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Abstract
In this article, the authors aim to introduce the nonradiologist to diffusion tensor imaging (DTI)
and its applications to both clinical and research aspects of tuberous sclerosis complex. Tuberous
sclerosis complex is a genetic neurocutaneous syndrome with variable and unpredictable
neurological comorbidity that includes refractory epilepsy, intellectual disability, behavioral
abnormalities and autism spectrum disorder. DTI is a method for modeling water diffusion in
tissue and can noninvasively characterize microstructural properties of the brain. In tuberous
sclerosis complex, DTI measures reflect well-known pathological changes. Clinically, DTI can
assist with detecting the epileptogenic tuber. For research, DTI has a putative role in identifying
potential disease biomarkers, as DTI abnormalities of the white matter are associated with
neurocognitive morbidity including autism. If indeed DTI changes parallel phenotypical changes
related to the investigational treatment of epilepsy, cognition and behavior with mTOR inhibitors,
it will facilitate future clinical trials.
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Tuberous sclerosis complex (TSC) is a genetic neurocutaneous syndrome with an estimated
incidence of one in 6000–10,000 [1,2]. Benign hamartomas, the hallmark of the disease, are
found in multiple organ systems, including the brain, eyes, kidneys, lungs, skin and heart,
and comprised nonmalignant and disorganized cells that often exhibit abnormal
differentiation [3]. Inherited autosomal dominant mutations (<30%) and sporadic mutations
(>70%) lead to inactivation of the tumor suppressor genes TSC1 (on chromosome band
9q34) and TSC2 (on chromosome band 16p13.3) and can be identified in 70–90% of patients
who meet the clinical criteria of TSC [4,5]. TSC is diagnosed on the basis of major and
minor clinical criteria, with three of the major criteria being based on neuroimaging findings
[6]. In 2012, the International Tuberous Sclerosis Consensus updated the TSC diagnostic
criteria from 1998; TSC can now be diagnosed via genetic testing if a pathogenic mutation is
found [201].

Neurologically, TSC can manifest with developmental delay or intellectual disability,
behavioral abnormalities, autism and seizures. Clinical presentation is highly variable and
patients with a TSC2 mutation typically present with a more severe neurological phenotype
[7,8]. Epilepsy occurs in 80–90% of all patients, is often medically refractory, and any
seizure type can be seen [1]. Autism spectrum disorders (ASD) occur in up to 50% of
patients by the age of 5 years [9]. Close to 45% of patients have varying degrees of
intellectual disabilities [5]. Neurological sequelae are particularly devastating in children as
they appear early in life and affect neurological development, with long-term effects on
academic and socioeconomic outcome.

Conventional anatomical MRI is routinely used for the detection and monitoring of major
CNS lesions in both the diagnosis and management of TSC. Neuroimaging in patients under
the age of 1 year with a clinical suspicion of TSC results in a definite diagnosis in 95% of
cases [7]. While conventional MRI is highly sensitive, it only gives an impression of the
extent of CNS involvement, and it does not provide much information on the
neurobehavioral phenotype nor on epilepsy.

First, no robust MRI biomarker that correlates consistently with the clinical phenotype or
neurological outcome has been identified. For example, the presence of tubers in the
temporal lobe has been linked to the risk of autism [10], but other critical regions including
the cerebellum have also been proposed [11–14]. Although associations have been made
between total tuber load, epilepsy and cognitive function [12,14,15], age at seizure onset is
the only consistent and independent determinant of cognitive function [16]. A high tuber
load or tubers in specific locations are, therefore, neither necessary nor sufficient to predict
(early) seizures, cognitive impairment or autism (Figure 1A & B) [16,17]. Inter- and intra-
observer variability in determination of tuber burden may be reduced by automated tuber
segmentation [16], but differences in magnet strengths, image acquisition specifics and
quality form an additional challenge across institutions. Tuber-like pathology may be, in
fact, more diffusely present below the conventional MRI resolution, with the visually
discrete tubers just representing the ‘tip of the iceberg’. The authors will discuss that large
parts of normal-appearing white matter (NAWM), in fact, have an abnormal microstructure.
In addition, there are other types of structural CNS abnormalities in TSC, as outlined below,
which may need to be taken into account.

Peters et al. Page 2

Future Neurol. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A second limitation of conventional MRI is the inability to identify epileptogenic tubers or
perituber regions, a critical step in the presurgical evaluation of candidates for epilepsy
surgery [18,19]. A third limitation is that microstructural CNS tissue characteristics of TSC,
including abnormal differentiation, migration, organization, myelination and connectivity
cannot be examined by conventional MRI [3,20–25].

Newer MRI techniques are used to investigate imaging correlates of neurobehavioral
phenotype, epilepsy and microstructural CNS tissue properties in TSC. Diffusion-weighted
MRI (DWI) probes natural barriers to the diffusion of water molecules in tissues, thereby
providing information on their microstructural properties. To quantify this diffusion,
multiple DWI images are used to generate a mathematical model of the diffusion. The most
common model is called diffusion tensor imaging (DTI), which describes the 3D diffusion
and strength with a tensor at each voxel. DTI models are consistent with known
neuroanatomy and can demonstrate pathological microstructural changes of tissue in several
neurological conditions, including multiple sclerosis [26], Alzheimer's disease [27] and
epilepsy [28]. Using DTI, novel insights into the pathophysiology of TSC and the imaging
determinants of clinical phenotype may lead to the identification of early prognostic
indicators, and guide the development of targeted interventions.

The authors review the literature on DTI and tuberous sclerosis, focusing on clinical
implications, as well as its contribution to the understanding of the neuropathological
processes in TSC. The imaging principles of DTI and several related techniques are
introduced, and future directions are discussed.

Structural CNS abnormalities in TSC, conventional MRI
The intracranial lesions of TSC appear to result from abnormal expression of the genes
within the germinal matrix stem cells, affecting differentiation and migration, resulting in
dysplastic cells in the subependymal region, the cortex and along the cell migration
pathways [29]. There are four common CNS lesions detected by conventional MRI, as
described below.

Cortical tubers
Cortical tubers represent focal hamartomatous regions of disorganized cortical lamination.
Histopathologic examination of tubers typically reveals prominent numbers of glia,
neuronalappearing cells, and giant cells that express markers of both neuronal and glial
lineages [3]. They are found in the brains of at least 80% of children with TSC [30]. On
MRI, they are highly characteristic moderately well- circumscribed areas of increased signal
intensity on T2-weighted (T2W) images and decreased signal intensity on T1-weighted
(T1W) images. The overlying cortex may bulge and the gray–white matter differentiation is
reduced. They are best appreciated on fluid attenuation inversion recovery images (Figure
1A & B) [31,32]. Based on conventional imaging, tubers can be classified following the
scheme of Gallagher et al., which may have clinical implications [33]. The exact role of
cerebellar lesions is still an active area of investigation [34], but recently a large series of
145 patients demonstrated that the MRI appearance of tubers is different in the cerebellum.
Here, lesions are wedge-shaped, hyperintense on T2 and hypo- or isointense on T1.
Cerebellar tubers are more likely to enhance, and the enhancement may follow the
underlying cerebellar neuroanatomy [35].

Subependymal nodules & subependymal giant astrococytomas
Subependymal nodules (SENs) and subependymal giant astrococytomas (SEGAs) are found
adjacent to the ventricles. SENs are small and can be found anywhere along the lining of the
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ventricles. SEGAs can cause obstructive hydrocephalus as they are larger than SENs and
occur most commonly at the caudothalamic groove, near the foramen of Monro. They are
noninvasive and non-metastatic, and also histologically benign. However, SEGAs probably
arise from SENs and the distinction is primarily made on the basis of size and location
typically near the foramen of Monro [3]. As not all large lesions are astrocytomas, they are
sometimes referred to as subependymal giant cell tumors. Other than glial-cell elements,
they also contain dysplastic giant cells that express neuronal markers, similar to tubers [3,5].
On MRI, SENs and SEGAs are iso- to hyper-intense on T1W images and variably
hypointense on T2W images depending upon the extent of calcification. T2W images are
optimal for showing susceptibility artifacts from calcification. Morphologically, they appear
as discrete or roughly confluent areas of rounded hypertrophic tissue, bulging into the
ventricle. Both can show contrast enhancement. The SENs over 5 mm in diameter which are
incompletely calcified and enhanced after gadolinium administration may be at higher risk
of growing into a SEGA (Figure 1C & D) [36,37].

White matter abnormalities
White matter abnormalities include radial migration lines (RMLs) that appear as linear
abnormalities extending from the ventricular surface to the cortical tuber. Within the high
signal of the RMLs, there are linear streaks of abnormalities that are isointense to cortex,
best appreciated on T2W images and nonenhanced T1W images. These represent gliosis and
heterotopic glia and neurons along the course of abnormal cortical migration in the
subcortical white matter. They are not always seen in relation to a tuber (Figure 1E) [36,38].

Discrete rounded cyst-like abnormalities
Discrete rounded cyst-like abnormalities are found subcortically or within the deep
hemispheric white matter. They have cystic properties with signal intensities comparable to
cerebrospinal fluid (CSF). Recently, a strong association of these lesions was found with
TSC2 and a more severe seizure phenotype [39]. Originally thought to be static lesions
derived from tuber degeneration or heterotopic tissue [38,40], their evolution over time has
been clearly documented (Figure 1F) [41].

Microscopic abnormalities, such as microdysgenesis, heterotopic gray matter and lamination
defects, are generally not visible at conventional MRI resolution. Rare associations with
cortical malformations, such as hemimegalencephaly [42,43] and schizencephaly [44], are
beyond the scope of this article. Finally, global cerebellar atrophy is reported in 4–17% of
TSC patients and recently an association was shown with the presence of cerebellar tubers.
Whether this is a destructive process (seizures, anti- epileptic medications, among others) or
a primary developmental phenomenon is unknown [35,45].

DWI, DTI & tractography
Diffusion-weighted imaging

DWI allows characterization and quantitative measurement of the diffusion of water
molecules in tissues. It enables distinction between unrestricted and restricted diffusion of
protons, based on the random (also known as Brownian) motion of water molecules in tissue
[26,46]. The most well-known indication for DWI is detection of restricted diffusion in
acute ischemic stroke.

In pure water, there is no barrier to the diffusion of water molecules and the diffusion is
referred to as isotropic. By contrast, in the brain, local restriction of water diffusion such as
that caused by the presence of densely organized white matter fascicles, gives rise to
anisotropic diffusion. The degree of anisotropy is a measure of directional preference of
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diffusion and depends on the structure present in the voxel (3D pixel). In highly organized
structures (e.g., white matter tracts), diffusion will be highly anisotropic, as molecules will
diffuse preferably along the path of least resistance (e.g., along the axon within the myelin
sheath) [26,46–48]. In less coherent structures (e.g., in a tuber consisting of poorly
organized collection of cells), the diffusion will be almost isotropic.

In an MRI scanner, protons' spins are initially aligned with the strong magnetic field
produced by the magnet. Applying a short magnetic pulse changes this orientation and
protons' spins start to precess (much like a spinning humming top deviates from its central
axis). This precession generates an electromagnetic signal detectable by an electric coil [46].
The rate of precession depends on the strength of the magnetic field. Applying a magnetic
field that varies along a certain direction (adding a so-called field gradient pulse to the
magnetic field), we can label the spins by different precession rates according to their
position along the gradient direction. This variation in precession rates results in an
interference between the precessing spins, leading to a signal loss. Applying the opposite
field gradient pulse would refocus the spins and recover the signal loss, only if the protons
did not move between the two pulses. However, due to motion, protons' spins are
imperfectly refocused and the signal loss cannot be compensated for. The amount of
remaining signal loss is related to the amount of motion that occurs in the gradient direction.
Measuring the signal loss therefore measures the diffusion of protons (or water molecules
that contain them). This is the physical basis of DWI.

Each DWI provides information about the diffusion along one particular direction (the
gradient direction). Several DWI are thus needed to characterize the diffusion in all
directions. Much like one only needs two points to characterize a linear relationship between
two variables, one only needs a few DWI to estimate a diffusion model that characterizes the
diffusion in all directions.

Diffusion tensor imaging
DTI is the most widely used model of the diffusion signal in tissues. DTI models the average
diffusion direction and strength at each voxel with a tensor, which can be thought of as an
ellipsoid (Figure 2). This ellipsoid is characterized by a principal direction along which
diffusion is the strongest. In the two orthogonal directions, diffusion is more constrained and
its magnitude is given by the width of the ellipsoid in those directions. A total of six
parameters are required to fully define the ellipsoid: three parameters for the widths and
length (these are also called diffusivities or eigenvalues), two parameters to define the
direction of strongest diffusivity and one parameter to define the rotation of the ellipsoid
around its principal axis. Mathematically, ellipsoids are represented as symmetric positive-
definite matrices with three rows and three columns. Diffusivities can be obtained from
those matrices through a mathematical method called eigen decomposition (hence their
name ‘eigenvalues’).

Since six parameters define the diffusion tensor (the ellipsoid), six DWI acquired for
different gradient directions would in theory be enough to estimate the values of the tensor
parameters. However, owing to measurement errors, a larger number of DWI is usually
acquired (typically 30 directions). It is suggested to acquire as many images as time allows,
and to strictly standardize acquisition details for research purposes.

The shape of the tensor provides information on the nature of the diffusion occurring in the
corresponding voxel (Figure 2). Isotropic diffusion (which occurs in free water) gives rise to
a spherical tensor, and its diffusivities are equal in all directions. Highly anisotropic
diffusion gives rise to long and thin ellipsoids, indicating that the diffusion is highly favored
along a principal direction and highly constrained in the other directions.
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DTI-based measures
DTI-based measures quantify the shape of the ellipsoids and can be used as biomarkers for
diseases. Two main measures are commonly used: the mean diffusivity (MD) and the
fractional anisotropy (FA). The (bulk) MD is the average diffusion in all three directions. It
was measured before the introduction of the diffusion tensor model by averaging the
diffusion coefficient estimated in three orthogonal directions. In practice, this apparent
diffusion coefficient is used interchangeably with MD. The MD is an intrinsic property of
tissues. For example, the MD of demyelinated white matter is increased as there is more
extracellular water and a weaker biological barrier to diffusion [26]. The FA reflects the
degree of asymmetry of the diffusion in a particular location. If the diffusion is completely
isotropic (Figure 2B), then FA is equal to zero. Conversely, if the diffusion is extremely
anisotropic (water molecules can only diffuse in one direction and diffusivities are zero in
the other two directions), then FA is equal to one. Diffusion within the white matter axons is
restricted to the longitudinal axis by cell membranes and by the myelin sheath which forms a
biological barrier, resulting in a high FA. When neurons or myelin sheaths are damaged, the
FA decreases; there is less preferential directionality of diffusion because the fluid can move
freely along various axes [49]. MD and FA are nonspecific and can be altered by any
pathological process that modifies tissue integrity and leads to a loss of structural barriers to
water motion (Figure 3).

DTI tractography
DTI tractography is a technique based on relatively recently developed postprocessing
algorithms for DTI, and allows for the study of the 3D configuration of major white matter
tracts [50,51]. Orientation-based color-coding (also known as color maps) is a visualization
approach in which the brightness of the image represents the magnitude of preferential
diffusion (i.e., FA), and red (left–right axis), green (anterior–posterior axis) and blue
(inferior–superior axis) indicate fascicle orientation. This color scheme assumes that the
preferential diffusion axis coincides with the orientation of the fascicle, as explained above
(Figure 4) [52]. To generate tracts, the main direction of the tensors (longest arrow in Figure
2) is followed from one voxel to another.

Based on the contiguity of adjacent voxels with a highly similar preferential diffusion axis,
3D tracts can be generated that represent the course of a major white matter pathway. The
tract is formed by stepping along the line in both ortho- and retro-grade directions according
to the fascicle orientation (imagine a tract formed by a series of lined-up cucumbers) [26].
The tract starts at a seeding point, which is often defined manually by the examiner who
delineates a certain region of interest. Regions of interest can be determined by
(semi)automated techniques (e.g., functional MRI, or segmentation algorithms that isolate
structures on conventional MRI).

Specifics of reconstructed tracts
The specifics of the reconstructed tracts are dependent on important modifiers that terminate
the tract-generating algorithm when boundary conditions are met. Examples include the
maximum angle a tract is allowed to make, the cutoff value of FA below which the next
voxel is no longer considered to be part of the tract (stopping when the tensor is spherical
and has an insufficient degree of anisotropy) and the FA-momentum, which permits the
tract-generating algorithm to go through an aberrant voxel with a poor FA if the previous
few voxels in the tract had a high FA value, for instance carry momentum. This last modifier
allows the tract generation not to stop prematurely. In both clinical and research applications
of tractography, the exact parameters should always be scrutinized closely. Notably, the 3D
tracts are not a (micro-)structural reality, but are traces of the major pathways representing
white matter fascicles by means of connected diffusion tensors. The DTI tractography

Peters et al. Page 6

Future Neurol. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



method has been validated with post-mortem anatomic and animal studies, showing good
agreement [52,53].

Microstructural tissue
Microstructural tissue properties are reflected by FA and MD values of anatomical
structures such as major white matter pathways (e.g., corpus callosum and language
pathways) or specific regions of interest (e.g., neoplasm or tuber). A well-established
relation between DTI parameters and tissue properties is not limited to only animal models,
but is also present in humans. Changes in axonal integrity and diameter can affect axial
diffusivity (the mean diffusion along the axial axis) [54]. Radial diffusivity (mean diffusion
orthogonal to the longitudinal axis) values correlate with myelination in the normally
developing mouse brain and in experimental dysmyelination [53,55,56]. FA relates to
axonal packing, organization and myelination [57,58]. With tractography or with
segmentation, an anatomically relevant collection of voxels can be selected for analysis. The
investigation of local microstructural information in a noninvasive manner is unique and has
propelled the widespread use of DWI and DTI in the clinical and research setting over the
past decade.

Limitations of the DTI model
Heterogeneous fascicle orientations

The DTI model assumes that at each voxel, the diffusion is Gaussian with at most one
preferential direction. This assumption is reasonable only when all axons in the voxel are
aligned in a specific orientation. However, owing to the presence of complex fascicle
organization, heterogeneous fascicle orientations can be present in one voxel [59,60]. In the
corona radiata, for example, corticospinal tracts cross fascicles of the corpus callosum
(Figure 5). Another example are the pyramidal projections that give rise to fanning fascicles
(i.e., fascicles that follow different directions from an original point at which they are
aligned) [61]. Recent studies estimate the prevalence of those heterogeneities to range
between 60 and 90% of voxels in the white matter [62]. When fascicles are crossing, kissing
or fanning, interpretation of the DTI-based measures (MD and FA) may be misleading [63].
For instance, in the presence of two crossing fascicles, a single overly wide tensor would be
estimated resulting in a decreased FA (Figure 5). This decreased FA is not related to a
property of the fascicle and if interpreted this way may lead to the wrong assumption that
the myelin integrity is altered for that fascicle.

Partial voluming effects
Voxels that are at the interface between different tissues (gray and white matter), between
adjacent fiber bundles or between a tissue and CSF suffer another problem called partial
voluming. The diffusion signal arising from protons in the different compartments (CSF,
gray or white matter) will be averaged into a single value that is observed in DWI. Because
DTI assumes that a single fascicle is present in the voxel, influences of different
compartments will conflate, resulting in an inflated tensor with a lower FA. As with
heterogeneous fascicle orientations, this decreased FA may be misleadingly interpreted as
altered myelin.

Novel diffusion modeling methods that attempt to address these problems will be discussed
in the future perspective section.
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Structural CNS abnormalities & DTI
Cortical tubers

The first report on DWI and TSC stems from 2001 [64]. Tubers appear as structures with a
decreased FA and increased MD, corresponding to tissue findings of poorly organized
collections of dysplastic and large cells [3]. Although fluid attenuation inversion recovery
imaging provides high-contrast images that allow for delineation of tubers, DTI imaging
often reveals a larger area of perituberal diffusion abnormalities. This increased diffusivity
may better reflect the true extent of tuber pathology, at times demonstrating contiguity of
tissue abnormalities between adjacent tubers, and a more gradual change to NAWM [65–
67]. As tubers are prominent abnormalities, extensive research has been carried out on the
relationship between tuber burden, location and clinical phenotype. Tuber burden has been
quantified through counting numbers [10], calculation of total volume [68] or of relative
volume as compared with white matter or total brain volume [16]. Although a relation has
been established between tuber burden and the extent of white matter DTI abnormalities
[68], the extent of SENs and RMLs also correlate with measures of tuber pathology, which
is not surprising as histopathologically these lesions have common features too [69]. These
relations suggest that widespread migration and differentiation abnormalities are present and
the burden of any of these abnormalities is likely to be reflected in the broad
neurophenotypical outcome.

SENs & SEGAs
There are no studies of the DTI properties of SENs and SEGAs available. Currently, a SEN
that exceeds 1 cm in diameter, enhances with gadolinium contrast enhancement, and is not
calcified is considered at high-risk for developing into a SEGA, although there is both a
pathologic and a radiologic continuum between the two [70]. Early differentiation of SEGAs
from SENs before the foramen of Monro is obstructed may provide opportunity to prevent
hydrocephalus and associated morbidity and mortality [71,72]. SEGAs can grow fast, and
once repeat imaging shows interval growth, resolution or stabilization have not been
reported [73]. With serial DTI, it would be of interest to examine whether any
microstructural differences between SENs and SEGAs could be established, and if such
findings carry prognostic value.

White matter abnormalities & NAWM
A growing body of work, summarized in [23], has used DTI to describe abnormalities in
white matter that appears normal on conventional imaging, referred to as NAWM [23–
25,67,68,74,75]. DTI abnormalities are not limited to perituberal white matter [66,76,77], as
myelination, migration and differentiation abnormalities extend beyond the discrete
boundary of tubers described by conventional T2W (fluid attenuation inversion recovery)
imaging. This has important implications as it is in concordance with findings of a global or
diffuse microstructural white matter pathology found in neuropathological studies of TSC
[78], in addition to multifocal tuber pathology [79]. Many regions have been implicated in
DTI studies of the NAWM, but heterogeneity in the study population, image acquisition and
processing, and statistical approach make synthesis of this work challenging. The presence
of DTI abnormalities may be ubiquitous throughout the white matter [23].

In TSC, animal models provide a potential explanation for the abnormal diffusion
characteristics. The diameter and integrity of the axon can affect axial diffusivity and the
amount of diffusion according to the longitudinal axis. In the authors' laboratory, the Tsc1c/
cSynI-Cre+ mouse model has an increased axonal diameter [Sahin M et al., Unpublished
Data]. Radial diffusivity, the amount of diffusion perpendicular to the longitudinal axis, is
dependent on myelination and the presence of extracellular changes such as glial and giant
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cells. In TSC, increased radial diffusivity may indicate poor myelination (thickness, integrity
or permeability) or increased presence of extracellular material, impairing the biological
barrier to diffusion in the radial direction. Indeed, hypomyelination [21] and aberrant
neuronal organization [22] have been shown in animal models of TSC. A decreased FA may
represent abnormal organization, packing or myelination of axons. In mouse models of TSC,
loss of Tsc1 or Tsc2 is associated with abnormal neuronal connectivity – specifically
neuronal polarity, axon formation and guidance [20–22].

Recently, the view of diffuse microstructural abnormality in the white matter was
challenged. van Eeghen et al. found no differences in the NAWM of TSC patients compared
with controls, once migrational abnormalities visible on conventional imaging were
excluded from the analysis of white matter, and the RMLs accounted for the DTI
abnormalities of the NAWM. This work should be reproduced as it would imply TSC is
characterized by multifocal but not ubiquitous abnormalities in white matter connectivity
[69]. Even with the view of TSC as a multifocal migrational disorder, DTI is supported as a
putative biomarker for neurocognitive morbidity in TSC.

Finally, small animal imaging studies of TSC rodent models or imaging data of human
pathological specimen are much needed to better establish the relation between DTI
abnormalities and TSC pathology.

Epilepsy, epilepsy surgery & DTI
Epilepsy

Epilepsy, in particular, infantile spasms and early-onset refractory seizures have predictive
value for poor cognitive outcome [16,80,81]. Early control may be associated with improved
outcome [82,83]. However, this relation is inconsistent on an individual patient level.
Moreover, heterozygous mouse models of TSC have failed to replicate typical
neuroanatomical findings of human patients with TSC (SEGAs, tubers and SENs), and have
neither neuropathological abnormalities nor seizures, yet demonstrate cognitive and
behavioral abnormalities [34]. In these same animal models the presence of epilepsy is again
detrimental, worsening the neurophenotype. In short, early and complete seizure control is
critical for neurodevelopmental outcome.

Abnormal diffusion can result from recurrent seizures and status epilepticus through various
mechanisms including excitocytotoxic edema and neuronal cell-death, axonal damage and
subsequent wallerian degeneration, systemic effects including vasoconstriction and hypoxia,
antiepileptic drugs, secondary maladaptive developmental changes and plasticity-related
reorganization of local and widespread connections [84]. In TSC, tubers have a relatively
decreased FA and increased MD, and more so in epileptogenic compared with silent tubers
[19,85]. The pathophysiology of these DTI changes is unclear; it could be a poorer
microstructural integrity responsible for more severe epileptic properties, or conversely,
local changes as a result from more epileptic discharges or both.

How varying levels of structural integrity of tubers relates to clinical manifestations of
epilepsy is still subject to ongoing study. In 2010, a relationship was found between
increased epilepsy severity and the predominance of poorly organized tubers on
conventional imaging [33]. Apparent diffusion coefficient measures of the dominant tuber
type confirmed quantitative differences in the subgroups. From the same researchers, again
mainly based on conventional imaging, an association between cyst-like tubers (with by
definition an exceptional low tissue integrity) and an aggressive seizure phenotype of
infantile spasms and medically refractory seizures has been reported [39,41,86]. Thus, the
evolution of DTI characteristics of (peri-)tuberal microstructure over time, and the
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relationship to epileptogenicity and epilepsy severity, are currently being studied in our
laboratory.

Epilepsy surgery
Seizures arise in the vicinity of tubers, yet the specific origin of epileptiform activity is
debated. Two studies have found seizures to originate from the tuber tissue itself [87,88]
while others have indicated the perituberal tissue to be the source of epileptiform activity
[89,90]. By contrast, many tubers are not epileptogenic at all, and anecdotally some patients
have epilepsy in the absence of tubers on structural imaging.

For medically refractory seizures, resective epilepsy surgery typically consists of a
tuberectomy. Clinical examination, seizure semiology, multiple imaging and
neurophysiologic modalities are combined to identify epileptogenic tubers [87,91]. A recent
report also suggests the potential use of magnetic resonance spectroscopy [92], a review of
which is outside the scope of this paper. Using DTI, two studies with a total of 19 patients
have independently reported a lower FA and higher MD in epileptogenic compared with
nonepileptogenic tubers [19,85]. The main focus of epileptic activity remains stable in most
patients [93]. With the routine availability of DTI as opposed to additional patient burden,
high cost and required expertise for other advanced auxiliary studies in the workup for
epilepsy surgery, it is imperative that the predictive value of DTI in epileptogenic tuber
identification in TSC be studied on a larger scale (Figure 6).

Autism, cognition & DTI
Intellectual disability

Three lines of imaging research are explored as potential explanations for neurocognitive
deficits in TSC. First, as outlined in the introduction, the number, location (frontal or
occipital) and total volume of tubers have been associated with intellectual disability
[15,16,94]. However, in clinical practice patients without tubers may have disabling
symptoms while others with large tuber burden can have few neurologic symptoms. In 25
high-functioning adults with TSC and a normal intelligence, tuber burden was not correlated
with cognitive measures [95]. Non tuber pathologies, including the frequency of SENs and
RMLs, also appear to correlate with neurological phenotype [69].

Second, the cerebellum has been implicated, given its smaller size, in a morphometric study
[45], which revealed the presence of lesions in more than a quarter of patients [11]. An
association of ASD with PET abnormalities of the cerebellar white matter and of deep
cerebellar nuclei has been made [96,97]. Recently, our group showed that loss of Tsc1 in
mouse cerebellar Purkinje cells results in autistic-like behaviors [98].

Third, in various studies DTI has revealed widespread abnormalities in the NAWM,
suggesting a role for aberrant microstructural connectivity in the pathophysiological
mechanism of neurocognitive deficits. Typically study populations have not been
sufficiently large to study detailed neuropsychological outcome data, other than presence of
a diagnosis of autism [23,24]. A large, prospective, multicenter trial is underway to study
neurocognitive effects of mTOR inhibitors (mTOR-is) but unfortunately, these subjects will
not undergo imaging as part of this study.

Autism
In humans, TSC and decreased microstructural integrity of the corpus callosum and of the
language pathways have been associated with ASD in two large DTI studies (Figure 7)
[23,24]. While these were the first studies to correlate DTI with outcome, they were limited
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by the retrospective design, the binary nature of the diagnosis of autism and the potential
confounders of intelligence measures and epilepsy severity. A prospective study is important
because while classically ASD can be associated with normal or even superior intelligence,
it appears in TSC that ASD and intellectual disabilities may co-occur [99]. On the other
hand, there is a growing body of literature on idiopathic ASD and DTI abnormalities in the
NAWM, including but not limited to the corpus callosum [100,101] and the arcuate
fasciculus [102], reviewed elsewhere [103]. Aberrant long-range connectivity is central to
the theory of autism as a developmental disconnection disorder, in which there is decreased
integration of cognitive information from functionally separate and distant brain regions into
a coherent, higher order concept [104]. In summary, abnormal microstructural connectivity
is found in DTI studies of ASD, both with and without a concurrent diagnosis of TSC,
which validates TSC as a natural model to study the development of autism. Indeed, in a
recent electroencephalogram-based cross-disorder study of patients with TSC alone, TSC
with ASD, and ASD without TSC, abnormal functional connectivity was associated with
ASD regardless of the etiology [105]. An NIH-funded multicenter Autism Center of
Excellence study has just been launched to prospectively study imaging and EEG predictors
of neurophenotypical outcome, including autism, intellectual deficit and epilepsy.

Conclusion
TSC is a genetic, neurocutaneous, multiorgan disorder with potentially devastating sequelae
including intractable epilepsy, intellectual impairment and ASD. There is a poor genotype–
phenotype correlation and to date no conventional imaging biomarker reliably relates to
neurophenotype. DTI is able to quantify microstructural tissue water diffusion properties,
and reflects underlying pathology in TSC. With significant advances in the understanding of
the molecular biology, the reversal of neurological comorbidity in mouse models, the
clinical trials of mTOR-is for epilepsy and cognition, the potential of DTI as a biologically
meaningful biomarker in TSC becomes even more important.

Future perspective
Novel diffusion models allow for more biologically accurate qualification of microstructural
properties. Over the next few years, these models will yield additional insights in human
TSC in a noninvasive manner. Moreover, with the emergent use of mTOR-is, it will be
important to establish a good biomarker that reliably corresponds to epilepsy and cognitive
and behavioral outcome measures. DTI may prove to meet these requirements, and facilitate
larger interventional trials.

Novel diffusion models
To overcome the aforementioned limitations of DTI, novel diffusion models have been
proposed. One natural generalization of DTI is the development of multitensor models (also
called multi-fiber and -fascicle models) [106]. Instead of assuming that a single fascicle is
present in the voxel, multitensor models represent each fascicle present in the voxel with its
own tensor (Figure 5D). With such a model, DTI-based measures (FA and MD) can be
evaluated for each fascicle independently [107]. This solves the problem of artificially lower
FA in areas with heterogeneous fascicle orientations. Furthermore, tissues with isotropic
diffusion and CSF can be represented by an isotropic tensor (a sphere) and be included as
one of the tensors in the multitensor model, thereby solving the partial voluming problem.

As these models are being defined by more parameters, they also require more DWI.
However, recent developments have shown that we can estimate a multitensor model from
45 DWI [108] or even 30 DWI [109]. Imaging time with those novel techniques does not
exceed 10 min and is therefore achievable in the clinical setting. Multitensor models also
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require novel methods to estimate them. In particular, one challenge is to estimate how
many fascicles are present in the voxel. Recent methods have been developed to solve this
problem in an automatic fashion [110].

Besides overcoming the limitations of DTI, novel diffusion models open new opportunities
to investigate the white matter microstructure. For instance, the amount of isotropic
diffusion in the white matter has been related to the presence of neuroinflammation or
edema [111]. Comprehensive studies of the white matter microstructure allow us to
distinguish between axon and myelin injury, cell infiltration and axonal loss [112].

The mTOR pathway, mTOR-is & DTI as a putative biomarker
TSC1 and TSC2 genes encode for hamartin and tuberin, respectively. These bind to form a
protein complex that modulates the mTOR kinase, which plays a key role in the regulation
of protein synthesis [113]. In the absence of a functional TSC protein complex, mTOR is
overactive with subsequent disinhibited protein synthesis and cell growth [114]. Besides cell
growth, mouse models have shown the TSC proteins play a critical role in axonal, dendritic
and synaptic development and function, briefly reviewed here [115]. Loss of Tsc1 or Tsc2
function results in aberrant connectivity on a cellular level, and in mouse models is
associated with seizures and neurobehavioral abnormalities. mTOR-i have a mechanism of
action that virtually directly addresses the molecular defect in TSC, are safe and effective for
treatment of SEGAs [73,116], and may also be safe in children under 3 years of age [117].
With DTI, microstructural changes of the white matter have been reported with the use of
mTOR-i in patients with SEGA [79].

Epilepsy
In TSC mouse models, mTOR-i can prevent, improve and even stop seizures [118–120].
Accumulating evidence from small case-series and from larger SEGA treatment trials show
that mTOR-is have anti-epileptic and potentially even anti-epileptogenic properties [120].
However, the neuroanatomic phenotype responds only partly, or not at all, to such
intervention. A large multicenter trial is currently underway for everolimus (Afinitor®,
Novartis, Inc., NJ, USA) as adjunct therapy for refractory partial complex seizures in TSC.
DTI changes related to altered seizure control will be examined in a subset of the study
population.

Cognition & autism
The defects in axonal, dendritic and synaptic development in TSC may well be related to
neurobehavioral, cognitive and autistic symptoms in these patients. In mouse models,
mTOR-i improve learning and prevent autistic features [98,121]. Given the first report of
improvement of white matter microstructure with mTOR-is in humans [79], and the relation
between autism and white matter microstructure [23], it will be exciting to investigate
whether changes in DTI properties parallel the cognitive and neurobehavioral changes in
patients currently studied in the Autism Centers of Excellence network, and in subgroup
analysis of the SEGA Phase III treatment trial. If so, DTI will become a biomarker for
cognition in TSC, facilitating future therapeutic developments over the next few years, and
allowing for exploration of mTOR-is in several genetic causes of autism.
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Executive summary

Tuberous sclerosis complex is a multiorgan disorder with an unpredictable
phenotype

• Neurologically, tuberous sclerosis complex (TSC) is associated with epilepsy,
intellectual disability and autism spectrum disorder.

• Neither genotype nor any conventional imaging biomarker is a reliable and
sufficient predictor for neurological outcome.

Diffusion tensor imaging is a modeling method of tissue water diffusion

• Water diffusion can be quantified by two main diffusion tensor imaging (DTI)
measures: fractional anisotropy, which reflects degree of preferential
directionality of diffusion, and mean diffusivity, which is an average of
diffusion in all directions.

• Tractography is based on lining up diffusion tensors, prolate (cucumber) shapes,
with the longest axis reflecting preferential diffusion. These tracts accurately
reflect the anatomy of major white matter pathways in humans.

In TSC, DTI measures correlate with pathology & clinical phenotype

• Microstructural tissue properties, as measured by DTI, correspond to
abnormalities in myelination, axonal organization, altered extracellular milieu
and possibly to aberrations in axonal, dendritic and synaptic development and
function. However, small-animal MRI with DTI of TSC mouse models is
required to confirm these relationships.

• DTI can assist with localization of epileptogenic tubers, confirmed by
neurophysiological and other imaging modalities, potentially affecting
neurosurgical outcome of epilepsy surgery in TSC.

• DTI abnormalities of the normal-appearing white matter are associated with the
presence of autism spectrum disorder in TSC.

mTOR inhibitors that target the molecular deficit in TSC are showing promise with
regard to multiple neurological symptoms

• mTOR inhibitors (mTOR-is) reduce subependymal giant-cell astrocytoma in
both adults and children with TSC.

• mTOR-is have shown anti-epileptic and, potentially, anti-epileptogenic effects
in mouse models.

• mTOR-is may improve cognition and behavior, potentially opening avenues for
early pharmacological treatment of autism in TSC.

• Whether DTI can become an industry-standard biomarker for mTOR-related
treatment changes in TSC remains to be investigated.

Conclusion

• There is unprecedented and dramatic progress in the field of TSC, first with the
emergent use of mTOR-is for seizures, cognition and potentially autism, and
second with DTI as a candidate biomarker for cognitive and behavioral
outcome.

• If DTI proves to be a reliable and biologically meaningful biomarker for patient
stratification and treatment response, clinical trials will be much facilitated.
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Figure 1. Conventional MRI findings in tuberous sclerosis complex
(A & B) Axial fluid attenuation inversion recovery images. Both patients have subcortical
tubers (arrows) of comparable size and distribution (not all tubers shown in current plane),
but patient (A) has severe autism, no active seizure disorder and is nonverbal, while patient
(B) has mild motor and language delays, no autism and refractory seizures despite multiple
antiepileptic drugs. (C & D) Axial fluid attenuation inversion recovery images. Hypointense
partially calcified subependymal nodules are seen lining the ependyma (arrowheads) and a
subependymal giant cell astrocytoma is seen in (D), at the level of the foramen of Monro
(arrow). (E) Axial T2-weighted image shows a radial migration line tracking from the tuber
into the deep white matter (arrow, and zoom frame). (F) Axial fluid attenuation inversion
recovery image. Cyst-like appearance of a tuber (arrows).
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Figure 2. Diffusion tensor imaging is the most common model of the diffusion
(A) Diffusion tensor imaging can be represented as an ellipsoid that consists of three axes of
diffusion and the corresponding diffusivities (here λ1, λ2 and λ3). The shape of the ellipsoids
provides information about the type of diffusion present in the voxel. (B) An isotropic
diffusion leads to a spherical tensor. (C) Diffusion that is highly restricted in two directions
and favored in one direction will present as an elongated tensor with very small second and
third diffusivities.
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Figure 3. Diffusion tensor imaging and diffusion tensor imaging-based measures
(A) Fluid attenuation inversion recovery MRI structural image, axial plane. (B) Mean
diffusivity image. Mean diffusivity is especially large in the corpus callosum and in
corticospinal tracts. (C) Fractional anisotropy (FA) image shows where in the brain
diffusion is more (white) or less (black) anisotropic. Owing to the presence of highly
structured white matter fascicles with aligned axons and myelin sheath, FA in the white
matter is high. By contrast, gray matter present in axons with various directions, results in a
lower FA. (D) FA can be colored based on the directions of the fascicle in each voxel: red
means the fascicle is oriented left to right, green represents fascicles that are oriented along
the anterior–posterior axis and blue represents the superior–inferior axis. For color images
please see www.futuremedicine.com/doi/pdf/10.2217/fnl.13.37.
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Figure 4. Tractography allows detection of white matter pathways in the brain
(A) A seeding region is first defined (here the corpus callosum) from where tracts will start
growing. (B) From each voxel of the seeding region, tracts grow in the direction of the
tensor. (C) Step by step, from voxel to voxel, tracts keep growing until they reach the gray
matter where they stop. This yields 3D maps of the fascicles in the brain, all connected to
the seeding region. In order to avoid spurious fibers when performing tractography, using
two seed points instead of one can be more accurate [122]. A correction for the density of
tracts can also be applied, in which spurious tracts get largely ignored in calculating an
average of a diffusion metric [23].
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Figure 5. Single tensor and multifascicle models
(A–C) Unlike assumptions of the diffusion tensor models, fascicles in the voxels may have
more than one preferential direction. Diffusion tensor imaging model assumes that a single
fascicle is present at each voxel. This assumption is violated in regions where fascicles
cross, such as (B) the corona radiata. In those regions, tensors are abnormally inflated to
capture the signal arising from (C) each fascicle, resulting in a lower fractional anisotropy
that may be misleadingly interpreted. (D–F) By contrast, multifascicle models represent
each fascicle independently and are, therefore, able to characterize regions with crossing
fascicles.
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Figure 6. A 2-year-old patient with tuberous sclerosis complex with an epileptogenic right
parietal tuber
Visible on (A) axial fluid attenuation inversion recovery image, arrow indicates large right
parietal tuber. (B) Single-photon emission CT scan with an injection shortly after onset of a
seizure, demonstrating focal increased tracer uptake in the epileptogenic tuber (note the
difference in angulation of the image). (C) Mean diffusivity image, revealing elevated mean
diffusivity (0.0015 mm2/s) at the tuber compared with elsewhere in white matter (0.0008
mm2/s). The tuber was resected and the patient has been seizure-free for over 6 months.

Peters et al. Page 26

Future Neurol. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7. Diffusion tensor imaging of the corpus callosum in tuberous sclerosis complex
(A–C) Tractography renderings of the corpus callosum of three subjects: (A) healthy
control, mean fractional anisotropy (FA) is 0.46; (B) patient with tuberous sclerosis
complex, no autism spectrum disorder, mean FA is 0.50; and (C) patient with tuberous
sclerosis complex and autism spectrum disorder, mean FA is 0.34. The corpus callosum of
(B) and (C) are more ragged owing to tubers interfering with streamlines, but only in the
patient with autism spectrum disorder is the mean FA is lower.
(C) Reproduced with permission from [23].
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