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ABSTRACT

Context dependence is central to the description of complexity. Keying on the pairwise
definition of ‘‘set complexity,’’ we use an information theory approach to formulate general
measures of systems complexity. We examine the properties of multivariable dependency
starting with the concept of interaction information. We then present a new measure for
unbiased detection of multivariable dependency, ‘‘differential interaction information.’’
This quantity for two variables reduces to the pairwise ‘‘set complexity’’ previously pro-
posed as a context-dependent measure of information in biological systems. We generalize it
here to an arbitrary number of variables. Critical limiting properties of the ‘‘differential
interaction information’’ are key to the generalization. This measure extends previous ideas
about biological information and provides a more sophisticated basis for the study of
complexity. The properties of ‘‘differential interaction information’’ also suggest new ap-
proaches to data analysis. Given a data set of system measurements, differential interaction
information can provide a measure of collective dependence, which can be represented in
hypergraphs describing complex system interaction patterns. We investigate this kind of
analysis using simulated data sets. The conjoining of a generalized set complexity measure,
multivariable dependency analysis, and hypergraphs is our central result. While our focus is
on complex biological systems, our results are applicable to any complex system.

Key words: complexity, entropy, gene network discovery, interaction information, multivariate

dependency.

1. INTRODUCTION

Aliving system, while invariably complex, is arguably distinguished from its nonliving counterparts

by the way it stores and transmits information. It is just this information that is at the heart of the

biological functions and structures. It is also at the center of the conceptual basis of what we call systems

biology and is characterized by complexity that is both high in degree, involving a large number of
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components, variables, and attributes, and difficult to characterize. The definition, and the conceptual context

of what we call complexity, is an ongoing discussion, but here we eschew the philosophical issues and focus

on as simple, but precise, a description as we can. The conceptual structure of systems biology, we argue here,

can be built around the fundamental ideas concerning the storage, transmission, and use of biological

information, and descriptions of their collective complexity. Bioinformation resides, of course, in digital

sequences in molecules like DNA and RNA, but it is also in three-dimensional structures, chemical modi-

fications, chemical activities, both of small molecules and enzymes, and in other components and arrange-

ments of components and properties of biological systems at many levels. The information depends simply on

how each unit interacts with, and is related to, other components of the system. Biological information is

therefore inherently context dependent, which raises significant issues concerning its quantitative measure

and representation. An important and immediate issue for the effective theoretical treatment of biological

systems then is: How can context-dependent information be usefully represented and measured? This is

important both to the understanding of the storage and flow of information that occurs in the functioning of

biological systems and in evolution. It is also at the heart of the analysis of data extracted from complex

systems of all kinds, including biological systems.

In a system with a number of variables, attributes, and characters, one statement of the fundamental

problem of definition and discovery of bioinformation revolves around the question: How can we fully

describe the joint probability density of the n variables that define the system (as a function of time as

well)? Characterization of the joint probability distribution is at the heart of describing the mathematical

dependency among the variables. For many reasons, including important applications, this problem has

received a lot of attention over past decades, primarily focusing on binary relationships, and in drawing

conclusions about multiple variable dependencies from these, as in copula theory, for example, and its

central result, Sklar’s theorem (Arbenz, 2013; Sklar, 1959). Here we provide a general formulation of the

problem and a solution that deals directly with the dependency issue based on multivariable information

theory. We do not, in this work, address in any detail the significant problems of implementation of the

computations implicated, their efficiency, and their properties. Rather, we lay out the formulation of the

approach, the theoretical structures, and with a few simulated examples, illustrate their utility. We thereby

provide a number of tools that are useful in the quest for the description of complex biological systems and

complexity in general.

2. RESULTS

2.1. Describing a complex system

It is often assumed that the networks that are at the heart of biological systems can be fully described by

graphs, and most often by undirected graphs. The representations of relationships that graphs provide are

rich indeed, but the complexity of biological systems (and many others) can go well beyond the ability of

graphs to represent their full complexity. Even directions, weights, and other attributes assigned to edges

can fall short of what is required. Graphs, made up of nodes, and edges connecting these nodes two at a

time, are potentially complex mathematical objects but are limited primarily in one way. A full description

of a complex system often requires that a relationship among several components at once be described. For

example, multiple external parameters like ionic strength and temperature, and many other variables, can

together affect biological states. Biochemical reactions that involve more than two participating molecular

partners are most common: A + B 5 C involves three, and more complex reactions, like A + B 5 C + D,

are common. Multiple interacting transcription factors affecting the expression of genes, and multiple

proteins interacting closely together in protein complexes with a wide range of functions, are other ex-

amples in biology.

Hypergraphs are sufficiently complex mathematical structures to describe the level of complexity re-

quired for a full description of the dependencies among the components, attributes, or variables in a

biological system (Klamt et al., 2009) as has been effectively argued. Undirected hypergraphs, which we

will use here (generalization to directed hypergraphs is also possible), consist of nodes or vertices and

edges, like a simple graph. Note that there remain significant attributes and parameters that cannot be

represented as simple hypergraphs. The edges (we will term these hyperedges), however, may connect any

number of vertices at once. Formally, a hypergraph, HG = (V, E), consists of a set of vertices,

V = fX1‚ X2‚ X3‚ . . . ‚ Xng, and a set of subsets of V, we call hyperedges, E = fe1‚ e2‚ e3‚ . . . ‚ em j ei � Vg. A
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simple graph, then, is a hypergraph with all of the hyperedges having a cardinality of 2. To illustrate, the

connected hypergraph of nine vertices in Figure 1A has hyperedges of cardinality 2, 3, and 4.

The hyperedges consist of the subsets {X2, X7, X8, X9}, {X1, X2, X3}, {X2, X6}, {X1, X2}, {X1, X4}, and

{X4, X5}. If we use hypergraphs to describe a system, we simply need to define the nature of the hyperedge,

including the subset of nodes connected, weight, and other edge attributes. If the vertices in a biological

system were proteins, the hyperedge may describe, for example, that the relation ‘‘forms a complex’’ or

‘‘regulates.’’ A specific hyperedge could also connect a subset of another hyperedge of the hypergraph: as

with {X1, X2, X3} and {X1, X2} above. Note the similarity of a weighted hypergraph to a Markov random

field.

There are, of course, many properties that need description to fully characterize a system, but one

property essential with respect to quantitative variables could be described simply as ‘‘depends on,’’ and its

inverse ‘‘is independent of.’’ We will focus here on dependence. We define the collective dependence of a

subset of variables in the strict sense here that a variable, or attribute, can be predicted only if all the other

members of the subset are known. The notion of ‘‘independent of’’ is defined mathematically as the

factorability of the joint density distribution. The notion that there is a dependence, or pattern, present only

in the entire subset of variable values, but not in any of its proper subsets, is fundamental and is delineated

well by hypergraphs. A node can, of course, be part of more than one hyperedge. Consider this simple

example in which the nodes have numerical values.

The two relationships in Figure 1B apply to B, a member of both edges, simultaneously. The number of

ways that a set of variables can depend on one another is large, and the classification of these dependencies

needs detailed consideration. Looking at the two extremes, for example, what we might call ‘‘full de-

pendency’’ among n variables permits knowledge of all variables when only one is known, while the

‘‘collective dependency,’’ defined above, is quite different and requires knowledge of all others to predict

one.

FIG. 1A. An example of a hypergraph: A hypergraph of nine variables with hyperedges of order 2, 3, and 4.

FIG. 1B. Representing functional dependencies: A hypergraph with ‘‘overlapping’’ edges and the functional

dependencies among the variables corresponding to the nodes.
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In practice, when trying to decipher the complexity of a system, we are often presented with a data set—

values of a set of variables—and we wish to determine and then describe the dependencies among them. In

the reality of experimental measurements, this is usually viewed statistically, and most often as a set of

pairwise correlations. We are presented with the problem of estimating most accurately, given a data set

with values of variables or attributes, the dependencies of the system, no matter how complex they may be.

As we demonstrate in a later section, correlation functions, like Pearson and Spearman, because they are

inherently pairwise and have other limitations, like the assumption of relatively simple functional de-

pendencies, are often inadequate. If a data set was provided corresponding to the hypergraph depicted in

Figure 1A, how could we test or infer the given structure? More simply, given a data set of variables, is

there a systematic way of inferring the hypergraph that represents that system? This is the same as the

challenge of discovering the structure of variable interdependence and representing it in a hypergraph. To

give this a quantitative context, let us add a ‘‘weight’’ to each edge that describes the ‘‘strength’’ or

reliability of the dependency. We say that a weight of zero means there is no hyperedge, the variables are

not dependent, and a weight near zero indicates a very weak one. At the heart of this challenge is the

realization that each variable acquires its meaning and relations from the context of the whole system, and

the discovery of representation of this is hard. In order to state the problem clearly we will revert here to a

statistical definition of dependency (next section), which is well-matched to the data analysis aspects of our

concerns. Jakulin and Bratko (2003) advocate the concept of interaction among attributes as a character-

ization of regularities or patterns among variables that includes the multiple possibilities of conditional

independence, which is similar to our approach. In any case, a key representation of the dependency

description is a hypergraph with marginal probability densities associated with vertices and the hyperedges

describing dependencies.

It is important to recognize the separation of the two fundamental problems of dependency, the problem

of detection of dependency among variables and the problem of determining the nature of the dependency.

Simply stated, this is the difference between detecting existence and estimating a function. These are very

distinct problems, and while we address only the first of these in this article, the significance of their

separation is paramount. Note as well that both problems are completely distinct from the question of

causality.

2.2. Context-dependent measures: set complexity

Before grappling with full multivariable dependency we consider pairwise dependence only. We deal

here with the problem of the information about one variable represented in another. The information

perspective here is a useful one. The basic idea is illustrated by considering a set of bit strings, {xi}. We

can ask: What is the information in a given string in the context of the rest of the set of strings (for

simplicity we assume the digital strings here are the same length). Two useful concepts here are the

mutual information between two strings and the normalized information distance between these strings

[this universal distance was defined by Li et al. (2004) and Gacs et al. (2001) and shown to be a metric

that does not require the lengths of the strings to be the same). The distance between two strings x and y,

d(x, y), is

d(x‚ y) � max (K(x j y)‚ K(y j x))

max (K(x)‚ K(y))
(1a)

where K(x r y) is the conditional complexity or conditional information between the strings. The values of d

lie in the interval [0, 1]. We used the above quantities in Galas et al. (2010) as defined either in the context

of Kolmogorov complexity or using the Shannon information formalism. While they are different ideas and

are applied differently, the concepts are conceptually interchangeable for our purposes, even though they

are not quantitatively identical as has been carefully detailed previously (Galas et al., 2010). The use of the

Kolmogorov complexity has advantages, like obviating the need to define a state space fully for each

variable but has the major disadvantage of being incomputable yet estimatable using compression algo-

rithms. In this article, we use identical alphabets and the same numbers of data points for all variables

considered together. We leave the discussion of the difference between these approaches to quantitating

information elsewhere.

We rewrite (1a) using information or entropies rather than Kolmogorov complexities, using the relation

among the variable information, H(X1 r X2) = H(X1, X2) - H(X2).
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d(X1‚ X2) =
max [H(X1‚ X2) - H(X1)‚ H(X1‚ X2) - H(X2)]

max [H(X1)‚ H(X2)]
(1b)

The value of d when the two variables are entirely dependent (they are functions of each other) is zero

since the joint entropy is equal to any of the two marginal entropies. At the opposite extreme, when the two

variables are entirely independent (are independent random variables, for example), the value of d is also

easy to determine. In this case, the single variable entropies are the same (since the length of the strings or

the range of the variables is the same), and the joint entropy is the sum of the two, thus for complete

independence of these two variables we have

d(X1‚ X2) =
H(X1) + H(X2) - H(X2)

H(X1)
= 1 (1c)

As we have proposed (Galas et al., 2010), the key to defining a real context-dependent measure for a

member of the set is to impose constraints that have the effect of minimizing the contributions of both

redundancy and randomness. We seek a heuristic compromise that for two variables at a time represents the

following two constraints (notation: we use lowercase to indicate a string or data and upper case to indicate

a variable): 1) If the set already contains a string x identical to the one being considered, y, so that d(x,

y) = 0, then y adds no new knowledge to the set (Galas et al., 2010); 2) if y is random (defined strictly only

when the length of the string increases without bound), then y also adds nothing to the complexity of the set

(Galas et al., 2010). These criteria are fulfilled approximately if we define the information contribution of

an element xj to the set S = fxiji = 1‚ 2‚ . . . ‚ Ng, k(xj r S), in terms of the pair-wise information distance d(x,

y) in (1a):

k(x j S) � 1

N - 1

X
y2S

K(y)d(y‚ x)(1 - d(y‚ x)) (2)

in which K(y) is the information measure of an individual element y 2 S (Galas et al., 2010). We then

defined the complexity of the entire set of strings, the ‘‘set complexity,’’ C (Galas et al., 2010) as

C(S) � 2

N(N - 1)

X
all - pairs

max[K(xi)‚ K(xj)]d(xi‚ xj)(1 - d(xi‚ xj)) =
X

j

k(xj j S) (3a)

and if we order the variables {xi} by the increasing magnitude of K(xi) then

C(S) =
2

N(N - 1)

X
all - pairs

/ij = Æ/ijæ‚ i > j (3b)

where /ij = K(xi)d(xi, xj)(1 - d(xi, xj)). If we use the entropy of the probability distribution density as the

information measure, as we will in the rest of this article, we indicate this as K(x) = H(x).

2.3. Describing multivariable dependence

The description of a complex system would be severely limited if we restricted ourselves to considering

only pairs of variables or functions. It is therefore easily argued that we must define measures for multiple

variables considered together rather than by pairs.

The concept of ‘‘interaction information’’ (Sakhanenko and Galas, 2011b; Tsujishita, 1995) was

proposed long ago and was used previously by us to optimize a binning process so as to minimize

bias and lose a minimum of information in the process (Carter et al., 2009). Interaction information is

essentially a multivariable generalization of mutual information (McGill, 1954). For two variables the

interaction information is equal to the mutual information and to the Kullback-Leibler divergence of

the joint to single probability densities of these two variables. Interaction information [essentially the

same as co-information as defined by Ignac et al. (2012a,b)] expresses a measure of the information

shared by all random variables from a given set (McGill, 1954; Jakulin and Bratko, 2003; Bell, 2003).

For more than two variables it has properties distinct from mutual information, however includes po-

tentially negative values, but it remains symmetric under permutation of variables and has been used in

several applications to date.
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We first extend the interaction information from two to three variables. The three-variable inter-

action information, I(X1, X2, Y), can be thought of as being based on two predictor variables, X1 and X2,

and a target variable, Y (there is actually nothing special about the choice of target variable since I is

symmetric under permutation of variables, but this will be important in later considerations.) The

three-variable interaction information can be written as the difference between the two-variable in-

teraction information, with knowledge of the third variable, and the two-variable quantity without that

knowledge:

I(X1‚ X2‚ Y) = I(X1‚ X2) - I(X1‚ X2 j Y) (4)

where I(X1, X2) is mutual information, and I(X1, X2 r Y) is conditional mutual information, given Y. Note

that if the additional variable is independent of the others the interaction information is zero. When

expressed entirely in terms of marginal entropies we have the expression:

I(X1‚ X2‚ Y) = H(X1) + H(X2) + H(Y)

- H(X1‚ X2) - H(X1‚ Y) - H(X2‚ Y)

+ H(X1‚ X2‚ Y)

(5)

H(Xi) is an entropy of a random variable Xi, and H(Xk1
‚ . . . ‚ Xkm

), m ‡ 2, is a joint entropy on a set of m

random variables. The symmetry under variable permutation we mentioned above is apparent from

Equation (5) and illustrated in Figure 2.

We can write the interaction information in terms of sums of marginal entropies according to the

inclusion–exclusion formula ( Jakulin and Bratko, 2003; Bell, 2003), which is the sum of the joint entropies

of the sublattice of � = fX1‚ X2‚ . . . ‚ Xng as described by Bell (2003). We have,

I(�) =
X
s��

( - 1)jsj + 1H(s) (6a)

where the exponent, jsj, is the cardinality of the the subset s. Note that there is also a symmetrical formula

(a form of Möbius inversion) defining the joint entropy in terms of the interaction information of the

subsets:

H(�) =
X
s��

( - 1)jsj + 1I(s) (6b)

Simplifying the notation further, we note the first two interaction information expressions (the subscripts

refer to the index of variables):

I12 = H1 + H2 - H12

I123 = H1 + H2 + H3 - H12 - H13 - H23 + H123

(7)

Note that the number of terms grows as a power of the number of variables.

Using Equation (1b) we can write

1 - d(X1‚ X2) =
H(X1) + H(X2) - H(X1‚ X2)

max [H(X1)‚ H(X2)]
=

I(X1‚ X2)

max [H(X1)‚ H(X2)]
(8)

Thus, we have proven the following theorem.

Theorem 1. The pairwise set complexity, as defined in (3b), is simply related to the pairwise inter-

action information in a set of variables as a normalized expectation value of the larger of two terms over all

pairs of variables:

C(S) = Æ max [H(Xi j Xj)‚ H(Xj j Xi)] � I(Xi‚ Xj)

max [H(Xi)‚ H(Xj)]
æ (9)

The key property of this measure, C, is that at the two extremes—when either all variables are identical

(or fully pair-wise dependent), or all variables are independent (or random with respect to one another)—

the set complexity is zero. Since ‘‘set complexity’’ can be viewed as an average over all pairs of strings,
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variables, or functions, every well-defined subset of a larger set will also have a well defined C. The

original motivation for the requirement of zeros at the extremes was the resolution of two problems with the

idea of biological information, and the product was chosen to force the measure to have zeros at these

extremes (Galas et al., 2010). While we know that there are many other ways to get zeros at the extremes,

the direct relationship of this simple form with the interaction information suggests that our original

heuristic form was actually a natural and fortunate choice.

We begin the construction of our measure with the ‘‘interaction information’’ for multiple variables as

defined in Equations (4) and (5). Using this concept for a set of n variables, �n = fX1‚ X2‚ X3‚ . . . ‚ Xng, we

define the ‘‘differential interaction information’’ for this set of variables, D, as the change in the interaction

information between sets that differ only by the addition of one variable. Thus, if mn is obtained from mn - 1

by the addition of Xn, we have

DXn
(�n) � Dn � [I(�n) - I(�n - 1)] = - I(�n - 1 j Xn) (10)

The last equality comes from the recursion relation for the interaction information (4). The added variable,

Xn, we will call the ‘‘target variable,’’ with respect to the variable set mn - 1. The differential interaction

information is equivalent to the conditional interaction information, which for the three-variable case is

equivalent to the conditional mutual information. It is easy to see that the differential interaction infor-

mation is zero if Xn, the target variable is independent of any of the variables in the set mn - 1, which are

independent of one another. We show that if there is collective dependency of the variable set, the

differential measure in (10) will be nonzero.

We can write the differential interaction information in terms of the marginal entropies. If

�n = fX1‚ X2‚ X3‚ . . . ‚ Xng, and {sn} are all the subsets of mn that contain Xn (not all subsets) then

Dn =
X
fsng

( - 1)jsnj + 1H(sn) (11)

The notation is simplified here so that Dn means an n-variable measure where the nth variable is the ‘‘target

variable.’’ Where this may be ambiguous, we will indicate more parameters.

For three and four variables we can write out (11) as (indicating the number variables by the subscript of

delta)

D3 = I123 - I12 = H3 - H13 - H23 + H123

D4 = I1234 - I123 = H4 - H14 - H24 - H34 + H124 + H134 + H234 - H1234

(12a)

FIG. 2. Relationships between entropies: An illustration of the relationships between the terms in Equation (5), where

the external outline encompasses the area represented by I123.
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where the subscripts of the marginal entropies on the right indicate the variable indices. Note that we can

show with a little algebra that the three-variable measure in (12a) is simply the conditional mutual

information.

The mutual information, and its conditional for X1, X2 and X3, are

I(X1‚ X2) = H(X1) + H(X2) - H(X1‚ X2)

I(X1‚ X2 j X3) = H(X1 j X3) + H(X2 j X3) - H(X1‚ X2 j X3)

By writing out the conditional entropies in terms of marginal entropies, and adopting our previous sim-

plified notation, we see that the conditional mutual information and the differential interaction information

for three variables are the same.

I(X1‚ X2 j X3) = H13 + H23 - 2H3 - H123 + H3

= H13 + H23 - H3 - H123 = -D3

(12b)

Since there is no definition of interaction information for one variable, the definition of the differential

for two variables, D2, cannot be directly defined by extension from (11). This extension has an unexpected

significance, which we will return to consider shortly. Note that the number of terms grows as a power of

the number of variables minus one.

We now use the differential interaction information, Dn, to define a generalized form of the set com-

plexity, C, for an arbitrary number of variables. The information distance measure (two variables) has the

property that as the two strings converge to identity the normalized mutual information increases to 1, and

as they become entirely independent (random) it goes to zero. The distance goes from zero (identity) to one

(independence.) In the case of three variables, where we will use D3, it is significantly more subtle. When

D3 is positive it indicates ‘‘redundancy’’—moving toward identity, while when it is negative it indicates

‘‘synergy’’ or some functional dependency of the three variables that is not identity. This difference in sign

is significant. Specific examples help illustrate this difference.

Example 1. Consider three random variables, X1, X2, and X3. Let us evaluate D3 for the case when the

variables are all independent. Denote this D0
3:

D0
3 = - H3 - H1 - H2 + H1 + H2 + H3 = 0 (12c)

It is easy to show that Di is zero for all numbers of variables, i, if all variables are independent since the

joint marginal entropies become additive single entropies.

Example 2. Let us now evaluate D3 when X3 depends on X1 and X2 together, but on neither singly. The

expression then becomes

D3 = H3 - H13 - H23 + H123 = H3 - H1 - H3 - H2 - H3 + H123 = - H1 - H3 - H2 + H123

and because of the assumed dependency,

H123<H1 + H3 + H2‚

so D3 < 0. Thus, since X3 is the ‘‘target variable’’ (the asymmetric variable in the definition of D3), in this

case D3 works as an indicator of three-variable dependence. Notice that the symmetry of the interaction

information does not carry over to the differential interaction information. Since we are searching for a

measure that reliably distinguishes between two-variable and three-variable dependence of all kinds we

need our measure to vanish in the presence of only two-variable dependencies. Note that the arguments to

follow are exactly true only in the limit of the number of values of the variables (data) increasing without

bound. The differential interaction information above actually becomes zero only in some cases, as we can

see from two more examples.

Example 3. Suppose X1 and X3 are independent of each other, as are X1 and X2, but X2 and X3 are

dependent. In this case H123 = H1 + H23 (in the limit), so we have

D3 = H3 - H13 - H23 + H123 = H3 - H1 - H3 - H23 + H1 + H23 = 0
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Examples 2 and 3 show that if the pair-wise dependency includes X3 then three-variable dependency is

needed to get a nonzero D3. This is the behavior we want from our measure, which parallels the two-

variable measure properties, so it works in these cases.

Example 4. Now suppose X1 and X3 are independent of each other as are X2 and X3, but X1 and X2 are

dependent. In other words, the target variable X3 is no longer dependent on the other two variables. The

same arguments apply as in example 3, however D3 is seen to be nonzero. Example 4 then shows that this

measure, D3, fails to be three-variable-specific.

It is clear then that we need something else. The measure we want is a nonzero quantity for a subset, s, of

m variables, only if there is mutual dependency among the elements of the subset s.

The differential interaction information, D, that we have described thus far in Equation (11) is based on

the specification of a variable we called the ‘‘target variable’’ within the set of variables. The differential is

defined as the change that results from addition of this target variable and is therefore asymmetric under

permutation of the variables. Since we are asking to detect fully cooperative dependence among the

variable set, we require a useful measure to be symmetric for that set. A more general measure emerges by

a simple construct that restores symmetry. If we multiply D’s for a given variable subset with all possible

choices of a target variable, the resulting measure will be symmetric for all the variables in the set. It

provides a general definition that is functional and straightforward. To be specific, we define the symmetric

measure (with normalization) as

�Dn = �D(�n) � ( - 1)n
Yn

i = 1

[I(�n) - I(�nyfXig)] (13)

where the product is over the choice, i, of a target variable relative to mn, n > 2, a simple permutation. The

difference terms in the brackets of Equation (13) are between the interaction information for the full set mn

(first term) minus the interaction information for the same set missing a single element (the target

variable—second term.) We define this measure only for n > 2 because the differential interaction infor-

mation for n = 2 is as yet undefined.

For three variables this expression is (simplifying the notation again)

�D3(1‚ 2‚ 3) = ( - 1)3(H1 - H12 - H13 + H123)(H2 - H12 - H23 + H123)(H3 - H13 - H23 + H123) (14)

Figure 3 illustrates �D3 and �D4.

The advantage of this measure is that �D is nonzero only if there is a ‘‘collective’’ dependency, with all

three variables involved. In other words, this measure has the extremely useful property that it always

vanishes unless all variables in the subset are interdependent. This can be used to allow us to discover and

represent exact variable dependencies and to define complexity in interesting ways.

To illustrate these differences among the interaction information, I; the asymmetric differential inter-

action information, Di; and the symmetric product form, �D, we have formalized the definitions and cal-

culated the values for some extreme dependencies for three variables, as shown in Table 1. In a later

section, we will discuss dependency in terms of ‘‘well-behaved functions,’’ and show some examples.

Consider variables X1, X2, and X3.

FIG. 3. Symmetrization of the differential interaction information: A diagram illustrating the factors in the sym-

metrized product for the three- and four-variable cases. The D’s in this diagram signify the factors in the symmetrized

product. The upper one, for example, signifies the terms in (13). The first subscript index of each D is the target

variable.
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Definition 1. Full independence (FI)

Xi?Xj‚ 8i 6¼ j

Definition 2. Full dependence (FD)

Xi0Xj‚ 8i‚ j

Definition 3. Two-variable dependence (2vD(i, j))

Xi0Xj

Xi?Xk

Xj?Xk

i 6¼ j 6¼ k

Definition 4. Collective dependence (CD(i))

(Xj&Xk)0Xi

Xi?Xj

Xi?Xk

Xj?Xk

8j‚ k 6¼ i

Note that the statements of independence in Definition 4 include the cases where Xi is independent of the

other single variables but dependent on two of them together.

Table 1 illustrates why �D is needed: this measure goes to zero for the first three cases above, but is

nonzero when there is a collective, three-variable dependency (fourth case.)

We can complete the theory now by providing a consistent definition for �D2, which connects this

measure to the two-variable set complexity (3b, 9). Since we cannot express it as a differential

interaction information we define �D2, referring back to the key limiting values of set complexity,

simply as

�D2 = - (H1 + H2 - H12)(H1 - H12) (15)

Note that this expression has the property of going to zero for either complete independence (first factor

goes to zero) or full dependence (second factor goes to zero) of the two variables, consistent with the

Table 1. Expressions (in Simplified Notation) and Specific Values

of These Quantities for Various Cases of Dependence

I3 = H1 + H2 +
H3 - H12 - H13 -

H23 + H123

D3 = H3 - H13 -
H23 + H123

D3 = (H3 - H13 - H23 + H123) ·
(H2 - H12 - H23 + H123) ·

(H1 - H12 - H13 + H123)

FI 0 0 0

FD H123 = H1 0 0

2vD (X1,X2) 0 - H1 = - H2 0

(X1,X3) 0 0 0

(X2,X3) 0 0 0

CD (X2&X3) 0 X1 - H1 = - H2 - H3 - H1 = - H2 - H3 ( - H1)3

(X1&X3) 0 X2 - H2 = - H1 - H3 - H2 = - H1 - H3 ( - H2)3

(X1&X2) 0 X3 - H3 = - H1 - H2 - H3 = - H1 - H2 ( - H3)3
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properties of the expressions for more variables. It is symmetric under exchange of the two variables.

Compare this with �D3 shown in Equation (14). Now since /ij = H(Xi)d(Xi, Xj)(1 - d(Xi, Xj)) from

Equation (3b), and referring to the definition of d(X1, X2) in (1b), we see the following easily by

substitution.

Theorem 2. For two variables X1 and X2, if H1 < H2, and with the definition in (15), we have

/12 =
1

H2

(H1 + H2 - H12)(H12 - H1) =
�D2(12)

H2

(16)

Thus, the ‘‘set complexity’’ of a set of N variables m = {Xi} in terms of �D is

C(�) = Æ/ijæ =
2

N(N - 1)

X
all - pairs

�D2(ij)

Hij

= Æ �D2(ij)

Hij
æ (17)

2.4. Multivariable complexity measures: generalizing set complexity

The remaining question is how we can use the multivariable dependencies derived from any set of

variables or attributes to describe the complexity of the full system they define. By analogy with the

previous, two variable ‘‘set complexity’’ measure, C, we can use Equations (8–10) to define a new,

multivariable class of set complexity measures. A complexity measure is an expectation value over the full

system of a quantity defined on subsets of variables (in the case of the original set complexity these subsets

are pairs.) When we examine the range of values of �D from complete independence of all variables to

complete dependence, we discover an interesting property of the class of �D measures. From Table 1

(column 5), illustrating the values of �D for different types of dependence, we see that �D = 0. Full depen-

dence here means knowledge of one variable gives us knowledge of all variables. For full dependence

among three variables we have H12 = H1 = H2 and H123 = H1 = H2 = H3. By calculating the product it can

easily be seen that all terms cancel and �D = 0. The interesting property of this measure for three variables is

that it has zeros at both extremes (complete independence and full dependence.) That this property holds for

an arbitrary number of variables provides a powerful result that we now present as a theorem.

Theorem 3. Given a set of variables � = fX1‚ X2‚ X3‚ . . . ‚ Xn + 1g consider three cases: a) the variables

are independent, b) the variables are fully dependent, and c) the variable Xn + 1 is independent of all the

other variables. The value of �D in all three cases, a), b), and c) is zero.

Proof. Choose one variable from the set of n + 1 variables and call it Xk. Let

�n + 1 = fX1‚ X2‚ X3‚ . . . ‚ Xn + 1g, and {sk} is all the subsets of mn + 1 that contain Xk. Consider the corre-

sponding �D(�n + 1), which has a factor Dk where Xk is a target variable. From equation (11)

D(�k) =
X
fskg

( - 1)jsk j + 1H(sk)

Case a: For complete independence the marginal entropies of m variables (jskj = m),

H(sk) =
X
Xi2sk

H(Xi): (18)

By summing the coefficients of H(Xi) for all Xi 2 sk we see that the alternating signs of the contributing

tuples for the marginal entropies leads simply to

Xm - 1

p = 0

( - 1)p m - 1

p

� �
= (1 - 1)m - 1 = 0 for nontarget variables‚

Xm

p = 0

( - 1)p m

p

� �
= (1 - 1)m = 0 for the target variable Xk:

So the theorem holds for case a.
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Case b: For complete dependence it is even simpler, because we have

H(sk) = H(Xk)

and we are able to reduce the entire expression to a sum of coefficients of H(Xk). The sum adds to zero as in

case a.

Case c: In this case we split the set {sk} into two non-overlapping subsets, fŝkg containing the independent

variable Xn + 1 and f~skg without Xn + 1. The marginal entropy of each subset ŝk is simply

H(ŝk) = H(Xn + 1) + H(s0k), where s0k is the subset of all variables in ŝk except Xn + 1. Then, applying this to the

expression of Dk, it is easy to see that entropies H(s0k) cancel out with entropies H(~sk), and the coefficients

of H(Xn + 1) sum to zero, therefore, �D is zero.

This proves the theorem.

Thus, as the equivalent of the pair-based ‘‘set complexity’’ we previously defined and used (Galas et al.,

2010), we now define a general, multivariable set complexity, F, for the set of variables, m

Definition:

F(�) � Æ �D(s)

H(s - 1)js - 1jæ (19a)

where the expected value is over all possible subsets, s, of the variable set, and H(s - 1) is the maximum

marginal entropy across all proper subsets of s obtained by removing one variable. Writing it in detail,

where M is the number of subsets in m,

F(�) =
1

M

X
s��

�D(s)

H(s - 1)js - 1j (19b)

The above formula can be used to characterize the complexity of any subset of variables as well, of course,

and therefore the components of the sum represent the hypergraph form of the set complexity represented

by C for ordinary graphs. For two variables this expression reduces to the previous definition of C in Galas

et al. (2010). Since the complexity is generally not well represented by a single number, we can better

characterize the complexity as the set of components of (19b), {/(s) r s 4 m}, for all subsets of m where

/(s) �
�D(s)

H(s - 1)js - 1j (19c)

This completes the generalization of the set complexity concept for an arbitrarily large set of variables

and provides a means of defining the ‘‘weights’’ of dependency in the hypergraph describing this

system. Note that Theorem 3 provides a much more complete solution to the problems of biological

information presented in Galas et al. (2010) since it accounts for full dependence in a much more

complete fashion.

2.5. Describing dependency

We have discussed and formalized several limiting cases of dependency: collective dependency, full

dependency, and full independence (see Definitions 1–4). We can add to the nuance of dependency by

defining a more intuitive and rigorous dependency spectrum using functions that relate the variables in mn,

which will help us understand the relationships between the variables, entropies, and the structure of the

induced hypergraphs.

We begin with a definition. A function, f, of a set of variables, s, is called ‘‘well behaved’’ if and only if

the equation f (s) = 0 can be solved for any X 2 s, to yield a function g, such that x = g(s0), where s0 is the

set missing x. For this to hold, and if we are to have a single solution, X, then clearly f (s) must be

monotonic in each variable. The dependency among the variables of the set s can then be described by the

set of all nonzero functions on all subsets of s: {f : f (r) = 0, r 4 s}. For a well-behaved, monotonic

function we need to specify all but one variable value to determine the value of the last one. Keep in mind,
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however, that for many functions, we expect to encounter the solutions, X, will not be unique. The number

of solutions is a key factor.

For the moment consider only functions with unique solutions so that the dependencies among the

variables in the set s = {Xi} are fully described by the set of all of the well behaved, monotonic functions

F = {fi(gi) = 0, cgi 4 s}.

Let us look at some examples of functions that define dependencies. Consider only pair-wise functions; that

is, assume that there are only nonzero functions for the set that relates two variables at a time. Then the functions

{xi = gij(xj)} define the edges of a graph of the set in which all nonzero functions correspond to an edge. In this

case, if the edges in a graph connect several nodes into a connected path, specifying one value determines the

values of all the variables in the path since the functions allow successive solutions across the entire path. We

see that the dependence of this set of variables is full dependence if and only if the graph is connected. This

means that knowledge of one variable value defines the values of all the rest. This can be seen to hold because

all the variables are connected by a chain of solvable equations with unique solutions. Since this property allows

us to derive a functional relationship between any two variables on the path, we infer the following result.

Theorem 4. If a dependence graph for a set of well-behaved, monotonic functions with pairwise

defined edges is connected, it is always a complete graph.

We can define this completeness as full dependence (as in Definition 2 of Table 1). The connected

components of any dependence graph of this kind are always complete. This is not particularly complex in

most cases, although it does allow us to divide a set of variables into dependent subsets. A more interesting

and realistic situation arises if we are able to infer a dependency from data and also attach a statistical

measure to each dependence, a probability associated with each solution. In the general case when there are

multiple solutions to the inverted functions, we might ascribe equal probabilities to each or, in the presence

of noise or uncertainty, probabilities that reflect this lack of certainty. Suppose that there is a linear

connectivity pattern (a path) with identified functions and probabilities. If the connected variables are

serially indexed, then the probability of each function connecting two variables is pj - 1, j. Then, if we have a

good value for variable X1, the functions can be used to find values of all the other variables, but the

probability associated with the final variable Xn will be given by

prob(xn) =
Yn

j = 2

pj - 1‚ j

If, for example, there were two solutions for each function, a reasonable, unbiased assumption would be to

assign a probability of one half to each. Thus, the above product would be (1/2)n. In the case of pairwise

functions, we can see that the propagation of values along a path, as described above, will be associated

with decreasing probabilities of accuracy, and therefore the completeness described in Theorem 4 becomes

a more subtle property for these functions.

For non-pairwise functional dependencies, the situation is more complex and interesting. For any subset

of variables, if there is a single well-behaved function describing the relationship among the variables, then

the hyperedge is defined by this function. While the determined or known segments of a hypergraph are

defined by these dependencies, we usually do not know these functions exactly if we know them at all. The

challenge is to determine the weight of an edge (including the level of confidence in the existence of such a

function). To our knowledge there is no simple equivalent of Theorem 4 for hypergraphs. If a function is

not monotonic in each variable the dispersion of probabilities will grow with the number of solutions.

This raises the issue of how the weights of the edges in a dependence hypergraph are related. It is easy to find

examples of dependency that are consistent with only a certain configuration of edges. Another form of this

question or issue might be addressed by a topic called the ‘‘interaction of dependency hypergraph edges.’’ There

are a number of relationships that can be derived that represent the complexity that results from relaxation of the

premise of Theorem 4. This topic is beyond the scope of this article and will be addressed elsewhere.

3. EXAMPLES OF DATA ANALYSIS

To illustrate the practical uses of the theory, we analyze sets of simulated data generated by prescribed

dependencies. We have generated multiple datasets of five variables with different degrees of variable
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dependence: no dependence (all are independent random variables), two dependent variables (one variable

is dependent on one of the other independently generated random variables), and three dependent variables.

The details of the generation of these datasets are provided in the Appendix. In addition, we have generated

other sets of six variables including four-variable dependence. In each of these cases, 1000 multivariable

points were generated, and we have calculated the usual pairwise correlations between variables (Pearson

correlation and Spearman rank correlation). Details are provided in the Appendix. Example results are

presented in the next set of figures.

The values of the measures indicated in Figure 4 illustrate the use of interaction information, and the

power of the symmetrized differential interaction information �D to detect the three-way dependence of

variables over the pairwise effects. In these examples, while the differential interaction information is

suggestive of some kind of dependence, it is only the �D that definitively indicates the three-way depen-

dence, which it does strongly, as shown in Figure 4B.

To illustrate the power of �D, we further tested it by looking for four different variable dependencies in

four datasets of six variables. We calculated the four variable �D for all these datasets and the results,

illustrated in Figure 5, show that the four-variable �D clearly picks out the four-variable dependency. In this

case, W is determined entirely by the values of X, Y, and Z, but not by V or U, where all five of these latter

variables are independent random variables. Note that, since all variables take on integer values 0 to 3,

FIG. 4. Applying D and �D to the simulated data: Information theory–based measures for three variables are shown for

the simulated data (1000 points, 5 variables—see Appendix), as indicated. (A) Differential interaction information in

which the first variable indicated in the X-axis label is the target variable, and (B) the symmetrized differential

interaction information, �D. The functions W(X) and W(X, Y) are complicated functions designed specifically to yield

statistical correlations that are comparable to those of independent random variables (they are defined and illustrated in

the Appendix and the correlations shown.) W(independent) represents that case where all variables are independent.

FIG. 5. Applying �D4 to the simulated data with various dependencies: The four-variable measure �D for two datasets

(1000 points, 6 variables). The dependencies are as indicated in the legend (further details in the Appendix).
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there are 64 distinct sets of values for the triplet of variables X, Y, and Z, while the function W(X, Y, Z) takes

on only four integer values 0 to 3. The function is therefore far from monotonic, because many values of

{X, Y, Z} map into the same value of W. Nonetheless, the dependency is clearly indicated by the symmetric

measure (the purple bar in Figure 5). This mapping of variables onto W is illustrated in the Appendix

(Fig. 9).

Again, the Pearson and Spearman correlations among all pairs of variables are small (mostly <0.11, but

all < 0.2), but �D clearly indicates the four related variables nonetheless, since it is more than two orders of

magnitude greater than all others. The sensitivity to the four-way dependency is indeed striking and is not

confounded by the two or three-way dependency.

4. DISCUSSION

A useful representation and mathematical description of the degrees of complexity of complex systems

like machines, economies, biological cells, and organisms are a significant challenge. It is a challenge that

is at the heart of the realization of systems biology into a systematic, quantitative approach to biology. We

previously approached this problem focused on biological information by defining a context-dependent

measure based on pairwise relationships (Galas et al., 2010). In this article we present a broad general-

ization for an arbitrary number of variables, which is the basis for a self-consistent, general, descriptive

theory of the complexity of systems that are described by the dependencies among many variables. Our

approach to multivariable systems revolves around the question of how we can describe the joint proba-

bility density of the n variables that define the system. The characterization of the joint probability density

distribution is at the heart of describing the mathematical dependency among the variables, but the use of

information theory measures is more forgiving of sampling limitations than direct estimates of probability

densities, since many probability densities yield similar or the same information measures. A major

property of our generalization is that the multivariable symmetric measure is non zero only if the multiple

variables are truly collectively dependent. It is not confounded by dependence among subsets. but it can

sometimes be zero in the presence of collective dependence (sometimes termed ‘‘conditional indepen-

dence’’).

This theory can represent a very broad scope of systems, but our focus has been on biological com-

plexity. The pairwise measure presented previously (Galas et al., 2010) is the two-variable limit of our

general measure. We reviewed the information approach to multivariable dependency that relies on the

concept of interaction information (McGill, 1954; Jakulin and Bratko, 2003; Bell, 2003; Sakhanenko and

Galas, 2011b; Tsujishita, 1995), and defined a new measure, which we call differential interaction infor-

mation, that has a number of useful properties. At the three-variable level it is equivalent to the conditional

mutual information. We were able to make the connection between the ‘‘set complexity’’ of a set of

variables, as previously defined for two variables in (Galas et al., 2010) and differential interaction in-

formation, by focusing on the limiting constraints we previously defined. Set complexity, originally devised

as a measure of biological information, has been used as a tool to analyze genetic data (Carter et al., 2009)

and to examine and describe the complexity of graphs (Sakhanenko and Galas, 2011a; Ignac et al., 2012c),

but is limited in its capacity for more complex systems descriptions.

We propose that our general complexity measure, or series of measures, provides a deeper and more

sophisticated definition of ‘‘biological information’’ and is also applicable to any complex system. The

differential interaction information is the central quantity in this theory, and it has a number of interesting

properties, particularly its limiting values at extremes, that makes it both a useful data analysis tool as well

as being a natural connection with set complexity.

We propose that the description of complex systems properties with hypergraphs can represent a great

deal of the important internal dependencies that generate the complexity of the system. The multivariable

differential interaction information provides a tool that can be used to calculate the weights of the hy-

pergraph edges given a dataset describing the system (Klamt et al., 2009). We outline here a general

scheme for this analysis, which is applicable in principle to any data set (Fig. 6.)

If we limit the number of variables to be included in the subsets, the number of marginal entropies that

need to be calculated is not too large, but it is this combinatorial explosion of quantities to be calculated that

will ultimately be limiting for very large datasets. This is a well-recognized practical problem in infor-

mation measure calculations. Various heuristics can be used, however, to limit the range of computed
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quantities, and this problem has been examined in some detail in entropy calculation. The symmetrized

form of this differential measure is remarkably sensitive to multivariable dependencies as demonstrated

above. While the calculations are difficult, the extreme sensitivity suggests that approximating heuristics

may retain sufficient sensitivity to allow significant computational shortcuts. This will be explored in future

work.

Note, however, that this sensitivity does not imply that the form or character of the dependency, the

function itself, can be determined by these methods. The two problems of sensitive detection of dependence

and the characterization of the dependence function itself are quite distinct problems and can be separated

to good effect. For the complex functions like those used in our simulations (see Appendix), their char-

acterization is a very difficult problem requiring much more data than we have provided, but the detection

of dependence can be accomplished with this amount of data. This separation of problems also suggests

that some of the approximating algorithms for marginal entropies may retain significant sensitivity while

reducing computational complexity. We will consider the dependence function problem in future work.

The previous sections provide the means to infer the structure of a hypergraph description of a system

represented by a dataset and its dependencies. If we are given a dataset consisting of a set of values of n

variables, we can then carry out the steps defined in the flowchart of Figure 6. This diagram provides a

general approach to the calculation of the complexities of systems represented by complex datasets and to

the inference of a hypergraph representation. Such a complex set of dependencies is indicated in Figure 7

(only nonzero �D’s are shown) illustrating the complexity that can be represented in this way.

Equation (14) provides a general formulation of the measure for dependence. In the product we unbias

the choice of the additional variables since the product is invariant under permutation of the variables. The

expression provides for the calculation of all of the differential interaction information measures from the

marginal entropies.

There are some cases where the choice of a target variable is clear and the product form of the measure

(14) is unnecessary. Genetic analysis is a case in point. In this case, we have a large number of genetic

markers as variables, with a limited number of alternative values (usually two) and usually a single-target

variable that is the phenotype. We classify the dependence, and the measure, in this case, as ‘‘asymmetric.’’

In the case where we look for pairwise synthetic genetic effects, for example, we examine all instances of

pairs of markers (X1, X2) determining the phenotype (Y).

In addition to the calculation of the hypergraph edge weights, described above, we can consider the

necessary self-consistency of the edge weights. These relations will allow the minimal hypergraph

FIG. 6. Discovery of dependencies: A general flow diagram illustrating the analysis of datasets to the level of

weighted hypergraph generation.
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description of the dependencies implied by the data in question. This topic will be an important component

of the effort to discover the causal models that are consistent with the data, but the analysis of self-

consistency relations is beyond the scope of the current article. It will be dealt with in a future publication.

In examining dependencies among variables we will, of course, want to know the nature of the de-

pendencies, which is not addressed here. Our approach provides a theoretical context and a method to

discover the existence of dependencies, consistent with the data, that can be further investigated to create

sets of hypotheses. We emphasize again the distinction between detection of dependency and discovering

information about the nature of the dependency. The latter can be thought of as hypothesis testing. Related

to the question of consistent hypotheses, it is also natural to ask about specific causality among real

variables. While the characterization of the joint probability distribution is insufficient to address the issue

of causality, the changes in associations among variables as indicated by �D with different subsets of

variables and different datasets may be able to contribute to causality indicators. We suggest that while the

present theory is limited to the probability calculus, it can be useful in providing some language to extend

the theory into the realm of causal tests (Pearl, 2009, 2010). The central idea here is that with the

appropriate assumptions, the effect on the symmetric measure of dropping a specific variable from con-

sideration should be able to be used in a calculus of causality of that variable. The introduction of

directionality in the hypergraphs could be used to extend the present theory into the realm of representation

of causality models as discussed by Pearl (2009, 2010).

Finally, it is important to note, as we showed in Equation (12b), that the D specific to three variables is

equivalent to conditional mutual information. Conditional mutual information has been used previously by

other researchers in analyzing biological systems. Califano and colleagues have applied this measure in the

analysis of gene regulatory systems (Sumazin et al., 2011; Zhao et al., 2009; Wang et al., 2006a, 2009b).

Our work generalizes this measure for an arbitrary number of variables and makes the connection to

measures of complexity and biological information.

In summary, we have woven together three important concepts in dealing with dependency in real

complex systems: measures of complexity based on information theory ideas that are applicable to biology

and similarly complex systems generalizing our previous work, multivariable dependency, and the rep-

resentation of systems by hypergraphs. We expect that the methods described here can be extended further,

but are already powerful in extracting patterns and dependencies from large datasets of all kinds and in

understanding the complexity of the systems reflected by datasets.

5. APPENDIX

5.1. Simulated data

We generated sets of data (1000 points each) with different dependencies among the variables, from

complete independence to four-variable dependence.

FIG. 7. Weighted hypergraph: The complex of dependencies among a set of nine variables (nodes) is illustrated in a

hypergraph. This is the same structure as in Figure 1A showing the nonzero �D(sm)’s associated with the hyperedges (in

this case the subscripts indicate the nodes connected, the dependency variables.)
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The data were generated with all variables but W random (X,Y,Z,U,V). In Figure 8a, W is also an

independent random variable, whereas in Figure b–d the dependence of W on X, Y, and Z was specified

according to Table 2.

To illustrate the function W(X, Y, Z), we treat the three variables as the digits of a mod4 number, in order

to show the function as a two-dimensional plot. The function is shown in Figure 9.

While the complex and apparently arbitrary functions are such that several combinations of variables

yield the same value of W [for W(X, Y) and W(X, Y, Z)], the important point is that the other variables

determine the value of W and the dependence of W on the other variables is complete.

5.2. The effects of sample size and noise on the dependence measure

We now consider the set of six variables, {X, Y, Z, W, U, V}, where variable W is a function of X and

Y (three-variable dependency), while all the rest of the variables are independent. We generated a

large set D of 5000 samples and used this dataset to examine the effects of sample size and noise on

the symmetric delta measure. The following examples are studied in the context of the general

problem of finding a triplet of interdependent variables in the presence of other independent variables.

In this case, we have 20 variable triplets, and we expect only one, XY W, to have a large nonzero delta

value.

We first examine the fluctuations as a function of data sampling. We consider a partition of D into M

equal subsets, Di�D, WiDi = D, Di X Dj = Ø. We considered two cases: 50 subsets with 100 samples

each, and 10 subsets with 500 samples each. For each subset, 20 symmetric delta values were computed

corresponding to the 20 triplets. We then computed two means/standard deviations: one of delta for XYW

across all M subsets and the other one of delta across all M subsets and all remaining 19 triplets. Table 3

shows the results. In both cases (when the subset size equals 100 or 500) the symmetric delta of XY W is

FIG. 8. Correlation: The Pearson and Spearman correlation calculated for several pairs of variables in the 1000-point

simulated set. The functions used to generate the dependencies for (b) and (c) are shown.
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considerably lower than the average value of symmetric delta of other triplets. As expected, the results

are better when the sample size is larger (500). While random resampling has a small effect on the values

of symmetric delta at this sample size range, we are able to clearly distinguish XY W from the other

triplets.

How does the number of samples affect the value of symmetric delta? We consider an initial subset,

D0�D, of 100 samples, and then incrementally construct 49 more subsets by adding 100 more samples

each time, such that D49 = D. We then computed the symmetric delta for all 20 triplets in each subset.

Figure 10 shows that �D of XY W is considerably different from �D of other triplets. On the other hand, this

Table 2. Dependency Tables of the Variable W on Other

Variables as Shown: W(X), W(X,Y) and W(X,Y,Z)

X W(X)

0 1

1 3

2 0

3 2

X/Y 0 1 2 3

0 1 3 2 1

1 3 0 0 3

2 2 0 1 2

3 1 0 3 2

X Y Z W X Y Z W

0 0 0 3 2 0 0 0

0 0 1 0 2 0 1 0

0 0 2 0 2 0 2 0

0 0 3 3 2 0 3 1

0 1 0 0 2 1 0 0

0 1 1 3 2 1 1 0

0 1 2 0 2 1 2 1

0 1 3 1 2 1 3 1

0 2 0 0 2 2 0 0

0 2 1 0 2 2 1 1

0 2 2 0 2 2 2 1

0 2 3 1 2 2 3 1

0 3 0 3 2 3 0 1

0 3 1 1 2 3 1 1

0 3 2 1 2 3 2 1

0 3 3 3 2 3 3 1

1 0 0 0 3 0 0 3

1 0 1 3 3 0 1 1

1 0 2 0 3 0 2 1

1 0 3 1 3 0 3 3

1 1 0 3 3 1 0 1

1 1 1 2 3 1 1 2

1 1 2 0 3 1 2 1

1 1 3 2 3 1 3 2

1 2 0 0 3 2 0 1

1 2 1 0 3 2 1 1

1 2 2 1 3 2 2 1

1 2 3 1 3 2 3 1

1 3 0 1 3 3 0 3

1 3 1 2 3 3 1 2

1 3 2 1 3 3 2 1

1 3 3 2 3 3 3 2
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difference increases as the size of an underlying subset increases to 300 and more. It is clear that in the

absence of noise the dependence in our example is detected very well with 200 to 300 samples.

Finally, we investigate how the amount of noise affects the value of symmetric delta. In this example we

only use a dataset of 500 samples. We define a noise level parameter of a random variable as a number of

samples chosen at random that are flipped to a different value for that variable. We consider 20 noise levels,

starting from 25 flipped values (5% noise) and ending with 500 flipped values (100% noise), each time

increasing the number of flipped samples by 25. For each noise level we construct 10 datasets with random

positions and values of the flips.

Both the average difference and the ratio between �D of XYW and other triplets is illustrated in Figure 11.

The difference was computed between �D of XYW and �D of every other triplet for every set of 10 (1900

combinations for each noise level), and the mean and standard deviation computed. The ratio was

Table 3. The Behavior of
�D on Samples of Equal-Size Datasets

Size Mean (�Da) Std (�Da) Mean (�Db) Std (�Db)

100 - 1.8429 0.2757 - 0.0367 0.0196

500 - 2.0554 0.1107 - 0.0003 0.0002

Mean and standard deviation of symmetric delta for XY W (�Da) averaged across all subsets, as well as mean and standard deviation

of symmetric delta averaged across all other 19 triplets and all subsets (�Db).

FIG. 9. Definition of dependencies: The functions defining the dependent variable W: W(X), W(X, Y), and W(X, Y, Z).

The variables X, Y, and Z are the digits of a mod4 number N (depicted as a mod10 number here.) (A) W(X) and (B) W(X,

Y) is shown as a function of N = X + 4Y. (C) W(X, Y, Z) is shown as a function of N = X + 4Y + 16Z.
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flipped samples in a set is 25(i + 1). The maximum at 20 corresponds to 100% of the 500 being subjected to random flips.
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computed between �D of XYW averaged across 10 sets and �D of all other triplets averaged across all triplets

and 10 sets. The dependence on the noise level is approximately exponential.
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