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Abstract  
Extracellular matrix (ECM) within the vascular network provides both a structural and regulatory role. The 

ECM is a dynamic composite of multiple proteins that form structures connecting cells within the network. 
Blood vessels are distended by blood pressure and, therefore, require ECM components with elasticity yet with 
enough tensile strength to resist rupture. The ECM is involved in conducting mechanical signals to cells. Most 
importantly, ECM regulates cellular function through chemical signaling by controlling activation and bioavail-
ability of the growth factors. Cells respond to ECM by remodeling their microenvironment which becomes dys-
regulated in vascular diseases such hypertension, restenosis and atherosclerosis. This review examines the cellu-
lar and ECM components of vessels, with specific emphasis on the regulation of collagen type I and implications 
in vascular disease.
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INTRODUCTION
The vertebrate vascular network is a closed sys-

tem which functions to circulate nutrients, oxygen, 
and immune cells to all the tissues in the body and to 
transport metabolites for detoxification in the liver 
and excretion in the kidneys. There is a hierarchical 
network of three main types of blood vessels, arter-
ies, veins and capillaries characterized by location, 
size, function, and structural composition. Vessels are 
composed of an endothelial cell layer that is in direct 
contact with blood flow through the lumen. One of 
the main roles of this layer of cells is to function as 

a selective barrier between the blood stream and tis-
sues. This single layer of cells is surrounded by an 
extracellular matrix (ECM), a basement membrane, 
followed by layer(s) of mesenchymal cells either 
smooth muscle cells (SMC) or pericytes. The mesen-
chymal cells are embedded in a complex ECM whose 
composition varies depending on the size of the ves-
sel. This ECM contains elastic microfibrils (elastin, 
fibrilins), collagens (mainly types I,III,IV,V and 
VI), matricellular proteins (fibronectin, tenascin, and 
thromospondin), growth factors and proteases se-
questered in matrix, and proteoglycans. This review 
focuses on vascular ECM function and synthesis dur-
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ing vascular disease with particular emphasis on type 
I collagen, the most abundant matrix protein synthe-
sized in vascular fibrosis.

THE ORGANIZATION OF VASCULA-
TURE NETWORK

Vascular ECM and mechanics in large arteries has 
been extensively reviewed by Wagenseil and Me-
cham[1-3]. Large muscular arteries close to the heart are 
often called elastic arteries that provide elastic disten-
tion and recoil[3]. These arteries are composed of three 
structural layers known as tunicae. The innermost 
layer, the tunica intima, is lined with endothelial cells 
that produce and attach to a basal lamina, with col-
lagen type IV and laminin, supported by an internal 
elastic lamina. There are anchoring and connecting 
microfibrils with fibrillin, elastic fibers, and a separate 
collagen fiber network[4,5]. Since endothelial cells can 
synthesize elastin and collagens[6,7], they, most likely, 
contribute to the subendothelial layer and internal 
elastic lamina. There are sporadic SMCs present in 
some human tunica intima.  

The middle layer, tunica media, is primarily com-
posed of circumferentially aligned SMCs and elastin 
which is arranged in fenestrated sheets or lamella 
into a three dimensional continuous network between 
collagen fibers and thin layers of proteoglycan-rich 
ECM[3]. The number of lamellar units, defined as an 
elastic lamella and adjacent SMCs, is related linearly 
to tensional forces within the wall with the greatest 
number of elastic layers in the more proximal vessels 
that experience the highest wall tension[8]. Elimination 
of the SMCs from large aortas does not alter the static 
mechanical properties of mature aortas, suggesting that 
the mechanical characteristics are primarily due to the 
ECM that is about 50% of the large vessel weight.

The outermost layer, tunica adventitia, is a collagen-
rich area outside the external elastic lamina contain-
ing a heterogeneous mixture of myofibroblast cells ar-
ranged longitudinally. The relatively high content of 
collagen fibrils, primarily collagen types I and III, in 
the adventitia helps prevent vascular rupture at high 
pressures. The amount of collagen determines the ten-
sile strength of the artery. 

Arterioles contain endothelial cells and SMCs with 
less elastin and collagen. Smaller blood vessels (mi-
crovessels or capillaries) have endothelial cells sur-
rounded by basement membranes devoid of typi-
cal SMCs. Instead, there are other perivascular cells, 
called pericytes, located adjacent to the vascular en-
dothelium. These cells are also present in continuous 
fenestrated arterioles, capillaries, and venules less than 
30 microns in diameter[9].

CELLUALA COMPONENTS OF THE 
VASCULATURE

The vascular network develops through different 
embryonic origins[10]. Endothelial cells are heteroge-
neous[11] and function to regulate vascular permeability 
(reviewed by Goddard and Iruela-Arispe[12]). Endothe-
lial cells produce basement membranes at their basal 
surface and recruit mesenchymal cells during devel-
opment. Endothelial cells are largely responsible for 
expansion of vascular beds through angiogenic proc-
ess which is greatly dependent on ECM remodeling as 
reviewed recently[13]. A full description of the process 
of angiogenesis is beyond the scope of this review. 
Aging impairs the structure, function, and regenera-
tion of the endothelium[14]. Senescent endothelial cells 
secrete increased inflammatory molecules and matrix 
remodeling enzymes, MMPs[15,16]. 

The lineage of the SMCs by fate mapping (as re-
viewed by Majesky[10]) indicates that SMCs originate 
from several locations which may in part explain the 
heterogeneity in the vasculature and cells. For exam-
ple, the proximal aorta originates from neural crest 
forming the ascending and arch of the aorta. The sec-
ondary heart field forms the cells in the base portion 
of the aorta and pulmonary trunk while somites form 
the upper dorsal aorta. Finally, the splanchnic meso-
derm forms the lower dorsal aorta. In fact, there are 
lineage specific differences in the proliferation and 
transcriptional responses to growth factors such as 
TGF-β[17]. SMCs in mice produce ECM during em-
bryo development through 7-14 days after birth. The 
synthesis of most of these proteins, including col-
lagen and elastin, rapidly decreases over 2-3 months 
after birth until in adult mouse turnover of ECM is 
low[3,18]. SMCs within the tunica media are two gen-
eral types: contractile cells that respond to agonist-
induced contraction and synthetic cells that synthesize 
ECM[19]. SMCs in culture and during development 
exhibit the synthetic phenotype whereas in adult ves-
sels they are primarily contractile. Following vascular 
injury, SMCs demonstrate a remarkable plasticity to 
switch phenotypes[20,21]. Markers of the SMC pheno-
type include α smooth muscle actin (SMA), trans-
gelin or SM22α (TAGLN1), calponin (CNN1), and 
smooth muscle myosin heavy chain (MYH11). SMCs 
maintain lower amounts of these proteins when they 
become synthetic producing less basement membrane 
with more protein synthesis and lack of organized 
contractile apparatus within the cytoplasm. Therefore, 
they are difficult to distinguish between synthetic 
SMCs and myofibroblasts, fibroblast-like cells with 
smooth muscle specific proteins, such as SMA, that 
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synthesize type I collagen in granulation tissue and 
contracture of wounds[22,23]. Vascular smooth muscle 
cells undergo cellular senescence and secrete inflam-
matory cytokines (IL-1, IL-6/8, MCP-1) and remod-
eling proteases, (MMP-2) with a similar phenotype 
to senescent fibroblasts refered to as age-associated 
arterial secretory phenotype[14]. 

The adventitia layer contains a mixture of cells, 
predominantly fibroblast and myofibroblast cells, that 
produce the majority of the fibrillar collagen necessary 
for tensile strength of the artery. The adventitia also 
plays an active role in vascular remodeling following 
injury and stress[24-26]. Perinatal and adult vessels con-
tain a subset of SMC progenitors with stem cell mark-
ers that remain in the vessels to respond to stress and 
injury[27]. These cells are capable of migration into the 
medial and intimal layers of the arteries as reviewed 
by Majesky[24,28]. The adventitia is an active compart-
ment for inflammatory cells trafficking into and out 
of the vessel wall along with maintaining a microv-
ascular network that provides for trafficking with the 
surrounding tissue. This layer has abundant ECM that 
interacts with cells inside and outside the vessel pro-
viding the conduit for these interactions. The ECM is 
dynamic, not static[29] and sequesters growth factors 
such as PDGF or VEGF[30,31] and enzymes which are 
activated and/or carried to cells by ECM components.  

Small blood vessels and capillaries where adventitia 
and SMCs are absent contain pericytes[9,32]. These cells 
are intimately associated with endothelial cells within 
a surrounding basement membrane. Immunochemistry 
indicates they are similar to myofibroblasts containing 
SMC α-actin, tropomysin and desmin. Pericytes are 
crucial regulators of microvessel integrity that control 
vessel contraction and permeability[12].

VASCULAR ECM COMPONENTS AND 
FUNCTION

Fibrillins are a class of microfibrils found widely 
distributed in many organs often associated with elas-
tic fibers in the vascular system[33-35]. Fibrillin muta-
tions and mouse gene targeting causes Marfan's dis-
ease where the vascular tissues have disorganized and 
fragmented elastic fibers causing dilated aortas that 
can progress to dissection and spontaneous rupture of 
the vessel wall[36]. Microfibrils also contain microfi-
bril-associated proteins including latent transforming 
growth factor binding proteins, emmilins, microfibril-
associated glycoproteins as reviewed by Kielty et al[37]. 
The bioassembly of these proteins as a microfibril 
associates with proteoglycans and latent TGFβ bind-
ing protein which sequesters inactive TGFβ and bone 
morphogenic proteins (BMPs) as recently reviewed by 

Ramirez and Sakai[38,39]. These assemblies contribute 
to the extracellular regulation of TGFβ and BMPs by 
controlling activation and bioavailability of the growth 
factors. Fibrillin microfibrils are present throughout 
the vasculature interacting with cells through integrin 
(αvβ3)[40], which is important in regulating vascular 
SMC migration, proliferation, adhesion and survival. 
Microfibrils, thereby, play an important structural and 
instructive role for vascular cells. 

Fibrilin microfibrils are closely associated with 
elastin, a cross-linked polymer, forming the elastic 
fibers and elastic lamella within large vessels[3]. Elas-
tin is distensible with a low tensile strength which 
functions as an elastic reservoir and distributes stress 
evenly throughout the aortic wall on to collagen fi-
brils. Elastin haploinsuficiency is sufficient for the 
development of supravalvular aortic stenosis[41-43]. 
Loss of elastin gene in mice is lethal due to obstruc-
tive arterial disease with subendothelial cell prolifera-
tion of SMCs in the media. With half the normal elas-
tin, mice adapt forming additional SMC layers, but 
the vessel wall is thinner and lumen is smaller. The 
mechanical stress due to the lowered elasticity dur-
ing development stimulates SMC proliferation to form 
working vessels with a similar vessel wall to the lu-
minal diameter in wild type. Mice with no elastin die 
within a few days of birth due to SMC overprolifera-
tion that eventually occludes the vessel lumen[44]. The 
mechanical stress/strain relationships and mathemati-
cal models in growth and remodeling of large vessels 
has been recently reviewed[1,3].  

Proteoglycans found in a vessel wall are large 
aggregates interacting with hyaluronic acid, small 
leucine-rich proteoglycans and cell surface-associated 
proteoglycans. The large aggregates form an extensive, 
interconnected polymeric network in the extracellular 
space primarily in the basement membrane. The small 
leucine-rich proteoglycans bind other ECM molecules 
such as fibrillin, collagen or fibronectin. These have 
been shown to sequester growth factors or regulate 
collagen fiber size[45] and are located in all layers. In 
addition, there are important cell associated heparan 
sulfate proteoglycans, and syndecans, which interact 
with growth factors or chemokines to signal through 
cytoplasmic domain and regulate vascular cell migra-
tion, angiogenesis and function during remodeling. 
Null mutations of syndecans in mice produce vascular 
irregularities[46]. Multiple additional ECM proteins that 
modulate cell-matrix interactions and cell function, of-
ten referred to as matricellular proteins, are also present 
within the vascular extracellular network with a regu-
latory function. These include fibronectin[47] throm-
bospondins[48-50], SPARC[51], tenacin-C[52], ACLP[53,54], 
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and CCN2[55]. In addition, proteases, such as metallo-
proteinases (MMPs), are sequestered in a latent form, 
inactivated by tissue inhibitors of MMPs (TIMPs) in 
ECM until needed for remodeling[56]. Additional pro-
teases are present that convert ECM molecules to more 
active molecules such as BMP1 and ADAMTS-2 that 
convert procollagen to collagen in the ECM. Additional 
enzymes present in the ECM include enzymes that 
modify ECM molecules such as lysyl oxidase neces-
sary for collagen and elastin crosslinks. All these en-
zymes are necessary for remodeling matrix.  

The collagens are a large family of ECM proteins 
with at least 27  collagen types composed of about 42 
distinct polypeptide chains[57]. Expression array data 
identifies 17 different collagen types in the mouse 
aorta. Collagens I, III, IV, V and VI have the highest 
expression[58]. Collagen type IV is located primarily 
in basement membranes at the basal layer of the en-
dothelial cells and surrounding SMCs. Collagen VI 
forms a unique fibrillar structure that associates with 
fibrillin microfibils to connect elastic lamellae to the 
basement membrane of SMCs or to other structures[47]. 
Large collagen fibrils contain multiple fibrillar col-
lagens type I, III, and V within heterotypic fibrils. The 
actual composition of the collagen fibrils differs by 
specific regions of the vascular tree possibly based on 
derivation of cells forming the vessels. Collagen type 
V initiates collagen fibril formation[59]. Therefore, mice 
deficient in type V collagen die due to lack of collagen 
fibril formation. Heterozygous mice for loss of colla-
gen type V function have vessels with decreased stiff-
ness[60]. Mice deficient in collagen type III have a vas-
cular defect with fragile blood vessels and a propensity 
towards rupture in large vessels[36]. Collagen type III 
co-localizes with collagen type I fibrils primarily in 
the adventitia. Collagen type I mutations have a wide 
variety of phenotypes in skin, tendons and bone, with 
vascular implications including aortic dilation dissec-
tion and rupture[36]. The turnover of collagen content 
is slow (~10 years) and with time collagen fibrils be-
come increasingly crosslinked with collagen crosslinks 
such as pyridinoline and the addition of sugars referred 
to as advanced gycation end products (AGE) which is 
thought to increase vascular stiffness[61]. These studies 
emphasize the importance of collagen fibrils for nor-
mal mechanical structural integrity. Most importantly, 
many studies establish a role for collagens in vascular 
cell signaling of proliferation, migration, and adhesion 
through the β-integrin family and discoidin-domain 
receptor family. The ECM can be thought of as a dy-
namic complex of molecules that not only determine 
the mechanical properties of the vasculature but also 
regulate vascular cell activity through direct interac-

tion with cells or by sequestering, activating or deliv-
ering growth factors to cells.

MECHANICS AND MECHANOTRANSDUC-
TION IN BLOOD VESSELS

Blood vessels are exposed to radial, axial, and cir-
cumferential strain generated by pulse pressure[62]. 
This stretching pressure is felt by the circumferentially 
arranged SMCs and adventitial cells through their in-
teraction with ECM. There are local deformations in 
individual ECM fibers attached to membranes through 
transmembrane proteins such as integrins. The de-
formation causes conformational changes in ECM 
proteins and the integrins, triggering focal adhesion 
complex formation. Integrins are directly connected 
through the focal adhesions to cytoskeletal proteins 
that link all the way to the nucleus resulting in changes 
in nuclear shape and altered gene expression (reviewed 
in Gieni and Hendzel[63]). To explain continuity and 
transmission of mechanical signals, Ingber proposed 
a tensegrity or tensional integrity model of cellular 
architecture based on a synergy between balanced 
continuous tension and non-continuous compression 
components[64-66]. Vascular cells have a cytoskeleton 
of actomyosin contractile filaments that cause tension 
with cross-linked bundles of microfilament and mi-
crotubules. Vascular SMCs remain as contractile cells 
when responding to normal pulsation and shear forces. 

The actin cytoskeleton is likely the transducer of 
signals to the nucleus. Whether through stretch[62] or 
tensile strength[67] applied to vascular SMCs, Rho ac-
tivation induces cytoskeletal tension and cell stiff-
ness with increased stress fibers, myosin phosphoryla-
tion and integrin activation. Two mechanosensitive 
systems of tension have been described. The first is 
Yorkie-homologues YAP (Yes-associated protein) and 
TAZ (transcriptional coactivator with PDZ-binding 
motif, also known as WWTR1) as nuclear relays of 
mechanical signals exerted by ECM rigidity and cell 
shape[68]. The second, demonstrated first in SMC cells, 
is the serum response (SRF) myocardin pathway[69-71]. 
In fact, the primary SMC contractile genes involved in 
SMC differentiation are regulated by stretch induced 
RhoA/ROCK pathway. The promoters of multiple 
SMC marker genes such as SMA and SM22 all have 
a pair of CArG-box motifs, (CC(A/T)6GG), which are 
necessary for expression[70]. Serum response factor 
(SRF) binds to CArG-boxes and recruits myocardin 
family members, which activate multiple SMC specif-
ic genes[72]. Several pathways repress transcription of 
SMA by altering SRF binding. Most notable, there is a 
GC rich region that recruits Kruppel-like factor (KLF4) 
or SP1 transcription factors with a histone deacetylase 
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(HDAC2) that deacetylates chromatin repressing tran-
scription when treated with PDGF or oxidized lipid. 
In addition, SRF can form a ternary complex with Elk 
rather than myocardin which activates proliferation 
through activation of early response genes such as c-
Fos[69]. Myocardin is the first identified member of a 
family of co-activators responsible for tissue specific 
regulation of cytoskeleton molecules (as reviewed 
by several investigators[73-75]). There are 4 cardiac 
and smooth muscle cell isoforms of myocardin[76]. 
The isoforms interact with different NK homeobox 
genes to regulate specific cardiac or smooth muscle 
cell actins[77]. The SMC specific myocardin isoform 
is critical and sufficient for a SMC contractile pheno-
type[78,79] through interactions with SRF. 

The two other myocardin family members, called 
myocardin related transcription factors (MRTF)-A 
(MKL1/Bsac/Mal) and MRTF-B (MKL2), interact 
with globular actin in the cytoplasm. Translocation to 
the nucleus occurs following Rho family activation and 
polymerization of actin cytoskeleton into stress fibers 
linking actin dynamics to transcription[73]. These re-
lated factors are the proteins that respond to stretching 
or force[80]. MRTF-B is required for vascular develop-
ment and differentiation of smooth muscle cell[81]. Loss 
of function of MRTF-A is not lethal and knockout 
mice have no myoepithelial cells in mammary glands 
so the homozygous mice cannot nurse[82,83]. Most im-
portantly, there is a reciprocal relationship of MRTF-A 
with myocardin and MRTF-B during the phenotypic 
switch that occurs in pathological vascular diseases[84]. 

The SRF/myocardin pathway also regulates two 
conserved vascular microRNA genes miR-143/145 
and miR-1 that regulate contractility and are down 
regulated during neointimal expansion and phenotypic 
switching[85-88]. SRF regulates multiple microRNAs in-
cluding miR-29[89]. ECM molecules as a group are reg-
ulated by the miR-29 family[90]. Multiple ECM proteins 
are direct targets of miR-29 so that a single microRNA 
has a broad range of activities on functional related 
genes[91]. Aberrant regulation of miR-29 contributes to 
disease processes. Down-regulation of miR-29 in the 
heart after myocardial infarction cause fibrosis. MiR-
29 is down-regulated in multiple diseases leading to 
fibrosis such as scleroderma, pulmonary fibrosis and 
liver fibrosis[92-97]. In addition to ECM, miR-29 targets 
proteins involved with immune response, proliferation 
apoptosis and differentiation. There is a recent review 
of the miR-29 family[91].  

In vascular remodeling in atherosclerosis, restenosis 
and hypertension, the major fibrotic response of the 
vasculature is an increase in myofibroblast differen-
tiation in the adventitia. MRTF-A is critical to TGF-β 

and matrix stiffness-induced myofibroblast differen-
tiation[98,99]. Myofibroblasts are capable of contract-
ing granulation tissue through Rho/Rac signaling[100]. 
This contraction is responsible for conversion of latent 
TGF-β in the ECM to active growth factor by myofi-
broblasts through interaction at the cell surface through 
integrins[101]. A review of recent developments cov-
ers the important signaling and epigenetics in this cell 
type in several tissues[102]. Multiple ECM molecules 
important in vascular biology are synthesized by these 
myofibroblasts under tension as reviewed recently[103].

VASCULAR FIBROSIS
Vascular fibrosis involves accumulation of ECM, 

particularly collagen in the vasculature due to re-
modeling in aging hypertension[104], restenosis[105], and 
atherosclerosis[106]. Following vascular injury due to 
increased stress or age there is an influx of inflamma-
tory cells which can occur in the adventitia as well as 
through the endothelium[104]. Several risk factors for 
vascular fibrosis include Renin-angiotensin-aldos-
terone system, hyperhomosysteinemia, dyslipidemia, 
hyperglycemia which stimulate TGF-β and CTGF 
expression[55,104] which are important in development 
of fibrosis. 

Age associated changes in cells and ECM occur in 
the vasculature due to constant remodeling throughout 
a lifetime[14]. The endothelium becomes dysfunctional 
from constant stress. Vascular smooth muscle cells 
proliferate and become more secretory producing 
more collagen. Both cell types become senescent pro-
moting inflammatory cytokines, growth factors, and 
ECM remodeling factors referred to as senescence se-
cretory  phenotype (SASP)[14,107,108]. Senescent vascular 
smooth muscle cells overexpress collagen and genes 
involved with bone calcification (RUNX, BMP2 and 
alkaline phosphatase)[109]. Lamin A, a nuclear enve-
lope protein, has been implicated in several disorders 
including forms of progeria or premature aging. The 
precursor form of lamin A, prolamin A, accelerates 
vascular calcification as part of the vascular smooth 
muscle cell senescence[110]. Lamin A/C regulates the 
SRF/MRTF-A mechanotransduction pathway[111] and 
inactivation of SRF in mice leads to decreased vascu-
lar tone and arterial stiffness. Vascular smooth muscle 
cells increase MRTF-A as they become synthetic and 
MRTF-A activates collagen gene expression[112] to ac-
celerate remodeling. As remodeling implies, ECM is 
degraded and reformed during remodeling. Degrada-
tion of matrix involves primarily the matrix metal-
loproteinase (MMP) enzymes[113]. As a result, elastin 
becomes fragmented within larger arteries. Collagen 
becomes more crosslinked with increased glycation 
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that is associated with increased cellular dysfunction 
through receptor (RAGE) mediated processes[114]. The 
arterial stiffening that occurs with age is partially due 
to these ECM changes[114] and cellular tone.  

Hypertension is often an age-related process which, 
in the elderly, is associated with arterial stiffness char-
acterized by fissuring and fracturing of the elastin 
protein, collagen proliferation, and calcium deposi-
tion. The tension of the arterial wall alters as the ves-
sels dilate leading to increased pulsatile stresses and 
further degeneration of the extracellular matrix artery. 
In contrast, hypertension in young subjects may be 
caused by increased resistance in small vessels caus-
ing an “upstream” increase in pressure at the level of 
the large elastic arteries which stretch and become 
stiffer. This type of hypertension progressively leads 
to vascular remodeling, hypertrophy, and hyperplasia. 
As yet the etiology and the pathways that lead to the 
development of hypertension are unclear and the re-
lationship between vascular remodeling, arterial stiff-
ness and hypertension is unknown. Therefore, one can 
only speculate whether arterial stiffness is the result of 
hypertension or is its cause with evidence available to 
support both arguments[115,116]. 

Pulmonary arterial hypertension (PAH) is a general 
term for abnormally elevated pressure in the arteries of 
the lungs and is simply defined as an elevation in mean 
pulmonary arterial pressure (PAP) above 25 mmHg at 
rest or 30 mmHg with exercise which creates added 
strain on the right side of the heart. Pulmonary hyper-
tension (PH) is a hallmark of PAH, but PH includes all 
cases of increased pulmonary arterial pressure (PAP), 
regardless of its cause. The etiology and pathobiol-
ogy of this rapidly progressive and ultimately fatal 
disease is complex and poorly understood with cur-
rent treatments relatively ineffective[117]. PAH includes 
a heterogeneous group of conditions which despite 
the diversity is defined by similarities in pathophysi-
ological, histological and prognostic features[118,119]. 
PAH is characterised by severe arteriopathy, includ-
ing increased thickness of the intima, media and ad-
ventitia of peripheral arteries, muscularization of the 
precapillary arterioles and capillaries which result in 
narrowing and/or occluding pulmonary arteries and 
arterioles, the obstruction of blood flow and ultimately 
loss of distal vasculature. The pathology contributes 
to vascular lesions (e.g. plexiform lesion and neointi-
mal proliferation), which also obstruct the pulmonary 
arteries and arterioles. The plexiform plexiform lesion 
and neointimal proliferation), which also obstruct the 
pulmonary arteries and arterioles. The plexiform lesion 
is observed in approximately 15% of PAH patients and 
is a pathological hallmark of IPAH and is not as com-

mon in the other types of PAH. Plexiform lesions arise 
from the monoclonal proliferation of endothelial cells; 
migration and proliferation of smooth muscle cells; 
and the accumulation of circulating inflammatory and 
progenitor cells[117,120]. 

Atherosclerosis is a major health concern in the de-
veloped world and an increasing burden to emerging 
economies. The atherosclerotic lesion develops pro-
gressively. Endothelial cell damage promotes the re-
cruitment of monocytes which accumulate lipid in the 
evolving lesion, becoming foam cells. Progression of 
these early fatty streaks into mature plaques involves 
the extensive accumulation of inflammatory cells and 
the coalescence of lipid to form a lipid-rich necrotic 
core. Smooth muscle cells and fibroblasts enshroud the 
lipid core, forming a fibrous cap as part of the inher-
ent vascular reparative process[121,122]. Although com-
posed of a complex mixture of extracellular matrix 
proteins, the collagens, notably type I, constitute the 
major component (-60%) of total plaque protein[123]. 
Indeed, gene expression profiling of mouse athero-
sclerotic lesions reveals that the most over-expressed 
genes associated with the neointima encode for matrix 
proteins (collagens type I and III and proteoglycans) 
as well as matrix-inducing proteins such as CCN2[124]. 
Collagen type I in the shoulder region or fibrous cap 
of the plaque is of primary importance in stabilising 
the plaque and protecting against plaque rupture[125-127]. 
Collagen not only confers mechanical strength and a 
structural framework, maintaining plaque  integrity, but 
also influences macrophage activity and smooth mus-
cle cell migration and proliferation. Furthermore, when 
deposited and assembled into the extracellular matrix, 
collagen (along with other matrix proteins) functions 
as an extracellular reservoir for cytokines and growth 
factors including TGF-β, that rapidly mobilised upon 
injury to ‘kick start’ the reparative response. Mature 
collagen type I is subjected to degradation by matrix-
modifying enzymes, notably the matrix metalloprotei-
nases[128,129]. It is likely that the balance between colla-
gen synthesis and degradation is of great importance in 
the maintenance of plaque stability.   

Apolipoprotein E deficient mice (ApoE-/-) have 
been used extensively as model of atherosclerosis[130]. 
When ApoE-/- mice are submitted to guidewire-
induced femoral artery injury, remodeling occurs 
that resembles atherosclerotic lesions which can be 
observed with time[131]. At 4 weeks following injury, 
there are significant increases in neointima and ad-
ventia expansion (Fig. 1) with collagen presence as 
judged by the red stain in picrosirius stain (Fig. 1A). 
Picrosirius[132] staining specifically identifies all col-
lagens with a red color and, polarized light illuminates 
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collagen fibrils (types I and III) with different colors 
relating to the size of the fibers. The fibrillar collagens 
accumulate primarily in the adventitia as judged by the 
polarized light pictures (Fig. 1B). The collagen fibrils 
in the neointima, where the fibrous cap forms, are not 
uniformly located in neointimal space. The matrix 
formed in the adventitia is primarily fibrillar collagen 
which increases the stiffness of arteries. The synthesis 
of ECM proceeds, but cannot replace the components 
in the same fashion as during embryogenesis. Dur-
ing the development of atherosclerosis collagen and 
multiple ECM components are increased as reviewed 
previously[133].

TRANSCRIPTIONAL REGULATION 
OF COLLAGEN

Because of the importance of collagen type I ac-
cumulation in fibrotic disease, its transcriptional con-
trol has been extensively studied. Collagen type I is 
formed by two polypeptide chains α1(I) (COL1A1) 

and α2(I) (COL1A2) that form a triple helix with two 
α1(I) chain and one α2(I) chain. The genes are on two 
separate chromosomes and with different promot-
ers, although regulated in coordinately in most cells. 
Transgenic animals have been used to map tissue 
specific regions in the two promoters. The COL1A1 
promoter is expressed in vascular smooth muscle us-
ing an upstream region with 3.6 kb of the start site, 
smaller promoters are not expressed in the vascula-
ture[134]. Transgenic mice with the minimal promoter 
between -350 and +54 has low level expression in 
all tissues[135]. This expression is enhanced by a far 
upstream enhancer about 17 kb away from the tran-
scription start site[136] (described in detail below).

The cis-acting elements in COL1A2 with transcrip-
tional regulators of importance for gene expression has 
been reviewed[137]. The proximal promoter has a cluster 
of cis-acting sites at the initiation region and a proximal 
enhancer. There are combinations of transcription fac-
tors and co-regulators that target the promoter by signal 

A

B

Fig. 1 Picrosirius Red-stained vascular lesion of Apoe-/- mice. A lesion from a guidewire-injured femoral artery is stained with Picrosirius 
Red and visualized using light microscopy (A) and polarized light microscopy (B).
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transduction pathways both pro-fibrotic and anti-fibrotic 
cytokines. This review will cover what is new to our un-
derstanding of collagen transcription in the vasculature 
starting with the initiation site region, proximal enhancer 
and far upstream enhancer. 

In mature cells, collagen transcription is repressed in 
vivo, but poised to be activated during stress or injury. 
Little is understood about how this is accomplished. 
One epigenetic method of repression is present at the 
initiation site of the collagen gene where there is a 
methylation site (CpG) at +7 within a binding site for 
a regulatory factor for X box (RFX) family of pro-
teins[138-141]. When the collagen gene is methylated at 
+7 CpG site within the initiation region, RFX1 binds 
to and represses collagen transcription by blocking 
RNA polymerase[140]. During inflammatory responses 
to injury, interferon gamma (IFNγ) is released into 
the ECM, stimulating fibroblasts and SMCs. IFN-γ 
repression of collagen is mediated through an RFX5 
complex[142] which recruits CIITA, and represses col-
lagen transcription as well as activating MHC II ex-
pression[143]. Both type I genes have an RFX binding 
site at the transcription start site[144]. Two members of 
the RFX family, RFX1 and RFX5, associate with dis-
tinct sets of co-repressors on the collagen transcrip-
tion start site. RFX5 specifically interacts with histone 
deacetylase 2 (HDAC2) and the mammalian transcrip-
tional repressor (Sin3B), whereas RFX1 preferably 

interacts with HDAC1 and Sin3A145. CIITA becomes 
phosphorylated by glycogen synthase kinase 3 (GSK3) 
and interacts with a transcription repressor complex 
containing histone deacetylase 2 (HDAC2/Sin3B) to 
alter chromatin and represses transcription[146,147]. IFN-γ 
induces CIITA expression in a time dependent manner 
and promotes CIITA occupancy on the collagen type I 
genes and MHC II genes[143]. Short hairpin interference 
RNA (shRNA) against CIITA expressed in lentivirus 
specifically eliminates the IFN-γ stimulated expres-
sion of CIITA, leading to the alleviation of COL1A2 
repression and MHC- II activation[143]. In addition, 
peroxisome proliferator-activated receptor gamma 
(PPARγ) interacts with CIITA/RFX5 complex to re-
press type I collagen gene expression[148] and increased 
cAMP blocks the CIITA repression of collagen[149]. A 
model of the repression during IFN-γ stimulation is 
shown in Fig. 2. 

The proximal enhancer contains multiple active 
Sp1 sites, a Smad binding site, several Ets sites, and 
a CCAAT/enhancer-binding protein (C/EBP) as re-
viewed previously[137]. There are several key positive 
and negative regulator proteins of collagen transcrip-
tion in the setting of fibrotic disease that interact with 
these sites. The Sp1 family of proteins activates col-
lagen transcription through G/C rich sites[150,151], while 
the Ets domain family of proteins both activate and 
repress collagen gene expression in fibroblasts[152,153]. 

Fig. 2 Model of collagen repression by CIITA during IFN-γ. A schematic representation of collagen COL1A2 promoter during IFN-γ treat-
ment. 
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TGFβ activates collagen through Smad binding site 
with Sp1154 whereas TNFα represses collagen through 
C/EBP site[155]. MRTFA deficient mice have less car-
diac fibrosis following myocardial infarction or an-
giotensin II treatment. Collagen is a direct target of 
MRTFA signaling through TGFβ and Rho activity[156]. 
MRTFA is recruited to collagen with SRF and Sp1 
which is a strong inducer of gene expression[112]. The 
SRF CArG-like binding site, which overlaps with the 
C/EBP and one Ets site, is similar to the degenerate 
CArG site in the SMA promoter necessary for SMC 
switching from contractile to synthetic[157]. MRTF-A, 
an important regulator of collagen synthesis, exhibits a 
dependence on both SRF and Sp1 function to enhance 
collagen expression. Sp1 synergizes with MRTFA to 
increase collagen transcription[112] whereas during SMC 
phenotypic switch, Sp1 is activated to repress SMA 
transcription[158]. MRTFA is a stronger activator of col-
lagen transcription than the other family members[112]. 
Loss of MRTF-A in knockdown and knockout models 
shows an inhibition of collagen and SMA expression, 
suggesting a disruption of myofibroblast function. Ex-
pression of MRTFA in the knockout cells rescues the 
decreased collagen synthesis. Therefore, when injury 
occurs to vasculature and there is a reciprocal increase 
in MRTFA with a decrease in myocardin and MRT-
FB[84] bringing the cells phenotypically closer to my-
ofibroblasts, the stage is set for collagen up-regulation 
and SMA down regulation (see model Fig. 3).  

Current knowledge of transcriptional regulation of 
COL1A2  in vivo has been obtained from studies us-

ing promoter sequences driving transgene expres-
sion in mice. Transgenic studies have identified a 
“far upstream enhancer” located 21.8 to -18.8 kb up-
stream of the start site of transcription of the COL1A2 
gene[136,159,160]. When the far upstream  enhancer region 
is cloned upstream of the proximal promoter, it directs 
high levels of transgene expression, significantly in 
almost all mesenchymal tissues where the endogenous 
COL1A2 is expressed[161]. High degree of homology is 
found between the human and murine enhancers[160]. 
In addition to the absolute requirement of the enhancer 
to govern temporal and tissue/cell specific expression 
of collagen in vivo, using transgenic reporter mice, the 
presence of the enhancer has also been shown to be 
essential for the activation and re-activation of colla-
gen type I expression in adult mice during connective 
tissue remodelling and repair[161], wound healing and in 
pathological scenarios such as excessive scarring and 
fibrosis[162-164]. Thus, the enhancer is crucial, conveying 
both temporal and tissue-specific expression of col-
lagen type I to all mesenchymal cell lineages includ-
ing fibroblasts, pericytes and vascular smooth muscle 
cells[161]. Of significant importance in relating to vessel 
remodelling, a specific sequence motif located within 
the enhancer region is responsible for the enhanced 
transcriptional activity and expression of collagen type 
I in blood vessels and in particular vascular smooth 
muscle cells only. This element was essential for the 
correct expression of collagen type I in vivo in vas-
cular smooth muscle cells. Furthermore, this mo-tif is 
recognised by the transcription factor, Nkx2-5, which 

Fig. 3 Differential activation of collagen and vascular markers (SMA) by myocardin family. A schematic representation of differen-
tial activation of collagen COL1A2 and SMA promoters. 
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binds to and activates collagen gene transcrip-tion, as 
part of an activation/repression system with the tran-
scription factor δEF1 (Zeb1). 

CONCLUSION
The vascular system consists of specialized cells 

surrounded by a dynamic ECM that not only pro-
vides structure through connections of cells within 
the network, but also instructs cellular function. ECM 
components sequester growth factors and make them 
available to cells. The ECM is also necessary for pro-
viding mechanical signals that result in cell responses 
including synthesis of ECM, migration, proliferation 
and apoptosis. Cells respond to ECM by remodeling 
their microenvironment which becomes dysregulated 
in disease.
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