells (D) are calculated. Data show one representative experiment out of two (n = 6–7 animal per genotype).
Statistical analysis was done using the unpaired Student’s t-test or Mann-Whitney test. *P,0.05; **P,0.01; ***P,0.001 Lung sections were stained
with periodic acid Schiff reagent and the number of PAS+ cells per bronchus was determined from 4–10 bronchi per animal (n = 6–7) (E). Each time
point shows data from n = 6–7 mice from one representative of up to three independent experiments. Statistical analysis was performed using the
Mann-Whitney test. **P,0.01; ***P,0.001.
doi:10.1371/journal.pone.0087341.g003
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similar difference in NO production between WT and IL-4Ra2/2

mice (data not shown). Higher NO production in WT mice raises

the question for the underlying regulatory mechanism. Among the

three mammalian isoforms of NO synthase (NOS), that catalyze

the formation of NO, expression of inducible (i)NOS in turn is

stimulated by IFN-c [43]. The difference in NO production

prompted us to analyze the lung tissue samples from mice of the

experiments depicted above (Figure 1) for expression of IFN-c.

Using reverse transcription quantitative real-time PCR (RT-

qPCR) analysis we found that at 7 and 14 dpi IFN-c mRNA

expression is reduced in lung tissue of infected IL-4Ra2/2 mice

(Figure 4C). Consistent with the reduced transcription of IFN-c in

the absence of IL-4Ra signaling, lower levels of this cytokine are

detectable upon ex vivo antigen-specific re-stimulation of lung

leukocytes at early (i.e. 7 dpi) but not late (i.e. 42 dpi) time points of

infection (data not shown). No difference in pulmonary IFN-c
expression between the two groups is detectable in naı̈ve mice

(Figure 4C).

To characterize the potential mechanism(s) responsible for

reduced production of IFN-c we studied conventional bone

marrow derived dendritic cells (BMDC) stimulated with C.

neoformans in the presence or absence of IL-4. It has been

published for experimental leishmaniasis that IL-4 instructs

dendritic cells to increase IL-12 production leading to develop-

ment of Th1 immune responses [18]. Furthermore, it was shown

that IL-4 is able to inhibit LPS-induced IL-10 and to enhance IL-

12 production by dendritic cells but not by B cells [23]. Thus, we

investigated C. neoformans-induced secretion of IL-12 by dendritic

cells in the presence of IL-4. Indeed, we found that after

incubation of conventional BMDC with C. neoformans in the

presence of IL-4 elevated levels of IL-12p70 are found in

supernatants, whereas the production of IL-10 is reduced

(Figure 5). In conclusion, besides IL-4Ra-dependent macro-

phage/dendritic cell recruitment, early IL-4-dependent inhibition

of IL-10 may lead to induction of IL-12 by dendritic cells to

initiate enhanced IFN-c production and ultimately allow for better

NO-dependent fungal control.

Figure 4. In the presence of IL-4Ra elevated pulmonary chemokine expression, IFN-c mRNA expression and NO production.
Following infection, WT (open circle) and IL-4Ra2/2 (gray circle) mice were sacrificed at the time points indicated (A, C) or at 14 days after infection
(B). RT-qPCR analyses were done to determine the expression of mRNAs as indicated. Data are derived from one (A, C, 0 and 7 dpi) or one
representative out of two (A, 14 dpi) or three (C, 14 dpi) experiments (n = 6–7 mice per genotype and experiment). Statistical analysis was done using
the unpaired Student’s t-test (ns, not significant; *P,0.05; **P,0.01; ***P,0.001 (A, C)). The concentration of nitric oxide (NO) in cell culture
supernatants was determined using the Griess reaction. Pooled data from two different experiments are shown. Dotted line represents detection
limit. Statistical analysis was done using the Mann-Whitney test. **P,0.01 (B).
doi:10.1371/journal.pone.0087341.g004
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Discussion

Using a low-dose inoculum of the virulent strain 1841 of

Cryptococcus neoformans to establish a more chronic course of

pulmonary infection we describe for the first time a protective

effect of IL-4Ra signaling during the initial phase of the immune

response. This observation is in striking contrast to the well-known

IL-4Ra-mediated detrimental effects in the advanced state of

infection. We conclude that i) IL-4Ra2/2 mice are initially more

susceptible to infection with C. neoformans as shown by stronger

fungal growth within the first two weeks of infection. ii) Despite an

early type 2 phenotype, WT mice more efficiently control the early

fungal growth. IL-4Ra signaling is not only able to enhance the

IL-12/IFN-c/NO axis, but also shows a novel pro-inflammatory

activity by up-regulating macrophage and dendritic cell recruiting

chemokines such as MCP-1 and MIP-3a.

The unexpected finding of lower fungal lung burdens in WT

mice compared to IL-4Ra2/2 mice indicates protective effects of

IL-4Ra signaling during the onset of immune responses triggered

by the infection. This is in accordance with the beneficial effect of

IL-4 in L. major infection [18]. Furthermore, Yao et al. could show

an IL-12 inducing effect of IL-4 on LPS-stimulated dendritic cells

that is caused by inhibition of IL-10 [23]. In our study the

incubation of bone marrow-derived conventional dendritic cells

(BMDC) with C. neoformans in the presence of IL-4 also resulted in

increased IL-12p70 and decreased IL-10 production. Accordingly,

we observed reduced IFN-c expression in the lungs of IL-4Ra-

deficient mice at day 14 after infection, pointing to a similar way of

action as described for leishmaniasis [18]. When analyzing lung

tissue from infected WT mice, we detected a pronounced

accumulation of alveolar macrophages and pulmonary dendritic

cells as well as large multinuclear macrophages in the lung

parenchyma two weeks after infection, suggesting an IFN-c-

dependent influx of antigen-presenting cells [44]. The increased

accumulation of alveolar macrophages and dendritic cells in WT

mice is accompanied by increased CCL2 and CCL20 mRNA

expression in total lung tissue of these mice, pointing to an IL-

4Ra-dependent IFN-c-mediated chemokine production that leads

to the attraction of these cells. It was shown previously that IL-12-

dependent IFN-c induces the production of CCL2 and that the

lack of CCR2, the receptor for CCL2, abolishes the accumulation

of dendritic cells in the lung of C. neoformans infected mice [44,45].

There is substantial evidence that the expression of iNOS and

the formation of microbicidial nitric oxide radicals are involved in

macrophage-mediated killing of intracellular pathogens such as C.

neoformans [12,15,46,47]. The IL-4Ra-dependent increased nitric

oxide concentration in supernatants from ex vivo stimulated lung

leukocytes together with the elevated IFN-c expression in WT

mice point to a potential mechanism by which the immune system

can reduce the fungal growth in the first two weeks after infection.

It was shown that the formation of IFN-c-induced nitric oxide is

necessary to survive a primary infection with C. neoformans [48].

Week three after intranasal infection marks a ‘‘watershed’’ for

the outcome of pulmonary cryptococcosis – mice which initially

control fungal growth lose this ability later on and vice versa

(Figure 1, [36]). The regulatory mechanisms that confer suscep-

tibility to WT mice during the third week of infection are presently

unclear. One possibility is the potential change in the cell type

exerting antigen presentation, i.e. from DCs as early antigen-

presenting cells [49,50] to B cells as later antigen-presenting cells.

In the late phase IL-4 may act detrimentally by inducing activation

of B cells and isotype switching to IgE [51].

Disease progression in the murine leishmaniasis model is also

associated with IL-4 production and development of Th2 immune

responses, whereas resistance is mediated by IFN-c and Th1 cells

[52,53]. During the acute phase of L. major infection, IL-4Ra2/2

mice can control parasites for the first 80 days. Later on, they show

a dramatic progression of disease, whereas IL-4-deficient mice are

well protected; pointing to a protective role of IL-13 in

leishmaniasis [28]. This is noteworthy and contrary to our

pulmonary cryptococcosis model where IL-4Ra2/2 mice are

completely resistant against C. neoformans even over a long period of

time (i.e. .200 dpi) [36]. Yet, IL-13 triggers detrimental effects in

cryptococcosis [29].

The individual contributions of IL-4 vs IL-13 to induction of type

1 responses remain controversial. It is known that stimulus-induced

Figure 5. IL-4 induces IL-12 and inhibits IL-10 secretion by conventional dendritic cells stimulated with C. neoformans. Conventional
BMDCs were generated from bone marrow cells by incubation for 8 to 10 days in the presence of GM-CSF. After harvesting, the cells were stimulated
with C. neoformans 1841 (MOI 10) in the presence or absence of IL-4 (25 U/ml) for 48 h in duplicates. Supernatants were collected and analyzed for
the production of IL-12p70 (n = 3) and IL-10 (n = 4) by sandwich ELISA. The mean of the duplicates without IL-4 was set at 100% and the percentage
of each value was calculated in relation to this mean. In a representative experiment 199.5 m615.5 pg/ml IL-12p70 and 857.567.5 pg/ml IL-10 vs.
391.562.5 pg/ml IL-12p70 and 696621 pg/ml IL-10 (mean 6 SD) were produced after stimulation with C. neoformans in the absence or presence of
IL-4, respectively. When incubating cells only in the presence of IL-4 neither IL-12p70 nor IL-10 was detectable (not shown). Data are expressed as the
mean 6 S.E.M. Statistical analysis was performed by using the unpaired Student’s t-test. *** P,0.001.
doi:10.1371/journal.pone.0087341.g005
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IL-12 secretion by dendritic cells can be elevated by IL-4R type I

signaling reflecting IL-4- (but not IL-13-) dependent Th1 priming

by dendritic cells [54]. In addition, IL-13 does not regulate cytokine

production by Th1 and Th2 cells in mice [55]. On the other hand it

has been shown that both IL-4 and IL-13 are able to promote Th1

immune responses and protection against microbial infections [56].

Recombinant IL-13 increased the production of IL-12 in vivo and in

vitro in a L. monocytogeneses infection model, but the early production

of IFN-c was decreased [57]. Webb et al. reported also a suppressive

effect of IL-13 or an IL-13-dependent factor on IFN-c production

by memory T helper cells in an allergy model [58]. In visceral

leishmaniasis both, IL-4 and IL-13 play a positive role in granuloma

formation and maturation (also pointing to IL-4Ra-dependent

inflammatory cell recruitment as found here for pulmonary

cryptococcosis) and are essential for optimal development of IFN-

c responses [59]. In contrast, in vitro incubation of BMDC with

Staphylococcus aureus Cowan I strain in the presence of IL-13 does not

influence the production of IL-12, whereas IL-4 increases IL-12

production [54]. Since both, IL-4 and IL-13 bind to IL-4Ra [9], our

data from IL-4Ra2/2 mice leave to be resolved what the individual

contribution of either ligand to early fungal growth control is.

For future studies it would be of great interest to identify the

cellular source of early IL-4/IL-13. Our initial data point to the

Th cell compartment as the main cellular source of IL-4 and IL-13

early in the infection as revealed by analysis of IL-4 and IL-13

mRNA expression in the enriched pulmonary CD4+ population of

WT mice (our own unpublished observation). The type 1 immune

response-driving potential of IL-4Ra in the early phase of

pulmonary infection may be exploited in vaccination strategies

against Th2-related pulmonary infection and possibly also in

asthma.
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