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ABSTRACT

Motivation: Identification of expression Quantitative Trait Loci (eQTL),

the genetic loci that contribute to heritable variation in gene expres-

sion, can be obstructed by factors that produce variation in expression

profiles if these factors are unmeasured or hidden from direct analysis.

Methods: We have developed a method for Hidden Expression Factor

analysis (HEFT) that identifies individual and pleiotropic effects of

eQTL in the presence of hidden factors. The HEFT model is a com-

bined multivariate regression and factor analysis, where the complete

likelihood of the model is used to derive a ridge estimator for simul-

taneous factor learning and detection of eQTL. HEFT requires no pre-

estimation of hidden factor effects; it provides P-values and is

extremely fast, requiring just a few hours to complete an eQTL analysis

of thousands of expression variables when analyzing hundreds of

thousands of single nucleotide polymorphisms on a standard 8 core

2.6 G desktop.

Results: By analyzing simulated data, we demonstrate that HEFT can

correct for an unknown number of hidden factors and significantly

outperforms all related hidden factor methods for eQTL analysis

when there are eQTL with univariate and multivariate (pleiotropic)

effects. To demonstrate a real-world application, we applied HEFT

to identify eQTL affecting gene expression in the human lung for a

study that included presumptive hidden factors. HEFT identified all

of the cis-eQTL found by other hidden factor methods and 91 add-

itional cis-eQTL. HEFT also identified a number of eQTLs with direct

relevance to lung disease that could not be found without a hidden

factor analysis, including cis-eQTL for GTF2H1 and MTRR, genes that

have been independently associated with lung cancer.
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1 INTRODUCTION

Studies that have identified expression Quantitative Trait Loci

(eQTL), the genetic loci that produce variation in cellular or tis-

sue gene expression levels, have demonstrated that a considerable

fraction of gene expression variation has a genetic basis (Cheung

and Spielman, 2009; Cookson et al., 2009). Recently, more pre-

cise measurement of genome-wide gene expression levels using

RNA-Seq technology (Wang et al., 2009), combined with greater

marker coverage of genomes, has increased the resolution of

eQTL analyses and has allowed more precise dissection of

eQTL effects (Montgomery and Dermitzakis, 2009). A spectrum

of new genome-wide assays making use of next-generation

sequencing, such as Methly-Seq (Brunner et al., 2009) and

DNase-Seq (Denger et al., 2012), are providing quantitative

data on other cellular profile variables that can be analyzed

using an eQTL approach, opening the door for a broader ‘‘x’’

Quantitative Trait Loci (xQTL) framework (Arends et al., 2012).

This expanded capability and diversity of eQTL detection has

also been accompanied by an appreciation that eQTL can pro-

vide useful insights into the genetic basis of disease (Nica and

Dermitzakis, 2008). For example, eQTL identification is now

routinely incorporated into the analysis of disease risk and

other complex aspects of physiology (Cookson et al., 2009). A

consequence of these trends is a renewed interest in analysis

methodologies used to identify eQTL from genome-wide data

(Fusi et al., 2012; Yang et al., 2013). For these new methods,

there is a premium on the ability to identify as many eQTL as

possible while simultaneously providing strict false-positive con-

trol. High performing, fast and reliable methods will also be

particularly valuable for analyzing the highly multivariate

mixed data-type xQTL studies that are on the near horizon.
For a typical eQTL study that includes genome-wide data

on both gene expression and genetic markers, identification of

eQTL is generally accomplished using standard linear modeling

approaches, where marker genotypes with a significant associ-

ation with one or more expression variables are assumed to

either indicate an eQTL or a marker that is in linkage disequi-

librium (LD) with the eQTL polymorphism, i.e. the marker in-

dicates the local genomic position of an eQTL (Michaelson et al.,

2009). Although such approaches are straightforward and suc-

cessful, it is well appreciated that factors responsible for variation

in gene expression, if unaccounted for in the statistical model,

can dramatically affect both power and precision of genome-

wide eQTL detection (Michaelson et al., 2009). This is particu-

larly true in uncontrolled study designs, as is often the case with

human eQTL studies, where unmeasured environmental and

other factors can influence gene expression profiles and con-

found eQTL analysis (Harvey et al., 2007). More precisely, if*To whom correspondence should be addressed

� The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 369

http://mezeylab.cb.bscb.cornell.edu/Software.aspx
http://mezeylab.cb.bscb.cornell.edu/Software.aspx
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt690/-/DC1
mailto:jgm45@cornell.edu
; 
Cheung and Spielman, 2009
What
's
 more, a
,
,
While


the effects of unaccounted for factors on gene expression are
orthogonal to effects of eQTL, the factors contribute to the
error term and this reduces the power to detect eQTL. If

the effects of unaccounted for factors are non-orthogonal to
the effects of eQTL, the result can be a false positive (Price
et al., 2006).

That unaccounted for factors can be a problem for eQTL
identification is not surprising given the many studies demon-
strating that gene expression levels are highly variable and
depend on a host of genetic (Cheung and Spielman, 2009) and

non-genetic factors (Harvey et al., 2007). For statistical modeling
purposes, we can categorize expression factors into three cases
that require different analysis approaches: (i) a factor that is well

represented by a variable that is directly measured in the study,
(ii) a factor that can be inferred from the genotype data and (iii) a
factor with effects that can be learned from gene expression data.

The first includes cases where measured variables such as experi-
mental batch, a disease state of an individual and so forth can be
directly incorporated into the statistical model as a covariate.

The second includes factors such as cryptic population structure
(Price et al., 2006) or relatedness among individuals that can
produce variation in measured gene expression levels. For

many of these cases, appropriate variables can be inferred dir-
ectly from the genome-wide genotype data, which can then be
secondarily incorporated as fixed or random covariates to cor-

rect for factor effects (Kang et al., 2010; Price et al., 2006). The
third case includes expression factors that cannot be well mod-
eled with covariates inferred from genotype data but have effects

that can be learned from the covariance among expressed
genes (Listgarten et al., 2010; Stegle et al., 2010). For this case,
the assumption is that the expression factor effects are large

enough that the effects of the factors, although not the factors
themselves, can be learned using a factor analysis or related ap-
proach (Friguet et al., 2009; Stegle et al., 2010). These learned

factor effects can then be incorporated into the eQTL analysis as
covariates (Friguet et al., 2009) and the eQTL analysis can be
conducted on the residuals of the expression variables after sub-

tracting the learned factors (Stegle et al., 2010). The value of
accounting for factors in an eQTL analysis that can be learned
from expression covariance is just beginning to be appreciated

and several recent methods have been proposed for this purpose
(Friguet et al., 2009; Fusi et al., 2012; Kang et al., 2008; Leek
et al., 2012; Leek and Storey, 2007; Listgarten et al., 2010; Parts

et al., 2011; Stegle et al., 2010, 2012; Yang et al., 2013). We note
that these publications variously refer to these expression factors
as hidden confounders (Listgarten et al., 2010), non-genetic fac-

tors (Stegle et al., 2010), surrogate variables (Leek and Storey,
2007) and so forth, but here we refer to them as hidden factors.
In this article, we introduce a new method for eQTL analysis

that accounts for the effects of hidden factors: Hidden
Expression Factor analysis (HEFT). The HEFT framework uni-
fies a number of desirable goals when performing an eQTL ana-

lysis in the presence of hidden factors: P-value identification of
eQTL with individual or multivariate (pleiotropic) effects on
expressed genes, the ability to learn both orthogonal and non-

orthogonal hidden factors that can inflate or deflate P-values
without pre-learning these factors, and efficient scaling, such
that an eQTL analysis of thousands of gene expression variables

and hundreds of thousands of marker genotypes can be

completed in a few hours on a standard desktop. Critically, in-
ference in HEFT is accomplished using the complete likelihood

to derive a ridge estimator for combined factor learning and
detection of eQTL, the value of which we illustrate by comparing

the performance of HEFT with related hidden factor methods

when analyzing simulated data (Fusi et al., 2012; Listgarten
et al., 2010; Stegle et al., 2010; Yang et al., 2013). For a combin-

ation of null and hidden factor eQTL scenarios, we show that at

worst HEFT has equal performance to these other methods and
for the most realistic scenarios, where there are hidden factors

and a combination of univariate and multivariate (pleiotropic)

eQTL effects, HEFT correctly identifies more eQTL than these
other methods without an increase in false positives. We also

demonstrate the real-world discovery value of a hidden factor

analysis by using HEFT to identify eQTL that affect gene
expression in the human lung from a sample of smokers and

non-smokers by assessing possible associations of 7575 expres-

sion variables with 191 959 genotypes. In this analysis, HEFT
identified all of the cis-eQTL found by other hidden factor meth-

ods and 91 additional cis-eQTL. HEFT also identified a number
of eQTLs with direct relevance to lung disease that could not be

found without a hidden factor analysis. Many of these newly

discovered eQTL have clear connections to lung physiology
and disease, including cis-eQTL for General Transcription

Factor IIH, Polypeptide 1 (GTF2H1) and 5-Methyltetrahydro-

folate-Homocysteine Methyltransferase Reductase (MTRR),
two genes that have been independently associated with lung

cancer (Shi et al., 2005; Wu et al., 2009).

2 METHODS

2.1 The HEFT model

The HEFT framework assesses associations between genotypes and ex-

pression variables by combining a multivariate regression and factor ana-

lysis. The following model is used to assess the association of a single

genotype with m expression variables for a sample of size n:

Y ¼ �10m þ X�þ ,FþW ð1Þ

where Y is an n�mmatrix of measured expression variables, 1m is vector

of 1 s of length m, � is an n� 1 vector of row means, X is a n� 2 matrix

with the first column set to 1 and second column set to the genotype, � is

the 2�m matrix of column means and genotypic effects, , and F are the

n� p loading matrix and p�m matrix of values for p factors and W is

the n�m error matrix, where we make the standard assumption that

covariance among samples can be well modeled by non-error terms such

that each column of matrix W has a normal distribution Wj � Nð0,�jÞ

with diagonal n� nmatrix �j. To avoid the potential problems caused by

biased estimates of unconstrained error variances (Carroll and Ruppert,

1988), we assume that expression variables have been scaled to a common

variance and we constrain each of the � to be I�2. In this framework, we

assume complete expression and genotype data or that missing values

have been imputed before analysis. When considering additional fixed

covariates, whether directly measured or independently inferred from

genotypes (e.g. population structure), these are incorporated into (1) as

additional fixed effects. In addition, additive, dominance and the simul-

taneous effects of multiple genotypes (including epistasis) can be handled

in this framework, although we restrict the current treatment to assessing

a single genotype at a time using an additive coding.

A number of proposed methods make use of the modeling strategy of

Equation (1) by applying a two-step approach, where hidden factors are

learned from a separate factor analysis and the inferred loadings are then
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incorporated into a fixed , (Friguet et al., 2009) to adjust the P-values. In

our treatment here, we simultaneously infer genotype associations and

learn factors (i.e. we use an unrestricted ,) by imposing constraints on F

and � to account for the lack of identifiability of the combined genotype

and hidden factor effects. We do this by introducing a hierarchical con-

trol by assuming � � Nð0,?Þ and F � Nð0,DÞ. With this approach, and

by considering the complete likelihood for this model, the maximum

likelihood estimate of � and the expected value of F given Y have the

same form as regression coefficients obtained for a ridge regression (see

Supplementary Sections S.1.1–S.1.2). Therefore, this hierarchical ap-

proach places a ridge penalty on both the genotype and factor when

performing inference with the complete likelihood. Such a modeling strat-

egy is appropriate when we expect the genotype and factor effects to

follow a relatively sparse model when considering the entire variable

set, a reasonable assumption in many cases when the expression variable

set m is large. This approach also has the additional benefits of a ridge

regression, e.g. a stable solution on the non-orthogonal linear equations,

smaller variance of the estimator of �’s and so forth.

We note that because , is unrestricted, setting the value of D ¼ I has

no effect on the results. We also find that when setting D to be the same

or larger than the scaled variance of the expression variables (i.e. such

that the hierarchical control is diffuse), there is no qualitative effect on

results. However, under the set up of our model, we do need to shrink �

and F by the same amount to address the identifiability issue caused by

the non-orthogonal factors. Therefore, we adopt this approach in our

analyses by setting D ¼ ? ¼ I, an approach that prevents biasing esti-

mates toward genotype or factor effects when these are non-orthogonal

and also has convenient properties for implementing the expectation

maximization (EM) algorithm (see Supplementary Section S.1.2). We

also note that the lack of a unique solution for ,F is not an issue for

our treatment, as we are only interested in accounting for the overall

effects of hidden factors and not in learning either factor loadings or

the factor scores.

2.2 Likelihood and EM algorithm

As the full HEFT model has the form of Equation (1) and also includes

ridge penalties on the genotype and factor effects, the complete likelihood

has the form:

lc ¼�
1

2
trðFFTÞ �

m

2
logj�j � jj�jj2

�
1

2
trððH� X���FÞðH� X���FÞT��1Þ

ð2Þ

where H ¼ Y� �1m0 and the variables are the same as described in (1).

For the purposes of eQTL analysis, we are only interested in the estimates

of the � for a given marker, which takes the following form:

�̂¼ðIþXT��1XÞ�1XT��1ðY� �10m � ,FÞ ð3Þ

such that this is a ridge estimator of eQTL effects.

Obtaining these estimates is accomplished using an expectation–

maximization algorithm, which has time complexity scaling

maxðOðp3Þ,OðnmpÞÞ for each iteration over one single nucleotide poly-

morphism (SNP), where n is the sample size,m is the number of genes and

p is the number of the factors (see Supplementary Section S.1.2.3). As p is

small, the algorithm is extremely efficient. The likelihood function of the

full model is convex (see Supplementary Section S.1.3), and because all

expression variables are analyzed simultaneously, analysis of an individ-

ual genotype and all expressed genes can be done in a single step with a

single run of the algorithm.

2.3 Selection of factor number

We note that the true number of hidden factors p in the model can never

be known with certainty. Although for simulated data, standard model

selection approaches such as Akaike information criteria or Bayesian

information criterion can be used to correctly infer the number of factors

(see Supplementary Section S.1.4), we have found that for real data, these

can select too many factors, resulting in clear hallmarks of data overfit-

ting. In practice, we therefore select the number of factors by assessing the

eigen spectrum of the overall gene expression covariance and selecting

p factors corresponding to the number of eigenvalues that explain a cer-

tain amount of variance (e.g. 5% of the total variance) or that are visually

distinguishable from the rest of the eigen spectrum. This approach per-

forms well for simulated data and for real data, producing a reasonable

enrichment of significant eQTL without over-inflating the genome-wide

distributions of P-values as measured by the genome-wide inflation factor

� (Devlin and Roeder, 1999) (see later in the text).

2.4 P-values and identification of eQTL

As with a standard eQTL analysis, identification of eQTL using HEFT

is accomplished using P-values. We favor a simple t-type test statistic,

which requires one run of the algorithm per marker (see Supplementary

Section S.1.5). Although this test is not asymptotically exact, we find this to

perform well in practice, where resulting P-values are uniform under the

null and the statistic has comparatively good power (see later in the text).

Because a single significant genotype-gene association indicates an eQTL,

in this treatment, we follow the standard practice of eQTL analysis and

assess each pair of relationships one at a time and interpret rejection of the

null for at least one pair as evidence of an eQTL. The multivariate or

pleiotropic effects of an eQTL (i.e. the effects on multiple genes) are deter-

mined by the set of genotype-gene pairs for which the null is rejected for a

genome-wide multiple test corrected significance threshold.

2.5 Connections between HEFT and other eQTL hidden

factor methods

A number of proposed methods use a two-step approach for hidden

factor eQTL analysis, where hidden factors are learned from a separate

factor analysis and either the inferred loadings , are incorporated as

covariates (Friguet et al., 2009) or the residuals Y� ,F, which are

assumed to be free of the hidden factor structure, are used to perform

secondary eQTL analysis (Stegle et al., 2010). A number of methods for

simultaneous modeling of eQTL and hidden factors have been proposed.

Surrogate variable analysis (SVA) can perform simultaneous modeling

using a heuristic approach for finding factor effects from residual vari-

ation resulting from iterative fitting of genotype and other fixed effects

(Leek and Storey, 2007). The approach of Listgarten et al. (Listgarten

et al., 2010; Zhang et al., 2012) makes use of a linear mixed model

(LMM) where a full rank kernel matrix for the random effects is

seeded from an initial estimate and then allowed to update within the

algorithm, where the random effect is integrated out. Fusi et al. (2012)

proposed another LMM approach with a reduced rank kernel matrix.

Unlike the LMM with random effects integrated out, probabilistic esti-

mation of expression residuals (PEER) (Stegle et al., 2010) used a vari-

ational Bayes factor analysis approach that explicitly modeled the hidden

confounding, with the potential for incorporating a simultaneous infer-

ence procedure. The recently proposed method low-rank representation

and sparse regression (LORS) (Yang et al., 2013) makes use of a complete

likelihood by applying a Lasso penalty to impose sparsity on the nuclear

norm of the matrix of factor effects (i.e. the entire ,F of the HEFT

model, thus the effects of individual factors are not individually modeled)

and a Lasso penalty to perform feature selection when considering mul-

tiple markers (or no penalty when considering one marker at a time),

where a framework for calculating P-values is not provided.

In contrast to these methods, HEFT makes use of the complete like-

lihood of a combined multivariate regression and factor analysis model,

allowing for the individual modeling of multiple factors by applying a

ridge penalty to factor effects (i.e. the matrix F while , is left
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unconstrained) and similarly a ridge penalty on genotypes, where P-

values for assessing individual marker-expression association are calcu-

lated. We show using simulations that individual modeling of factor ef-

fects and the ridge imposed sparsity of HEFT is an effective strategy for

dealing with pleiotropic effects of eQTL in the presence of both orthog-

onal and non-orthogonal hidden factors.

3 SIMULATIONS AND DATA

3.1 Simulated data and analyses

We simulated data for each of the following scenarios: (i) no

eQTL and no hidden factors (null scenario 1), (ii) no eQTL
with hidden factors (null scenario 2), (iii) eQTL where each af-

fects one expressed gene (no pleiotropy) and no hidden factors,
(iv) a combination of pleiotropic (multivariate) and non-
pleiotropic eQTL and no hidden factors, (v) non-pleiotropic

eQTL with hidden factors and (vi) a combination of pleio-
tropic and non-pleiotropic eQTL with hidden factors (see

Supplementary Section S.2.1 and Supplementary Table S1).
Therefore, scenarios i–iv lack expected aspects of real eQTL
datasets and are ‘null’ scenarios from the perspective of hidden

factors, where the purpose of these scenarios was to dissect the
reasons for different performance among hidden factor methods.

In scenarios v and vi, there are both hidden factors and eQTL,
although the combination of univariate and multivariate (pleio-
tropic) eQTL effects of scenario vi seems likely to be the most

realistic. For each of the scenarios with hidden factors (ii, v, vi),
we simulated 10 datasets where the hidden factor effects were

orthogonal to the entire set of markers and 10 datasets with
hidden factors that were non-orthogonal to a non-trivial subset
of the markers. For the scenarios with no hidden factors (i, iii,

iv), we also simulated 10 datasets each. The sample size for each
dataset was fixed at n¼ 200.

To generate the genetic markers of each dataset, 5Mb of
marker data (SNPs) for a single diploid populations of size
Ne ¼ 10, 000 were generated using the coalescent simulator

MaCS (Chen et al., 2009). For each dataset, we randomly se-
lected 1000 SNPs from those with a derived minor allele

frequency40.1, producing an average LD of 0.45� 0.01 for all
10 datasets of pairwise markers as measured by r2. We note that
we did not include population structure in our simulation ana-

lyses, as we were interested in assessing the ability of hidden
factor methods to detect eQTL without this additional layer of

complexity. Again, we note that HEFT can include a fixed effect
correction for population structure, and we use this approach for
the analysis of real data (see later in the text). To generate the

gene expression values of each dataset, we simulated 500 gene
expression variables with standard normal error. For the eQTL

scenarios with no pleiotropy (iii and v), we randomly selected 50
uncorrelated markers to be eQTL, where the additive effect of
each on a randomly selected gene was drawn from a standard

normal. For the cases with pleiotropy (iv and vi), we included 50
eQTL with individual gene effects and selected an additional 20

uncorrelated SNPs each influencing 20 expression variables,
where again, the effect on each gene was selected from a standard
normal. Overall, the total variation explained by the eQTL for a

given gene ranged from 5.0e-07 to 0.92, with the vast majority in
the range of 0–0.025, such that we expect these simulations to

reflect a conservative estimate of the gains that could be realized

when applying HEFT to real data. For each dataset with hidden

factors (ii, v, vi), we additionally incorporated the effects of four

orthogonal or non-orthogonal factors (see Supplementary

section S.1.2).
As well as applying HEFT, we analyzed each simulated data-

set with the following eQTL methods: a linear regression meth-

od, PEER (Stegle et al., 2010), LMM (LMM-EH) (Listgarten

et al., 2010), Probabilistic ANAlysis of genoMic dAta

(PANAMA) (Fusi et al., 2012), SVA (Leek and Storey, 2007),

and LORS (Yang et al., 2013). For comparison, we also applied

a two-step version of our method (HEFT-TS) where this method

first estimates the factor model [the ,F of Equation (1)] from the

multivariate gene expression data without any consideration of

genetic effects, and in the second step, fixes the factor model to

these estimated values and applies the HEFT model [Equation

(1)]. We note that although the PEER framework can in theory

apply a simultaneous eQTL/hidden factor analysis, the released

R package does not support simultaneous analysis. For analysis

methods where the factor number could be controlled (HEFT-

TS, PEER and HEFT), for scenarios where there were no hidden

factors (i, iii, iv), we analyzed each dataset with factor number

P¼ 1, 2, and for scenarios where there were four hidden factors

(ii, v, vi), we analyzed each dataset with factor numbers 3, 4, 5

and 7.

For assessing performance, a P-value below a selected thresh-

old for a SNP-gene pair representing a true eQTL was counted as

a true positive and similarly, P-values below the selected thresh-

old for a SNP-gene pair that was not an eQTL was counted as a

false positive. We note that while LD was not overly strong in

our simulated marker datasets, with this approach, non-eQTL

SNPs that were in strong LD with eQTL SNPs could contribute

multiple false-positive signals. Thus, although we potentially

counted a few cases as false positives that would be merged

into a single ‘true’ positive in a real eQTL analysis (where the

true eQTL are not known), by applying the same conservative

criteria for all analysis methods, this provided a common and fair

comparison of performance. To provide a summary of the true-

positive and false-positive rates (FPRs), we compared the areas

under the curve (AUC) of the Receiver Operating Characteristic

(ROC) curves generated by applying each method to the datasets

simulated under a given scenario. We compared the (AUC) of

HEFT versus each of the other methods for a FPR in the range

0–0.05 using a two-sided t-test, where we note that we obtained

qualitatively equivalent results for FPR ranges of 0–0.01 and

0–0.001 (results not shown).

3.2 Lung airway dataset

We used HEFT, PEER, PANAMA and linear regression to

identify eQTL affecting gene expression in the lung small airway

epithelium (SAE) using a dataset that included 79 smokers

and 37 non-smokers (see Supplementary section S.2.2 and

Supplementary Table S2). Details concerning data collection

for these samples have been provided elsewhere (Harvey et al.,

2007). Briefly, SAE cell populations were collected by bronchial

brushing of the small airway (Raman et al., 2009) and RNA was

hybridized to the HG-U133 Plus 2.0 microarray (Affymetrix,

Santa Clara, CA) using standard protocols. We used the

custom mapping provided by Dai et al. (2005) and removed
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probes that appeared to have outliers, providing data on �7575
protein-coding genes. Blood was also collected from each indi-

vidual, and Affymetrix 5.0 microarrays were used to provide

SNP genotypes. After filtering SNPs with a minor allele fre-

quency below 0.1, significant deviations from Hardy–Weinberg

equilibrium as assessed by a P50.05, and those genotypes with

any missing observations, this left 191 959 genotypes for analysis.

The complete expression and genotype dataset analyzed in this
study have been deposited in NCBI’s Gene Expression Omnibus

(Edgar et al., 2002) and are accessible through GEO Series ac-

cession number GSE40364.
In our HEFT analysis of these data, we selected the hidden

factor number by visual examination of the eigen spectrum of the

gene expression correlation matrix, where five factors were found

to be clearly separable from the rest (see Supplementary Fig. S1).

We note that we also tried other factor numbers in our analysis

(3, 7, 12), although the results were not qualitatively different

(not shown). We used the same factor number for PEER and
used PANAMA’s default setting to select factor number. To

account for the obvious population structure in these data, we

applied a factor analysis to the genotype matrix (Engelhardt and

Stephens, 2010) and incorporated the loading of the first factor

as a fixed covariate. We additionally included fixed covariates

for gender, disease status and smoking status. Two strategies

for assessing significance of each SNP-expression pair were
applied: a conservative Bonferroni-corrected threshold of 0.05/

(7575� 191959)¼ 3.438578e-11 and a more liberal Benjamini–

Hochberg control of the false discovery rate at q ¼ 0:05. For the
eQTL discovered by each method, we considered both the total

number of associations identified at a given significance cutoff

and those that were cis- (i.e. the eQTL genotype is within 1Mb

upstream of the start and 1Mb of the end position of the coding
region of the expressed gene with which it is associated).

4 RESULTS

4.1 Comparison of HEFT to hidden factor methods

4.1.1 Performance for null and standard eQTL scenarios All
eQTL analysis methods performed appropriately, under scenario

i, where there are no eQTL and no hidden factors (null scenario

1), returning a uniform distribution of P-values (or adjusted

P-values in PANAMA) with genomic inflation factors in the

range of 1.00–1.04 (Aulchenko et al., 2007) for the set of all

SNP-gene tests (see Supplementary section S.3.1.1,

Supplementary Table S4 and Fig. S2). This outcome was
observed regardless of the number of factors that were provided

to HEFT-TS, PEER and HEFT, indicating that these methods

are also robust to incorporating the wrong number of factors

(40) for this null scenario. A similar result was observed under

scenario ii, where there are no eQTL and hidden factors (null

scenario 2), when we considered performance for cases where the

effects of the four hidden factors were (approximately) orthog-
onal to all SNPs (see Supplementary Fig. S3). For the case of

non-orthogonal hidden factors under this same null scenario, the

performance for linear regression diverged far from the null ex-

pectation where far too many small P-values were returned, a

result that in practice would result in a large number of false

positives (see Supplementary Fig. S4). This result is expected

given that the linear regression is unable to distinguish an

eQTL signal from the effects of hidden factors. All other meth-

ods returned P-values conforming to the null expectation for the

non-orthogonal case when provided the correct or greater than

the true number of factors (p � 4), again indicating that all the

hidden factor methods perform appropriately in this null

scenario.
For the standard eQTL scenarios where there are eQTL but

no hidden factors, performance of the analysis methods de-

pended on whether the eQTL had pleiotropic effects. In scen-

ario iii where there was no pleiotropy (each SNP with an eQTL

effect was associated with a single gene expression level), the

performance of HEFT, HEFT-TS, PEER, PANAMA and

LORS were equivalent (see Supplementary Table S4 and Fig.

S5). In contrast, in scenario iv, where there were eQTL with

pleiotropic effects, HEFT, linear regression and the two-step

hidden factor methods HEFT-TS and PEER had comparable

performance but these methods had better performance than

PANAMA and LORS (see Supplementary Table S4 and Fig.

S6), likely a result of these latter methods fitting many of the

pleiotropic effects of eQTL as hidden factors (see

Supplementary Section S.3.1.1 for further discussion). For

both scenarios iii and iv, SVA and LMM had significantly

worse performance than other methods, which may be a

result of overfitting (again, see Supplementary Section S.3.1.

1). Overall, HEFT had at least equal or better performance

when compared with all other hidden factor methods for

these ‘null’ hidden factor scenarios.

4.1.2 Performance for eQTL and hidden factors For the scen-
arios where there are both eQTL and hidden factors, perform-

ance depended heavily on whether there was no pleiotropy

(scenario v) or pleiotropy (scenario vi). In the scenario where

none of the eQTL had pleiotropic effects, all hidden factor meth-

ods performed better than linear regression when provided � the

true number of factors. This was the case regardless of whether

the hidden factor effects were orthogonal or non-orthogonal (see

Supplementary Section S.3.1.2, Supplementary Table S4 and

Figs S7–S8).
For the scenarios where there were eQTL with pleiotropic

effects, HEFT significantly outperformed other methods when

comparing the AUC of the ROCs (FPR: 0–0.05) using a two-

sided t-test (see Supplementary Table S4). We also summarize

these results in terms of the additional number of eQTL associ-

ations discovered, where we consider each true association of a

genotype with one expressed gene to be a single eQTL associ-

ation. For example, for scenario vi when including four non-or-

thogonal hidden factors, HEFT provided significant gains when

measured by P-values/average number of additional associations

correctly identified when compared with linear regression (7.9e-

08/34), LMM (4.74e-13/117), PANAMA (1.83e-10/53), LORS

(2.41e-8/48) and SVA (highly significant), and qualitatively

equivalent results were obtained when HEFT considered too

many (seven) factors (see Fig. 1 and Supplementary Table S4).

The only hidden factor methods that had comparable perform-

ance were the two-step methods (HEFT-TS, PEER), but only

when these methods considered the correct number of factors.

When HEFT and these methods considered the incorrect

number of factors (seven), HEFT had significantly better
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performance compared with both HEFT-TS (50.003/15) and

PEER (50.004/15).
The better performance of HEFT was also observed for

scenario vi when orthogonal hidden factors were considered

(see Supplementary Table S4 and Fig. S9). Therefore, HEFT

had the best performance overall for the pleiotropy eQTL

cases of scenario vi and was robust to inclusion of more than
the true number of hidden factors (which will generally be un-

known in practice). This better performance of HEFT in scen-

ario vi is likely a result of other methods fitting many of the

pleiotropic effects of eQTL as hidden factors, which lowers the

power of these methods to detect these eQTL. This assessment is
supported by the observation that several of the hidden factor

methods (PANAMA, HEFT-TS, PEER, LORS) had compar-

able results with HEFT for scenario v, where there were only

non-pleiotropic eQTL and hidden factors (see Supplementary

Table S4 and Figs S7–S8). We note that for the non-
orthogonal case of scenario vi, the reduced performance of

some hidden factor methods (LMM, PANAMA, SVA, LORS)

was so extreme that they no longer performed better than linear

regression (see Supplementary Section S.3.1.2 for further discus-

sion). Overall, for hidden factor scenario vi that is likely to be
most realistic, where there are univariate and multivariate eQTL

effects, HEFT correctly identifies significantly more eQTL com-

pared with other hidden factor methods without an increase in

false positives.

4.2 HEFT analysis of the lung SAE

We used HEFT with a hidden factor number P¼ 5 and appro-

priate covariates to analyze the 7575 SAE expressed genes and

191 959 marker genotypes. For comparison, we also applied

linear regression, PEER with five hidden factors and

PANAMA using the default settings to select the factor

number. The entire analysis took �13h on an 8 core 2.6G pro-

cessor. After ranking the full 7575� 191 959¼ 1.45e9 P-values,

we found 96 non-duplicated significant hits for HEFT using a

Bonferroni cutoff of 0:05=ð7, 575 � 191, 959Þ ¼ 3:438578e� 11,

where non-duplicated hits were defined by allowing at most

one significant cis- association per overlapping gene region,

although a given genotype could count toward multiple non-

duplicate associations if it affected multiple genes in trans-. The

96 non-duplicated significant associations identified with HEFT

included almost all of the hits identified by the other methods

when using the same criteria: PEER identified 70 (all overlapped

with HEFT), PANAMA 25 (24) and linear regression 43 (41).

This same trend was observed when considering the non-

duplicated cis- associations identified by HEFT (63), where

these included all cis- associations identified by other methods

(see Supplementary Fig. S12).

Figure 2 summarizes the overlap of non-duplicate associations

identified when controlling the false discovery rate at q¼ 0.05.

HEFT was able to identify all of the cis- associations that were

detected by PEER, PANAMA and linear regression together,

where HEFT was also able to identify 91 cis- associations that

were not detected by the other hidden factor methods. We note

that the Quantile-Quantile (QQ) plot for all 1.45e9 P-values gen-

erated by HEFT had a genomic inflation factor of �51:07 and

behaved correctly overall (see Supplementary Fig. S13), indicat-

ing that the additional discoveries identified by HEFT were not a

function of inflating P-values overall, but rather the additional

power afforded by the method. In addition, a visual inspection of

the heat-map of the entire set of P-values returned by HEFT

compared with linear regression (Fig. 3 and Supplementary

Fig. S14) showed that HEFT was able to remove the cases

where SNPs were strongly associated with all expressed genes,

a clear sign of an unaccounted for non-orthogonal factor.

Together, these observations indicate that HEFT is correctly ac-

counting for hidden factors, while not over-fitting the data and,

as a consequence, HEFT is revealing a considerable number of

additional eQTL that could not be identified with other methods.

This point is further supported by looking at genes individually,

where the HEFT analysis produced well-behaved QQ plots and

Fig. 1. Average ROC curves (top) and box plots of the AUC for the

ROC for an FPR in the range 0–0.05 (bottom) for simulated data in the

case of pleiotropic eQTL effects and non-orthogonal hidden factors

(scenario vi), where left and right correspond to provided factor numbers

of four and seven, respectively, for the analysis methods when selection

of factor number applies (see Supplementary Fig. S10 for other factor

numbers). The methods are color coded as red¼ linear regression,

blue¼HEFT, orange¼HEFT-TS, green¼PEER, purple¼LMM-EH,

sky blue¼PANAMA, black¼ SVA and brown¼LORS. The leveling

off of the ROC curve for LORS is a consequence of this method prese-

lecting markers to include, which caps the maximum number of true

positives that can be identified

Fig. 2. Venn diagram showing the total number of non-duplicate SNP–

gene associations (left) and the subset of these that are cis- (right) identi-

fied by HEFT, PEER, PANAMA and linear regression when controlling

the false discovery rate at q ¼ 0:05
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was also able to reveal significant cis-eQTL that are not detect-

able by linear regression (Fig. 4 and Supplementary Fig. S15).

Here, we describe four cases that are of particular relevance to

lung disease (see Supplementary Table S5 for a more complete

list).
GTF2H1 is the p62 subunit of the multiprotein complex

transcription factor IIH (TFIIH) that is located on 11p15.1-

p14 of chromosome 11. GTF2H1 participates in both the nu-

cleotide excision repair process and transcription control by

specifically interacting with a variety of factors important in

carcinogenesis. The SNP association we found, rs4150622 is

�1kb away from an SNP found to be associated with lung

cancer (Wu et al., 2009) (Fig. 4). We identified a cis-eQTL

for RuvB-Like AAA ATPase 1 (RUVBL1) located on 3q21.3

of chromosome 3, which is an overexpressed gene in several

tumors including non-small cell lung cancer tumors (Dehan

et al., 2007). We also found a cis-eQTL for Transcription elon-

gation factor, mitochondrial (TEFM), also known as C17orf42,

which is located on chromosome 17 that is necessary for tran-

scription of human mitochondrial DNA (Minczuk et al., 2011).

RNA interference leads to inactivation of TEFM in cells,

which leads to respiratory incompetence because of decreased

levels of H- and L-strand promoter-distal mitochondrial tran-

scripts. We additionally found a cis-eQTL for MTRR, which is

located on 5p15.31 (Fig. 4). Previous studies have shown that

variants in or near MTRR show associations with lung cancer

in a population of42000 non-Hispanic Caucasians (Shi et al.,

2005).

5 CONCLUSION

Although the benefits of applying HEFT for eQTL detection

compared with standard eQTL analysis approaches depends on

the existence of problematic hidden factors, it does seem reason-

able to assume that hidden factors may be a common problem,

particularly when considering expression analysis of cell popula-

tions or tissues collected under uncontrolled experimental condi-

tions, as is common in human studies. We expect the value of

methods such as HEFT that can identify additional eQTL, while

providing strict false-positive control will be particularly evident

when applied to eQTL studies making use of the greater accuracy

provided by RNA-Seq-based measurements, as well as to xQTL

studies of new multivariate next-generation sequencing data

types. Beyond eQTL and xQTL analysis, the combined multi-

variate regression and factor analysis model of HEFT makes the

method broadly applicable to any discovery or data mining

problem where a regression and factor analysis are currently

applied in a step-wise manner.
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Fig. 4. Quantile-Quantile (QQ) plots of observed versus expected �log

P-value (top row) and Manhattan plots of �log P-value versus genomic

position (bottom four rows) for all genotypes tested for associations with

the genes GTF2H1 and MTRR. The gray bands in the QQ plots corres-

pond to the 95% confidence interval of the order statistics. The P-values

for HEFT (blue points) indicate a cis-eQTL for these two genes that were

not indicated by the P-values of a linear regression (red and orange/

yellow points)

Fig. 3. A heat map of a subset of P-values obtained from the analysis of

all 191 959 SNPs with all 7575 genes expressed in human lung SAE using

linear regression (top) and HEFT (bottom). Genes are arranged in rows

and SNPs are arranged in columns, where colors from yellow to red

represent large to small (significant) P-values. The map represents the

P-values for 10000 SNPs and all 7575 genes and illustrates the trend

observed genome-wide (see Supplementary Fig. S14) that the linear re-

gression analysis identified SNPs associated with almost all expressed

genes, indicating unaccounted for hidden factors, where this trend is

not observed with HEFT
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