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Ribonuclease P (RNase P) catalyzes 
the maturation of the 5' end of 

precursor-tRNAs (pre-tRNA) and is con-
served in all domains of life. However, 
the composition of RNase P varies from 
bacteria to archaea and eukarya, mak-
ing RNase P one of the most diverse 
enzymes characterized. Most known 
RNase P enzymes contain a large cata-
lytic RNA subunit that associates with 
one to 10 proteins. Recently, a protein-
only form of RNase P was discovered in 
mitochondria and chloroplasts of many 
higher eukaryotes. This proteinaceous 
RNase P (PRORP) represents a new class 
of metallonucleases. Here we discuss 
our recent crystal structure of PRORP1 
from Arabidopsis thaliana and specu-
late on the reasons for the replacement 
of catalytic RNA by a protein catalyst. 
We conclude, based on an analysis of the 
catalytic efficiencies of ribonucleopro-
tein (RNP) and PRORP enzymes, that 
the need for greater catalytic efficiency is 
most likely not the driving force behind 
the replacement of the RNA with a pro-
tein catalyst. The emergence of a protein-
based RNase P more likely reflects the 
increasing complexity of the biological 
system, including difficulties in importa-
tion into organelles and vulnerability of 
organellar RNAs to cleavage.

The Varying Composition  
of RNase P Enzymes

TRNA (tRNA) primary transcripts are 
extensively processed and modified before 
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they participate in translation. One of 
the initial steps in precursor tRNA (pre-
tRNA) processing is the removal of extra 
nucleotides flanking the 5' and 3' ends. 
Ribonuclease P (RNase P) is the endo-
nuclease responsible for 5' end cleavage 
(Fig. 1) and is a ribonucleoprotein (RNP) 
throughout all three domains of life. The 
RNA component is responsible for cata-
lytic activity and associates with either 
one, five or 10 proteins in bacteria, archaea 
and eukaryotes, respectively (Fig. 2). To 
date, the archeon Nanoachaeum equitans is 
the only known organism without RNase 
P, presumably because the pre-tRNAs 
in this organism are transcribed with-
out leader sequences.1 The RNA compo-
nents in bacteria, archaea and eukaryotic 
nuclear RNase P are structurally related.2 
However, deviations from the consensus 
structure exist in mitochondrial and chlo-
roplast genomes. This was first observed 
in many fungi, where the consensus struc-
ture contains only two of the 11 conserved 
helices found within the minimal bacte-
rial consensus structure.3 Furthermore, 
the Saccharomyes cerevisiae mitochondrial-
encoded RNA associates with a single 
105-kDa nuclear-encoded RPM2 protein 
that shares no homology to any other 
known RNase P proteins. The deviation 
in sequence and increased size of RPM2 
suggests that the protein moiety could 
play a more substantial role in catalysis or 
molecular recognition.4

A striking deviation from the canoni-
cal RNA-dependent RNase P is found in 
human mitochondria, where RNase P is 
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PRORP. The localization of the nuclear-
encoded PRORP is currently unknown. 
Thus, further studies are required to help 
understand why O. tauri has retained the 
organellar encoded RNase P RNA genes.

Transitioning RNase P from  
the Ancient (RNA) to the  
Modern (Protein) World

Our recent crystal structure of the 
A. thaliana PRORP1 revealed that nature 
pieced together three distinct domains to 
replace the ancient RNA enzyme: a pen-
tatricopeptide repeat (PPR) domain teth-
ered to a metallonuclease domain through 
a structural-zinc binding site.16 None of 
the domains have homology to any of 
the protein components of eukaryotic or 
bacterial RNase P enzymes, consistent 
with bioinformatic data suggesting their 
disparate evolution. The PPR domain 
enhances the affinity for pre-tRNA bind-
ing and is proposed to play an important 
role in orienting the pre-tRNA substrate 
for cleavage.17 PPR domains are helical 
repeat motifs present in a large family of 
RNA-binding proteins involved in mito-
chondrial and chloroplast gene expres-
sion. PPR domains in other proteins are 
proposed to interact with single-stranded 
RNAs in a sequence-specific manner17 
leading to the speculation that the PPR 
domain of PRORP enzymes could inter-
act with the single-stranded 5' leader or 3' 
trailer of pre-tRNA. A sequence-specific 
interaction seems unlikely since PRORP 
enzymes must recognize almost all of the 
pre-tRNAs transcribed within a genome 
(37 tRNAs are encoded in A.  thaliana 
chloroplast, and 22 tRNAs are encoded 
in human mitochondria), and there 
is little sequence conservation in pre-
tRNA leader and trailer sequences in the 
A. thaliana chloroplast and mitochondrial 
genomes. Alternatively, it is possible that 
the PPR motifs in PRORP could interact 
directly with the tRNA body (Fig. 3). 
Identification of the pre-tRNA-binding 
site in PRORP enzymes will not only 
reveal how the PPR motifs in PRORP 
interact with pre-tRNA, but may also 
yield insights into how PPR motifs can 
generally recognize their substrates.

The PRORP metallonuclease domain 
represents a novel class of nucleases called 

the plant RNase P RNA may be non-
canonical, thus making it hard to identify 
by sequence homology searches. Evidence 
in support of this hypothesis comes from 
RNase P activity detected by immunopre-
cipitation of the protein POP1, which is 
a shared protein component of MRP and 
nuclear RNase P in other eukaryotes.14 
The protozoan Trypanosoma brucei har-
bors 2 PRORP isoforms, both of which 
have 5' pre-tRNA processing activity in 
vitro.8 One isoform (PRORP1) localizes 
to the nucleus and the second (PRORP2) 
to the mitochondrion. Strikingly, T. brucei 
PRORP1 can substitute for yeast nuclear 
RNase P in vivo, demonstrating that a 
single protein can complement a RNP 
complex composed of nine proteins and 
a ~400  nucleotide catalytic RNA.8 In 
addition, this result shows that T. brucei 
PRORP1 catalyzes all of the other non-
canonical, yet vital functions of nuclear 
yeast RNase P, which may include process-
ing of non-canonical RNAs (see below).

Ostreococcus tauri, an alga and one of 
the smallest eukaryote species, may be a 
living transitional organism representing 
the possible switch from RNA- to protein-
based RNase P activity. The chloroplast 
and mitochondrial genomes of O.  tauri 
encode distinct individual RNase P RNA 
genes and the nucleus encodes both a bac-
terial-like RNase P protein component, 
and a PRORP enzyme.15 The organel-
lar RNase P RNAs are expressed in vivo, 
however under in vitro conditions, cataly-
sis of pre-tRNA cleavage is not observed 
even when associated with the nuclear 
encoded bacterial-like protein. O. tauri 
is the only organism studied thus far that 
encodes RNase P RNAs in both organellar 
genomes and contains a nuclear encoded 

devoid of an RNA subunit and instead is 
composed of three proteins: tRNA m1G 
methyltransferase (MRPP1/TRMT10C), 
hydroxysteroid 17-β dehydrogenase 10 
(MRPP2/SDR5C1) and a metallonucle-
ase (MRPP3/PRORP).5 The methyl-
transferase and dehydrogenase form a 
complex with a proposed stoichiometry 
of 2:4 and the metallonuclease does not 
tightly associate with either subunit.5,6 
The tRNA methyltransferase activity of 
TRMT10C is activated by the dehydro-
genase (SDR5C1); however, the catalytic 
activity of either the methyltransferase or 
the dehydrogenase is not required for pre-
tRNA cleavage catalyzed by PRORP.6 One 
possible explanation for the requirement 
of TRMT10C and SDR5C1 to activate 
PRORP activity is that the TRMT10C-
SDR5C1 complex associates with a pre-
tRNA substrate to induce conformational 
changes required for pre-tRNA cleavage.

In contrast to the multi-subunit human 
mitochondrial RNase P, the RNase P in 
the mitochondria/chloroplasts of most 
plants, algae and some protists is predicted 
to be a single protein enzyme (PRORP).7,8 
This was first shown in A. thaliana, where 
three isoforms are found: PRORP1, 2 and 
3. PRORP1 localizes to the mitochondria 
and chloroplasts, whereas PRORP2 and 3 
localize to the nucleus.7 All three of these 
enzymes catalyze pre-tRNA processing in 
their respective localized organelles and 
in vitro.9 Attempts to identify RNase P 
RNA genes in plant genomes by sequence 
homology have not yielded any potential 
candidates for a canonical nuclear RNase 
P.10-12 This suggests that A. thaliana may 
be devoid of an RNA-based RNase P 
thereby catalyzing 5' end processing using 
only PRORP enzymes.13 Alternatively, 

Figure 1. RNase P catalyzes the cleavage of 5' leader sequences from precursor tRNAs. RNase P 
enzymes use divalent metal ions to catalyze hydrolysis of a specific phosphodiester bond in pre-
tRNA, resulting in the formation of a mature 5'-end containing a phosphate and a leader with  
3' hydroxyl.
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mechanisms for import of nuclear-encoded 
proteins into the mitochondria, with an 
estimated 900 imported proteins in human 
mitochondria.25 In contrast, the import of 
RNA into the mitochondria is less prevalent. 
Only a few nuclear-encoded tRNAs seem 
to be significantly present within human 
mitochondria. The tRNAsGlnUAA and LeuUAA 
are enriched in mitoplast preps and tRNA-
GlnUAA is imported via a mechanism that is 
distinct from protein import.26,27 Although 
the biological significance of importation 
of this tRNA is unknown, it demonstrates 
that RNA can be imported into the mito-
chondria. The import of larger structured 
RNAs such as the RNA components of 
MRP and RNase P into the mitochondria 
is controversial and remains to be fully 
resolved.28-31 However, the observation that 
the human mitochondrion encodes both 
rRNA components within its genome sup-
ports the hypothesis that large structured 
RNAs are not readily imported.

Aside from the complexity inherent in 
importing the catalytic RNA and eight 

efficiency (k
cat

/K
M

) for pre-tRNA cleavage 
of the yeast nuclear RNase P holoenzyme 
is diffusion-controlled (~1 × 108 M−1s−1) 
at 37°C,22 leaving minimal room for 
improvement. In contrast, the activities so 
far measured for the protein-only RNase 
P enzymes in A. thaliana (PRORP1 and 
3) are ~one to two orders of magnitude 
slower (~1 × 105 M−1s−1)9,16,23 than even 
the simplest form of RNA-based RNase P 
(one RNA with one protein) from bacte-
ria (~4 × 106 M−1s−1)24 (Table 1). To date, 
no other macromolecular cofactors have 
been identified for plant PRORPs that 
enhance the cleavage efficiency to a level 
comparable to the RNA-based enzymes. 
Thus, when compared with the extremely 
efficient RNA-based RNase P enzyme, the 
driving force for the development of a pro-
tein-only RNase P is unlikely to be mainly 
an enhanced catalytic efficiency.

The difficulty of importing a large struc-
tured RNA into the mitochondrion might 
have been a driving force for the switch of 
RNA to protein-based RNase P. There are 

Nedd4-BP1, YacP nucleases (NYN), 
which share structural homology to the 
FLAP nuclease family.18 Our structure of 
A. thaliana PRORP1 revealed an active site 
that can bind two manganese atoms via 
conserved aspartate residues.16 This obser-
vation led us to propose a two-metal ion 
catalytic mechanism, similar to those pre-
viously proposed for RNA-based RNase P 
and members of the FLAP nuclease fam-
ily. Despite the two-metal ion similarity 
with RNA-based RNase P, we propose 
that active site amino acid chains act as 
general acid/base catalysts in PRORP 
enzymes. This differs from RNA-based 
enzymes, which are proposed to use metal-
bound waters for acid/base chemistry.19 
The enhanced range in functionality of 
protein side chains is proposed to increase 
the catalytic efficiency of protein catalysts 
and this enhanced efficiency is one of the 
reasons most often proposed for the shift 
from a RNA-world to a protein-world.20,21 
However, RNA-dependent RNase P is an 
extremely efficient enzyme. The catalytic 

Figure 2. Evolutionary spread of RNase P. RNase P is conserved in all three domains of life. Bacterial RNase Ps consist of one RNA (green) and one 
protein (magenta) (pdb 3Q1R). Model of archaeal RNase P, which contains one RNA (secondary structure in blue) and at least four proteins [red: PH1877 
(PDB 2CZV), yellow: PH1481 (PDB 2CZV), magenta: PH1771 (PDB: 2ZAE), cyan: PH1601 (PDB 2CZV)]. Proteins are arbitrary positioned. Most eukaryal 
nuclear RNase Ps are RNP based (left), which contain one RNA (blue) and at least nine proteins (four archaeal homologs, green: POP1, brown: POP3, 
purple: POP6 (PDB 3IAB), silver: POP7 (PDB 3IAB), orange: POP8). The proteins are arbitrary positioned. Some nuclear RNase Ps are proposed to be 
protein-only with homology to PRORP1 (i.e., T. brucei and A. thaliana; structure of PRORP1 shown). Mitochondrial and chloroplast RNase Ps from left 
to right: yeast; plants, some algae and some protists (A. thaliana and T. brucei); mammals (human). The mitochondrial yeast RNase P contain one RNA 
(blue) and one large protein, RPM2, (gray). Plant, some algae and protists mitochondrial/chloroplast RNase Ps are single proteins (teal) that have ho-
mology to A. thaliana PRORP1. Mammalian mitochondrial RNase Ps consist of three nuclear encoded proteins TRMT10C, (MRPP1), SDR5C1 (MRPP2) and 
PRORP (MRPP3) shown in yellow cartoon, blue tetramer (PDB 1U7T) and red (homology model based of A. thaliana PRORP1), respectively. The position-
ing of the TRMT10C/SDR5C1 subunits has not yet been demonstrated.
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that would limit access to the correct 
RNA substrates.

While the differences between the 
structure of nuclear and organellar pre-
tRNA substrates could also have contrib-
uted to the driving force for evolution of 
the protein-based enzyme, there is little 
evidence for this proposal. A mitochon-
drial RNase P that specifically processes 
the non-canonical mammalian mito-
chondrial tRNAs could be beneficial.43 
However, PRORP enzymes likely evolved 
in an early eukaryote, such as algae, where 
organellar tRNAs are canonical, resem-
bling eubacterial tRNAs in both primary 
sequence and secondary structure.44 In 
plants, the localization of PRORP1 (chlo-
roplast and mitochondria) and PRORP2 
and 3 (nucleus) might suggest differential 
substrate requirements for these isozymes. 
Additionally, PRORP enzymes catalyze 
cleavage of T. thermophilus pre-tRNAGly 
despite alterations in catalytic mecha-
nism.23 These observations suggest that 
protein-only RNase P enzymes in plants 
are not evolved to specifically recognize 
plant tRNAs, but rather catalyze cleav-
age of a wide range of canonical pre-
tRNA substrates. Thus, it seems unlikely 
that pre-tRNA substrate specificity was a 
strong driving force for PRORP evolution. 
However, the need for recognizing non-
canonical pre-tRNA substrates in human 
mitochondria could help explain why this 
organelle requires a multi-subunit protein-
aceous RNase P.

In conclusion, most mitochondrial or 
chloroplast RNase P enzymes identified 
thus far do not share significant homol-
ogy with bacterial, archaeal or nuclear 
RNA-based RNase P enzymes. This sug-
gests the presence of an early evolutionary 
driving force behind the replacement of 
RNA with a protein catalyst in organ-
elles. The identity of this driving force(s) 
remains unknown, but it is not likely to be 
enhanced catalytic efficiency. We specu-
late that it could be a number of other fac-
tors which reflect an increase in biological 
complexity of the system and which are 
not mutually exclusive: substrate specific-
ity, difficulties in importation and vul-
nerable organellar RNAs. Other selective 
pressures may include macromolecular 
stability and regulation. The higher pH 
and concentration of free radicals within 

cytoplasmic RNAs that are not appro-
priate substrates for RNase P or MRP 
cleavage are presumably protected in 
vivo by some combination of RNP struc-
ture and mutually exclusive localization. 
The contribution of RNP structure to 
encouraging appropriate and discour-
aging inappropriate cleavage is axiom-
atic,42 though this level of control has 
not been considered extensively for the 
highly structured pre-tRNA substrates. 
If these holoenzymes were imported 
into organelles, it is possible that they 
would be deleterious, since whatever the 
structures of organellar RNAs, they are 
unlikely to mimic the pathways adopted 
in the nucleus and cytoplasm. Thus, a 
possible driving force for evolving a new, 
protein-based enzyme is that the broad, 
promiscuous substrate recognition of the 
nuclear/cytoplasmic enzymes evolved 
and diverged from the more narrow 
recognition requirements of organellar 
pre-tRNA cleavage. Consistent with this 
hypothesis, an open reading frame RNA 
shown to be cleaved in multiple loca-
tions by nuclear RNase P33 is not cleaved 
by excess A. thaliana PRORP1 at any 
detectable rate (unpublished results). We 
hypothesize that the relatively simple pro-
tein-based nucleases with tRNA specific-
ity might have evolved to circumvent the 
need to protect organelle RNA through 
RNP structures or compartmentalization 

or nine protein subunits into organelles, 
it is possible that the nuclear RNase 
P and RNase MRP have evolved into 
nucleases that are too dangerous to be 
allowed access to the organellar RNA. 
The simple bacterial enzyme primar-
ily recognizes substrates via the tertiary 
structure of tRNA; the identified non-
tRNA substrates resemble a tRNA near 
the cleavage site.32 In addition to cleav-
ing tRNA-like structures, both nuclear 
RNase P and RNase MRP have much 
broader substrate recognition. Unlike 
the bacterial counterparts, both enzymes 
efficiently cleave single-stranded RNA 
in a manner that is not particularly 
sequence- or structure-specific.33,34 This 
ability presumably contributes to the 
participation of MRP in cytoplasmic 
mRNA turnover35,36 and of RNase P in 
other nuclear RNA processing and turn-
over pathways.37-41 For these functions, 
the increased complexity of the pro-
tein subunit content allows the ancient 
catalytic site in the RNase P RNA to 
efficiently recognize and cleave a much 
broader range of substrates. Substrate 
specificity for non-tRNAs must therefore 
depend on the ability of the protein sub-
units to guide the enzymes to the correct 
nuclear and cytoplasmic RNPs, either 
by subcellular localization or protein-
protein contacts with protein-bound 
RNA substrates. Conversely, nuclear and 

Figure 3. Comparison of a proposed model of PRORP-tRNA interaction and RNP-based RNase P. 
Left panel shows the crystal structure of bacterial RNase P (shown in spheres) in complex with 
tRNA (surface representation) (pdb 3Q1R). The right panel shows a hypothetical model of PRORP1 
bound to tRNA. PRORP1 is shown in a surface representation with the PPR domain in red, central 
domain in yellow and the metallonuclease domain in blue. An active site metal is colored green 
and is in close proximity to the 5' end of the tRNA. The tRNA was manually docked onto PRORP1. 
Pre-tRNAs substrates lacking an anticodon arm are cleaved by both enzymes, suggesting some 
similarity in recognition mechanisms.7,47 The D-TΨC loops in tRNA, a region that contacts bacterial 
RNase P RNA, are also recognized by PRORP1.47
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organelles would be more deleterious 
toward RNA structure.45,46 These pro-
posed driving forces are also coupled with 
the selective pressure to down-size or com-
pact organellar genomes. Understanding 
the evolutionary driving forces and mech-
anisms behind the replacement of RNA 
for protein catalysts in RNase P enzymes 
may shed light on the possible transitions 
that may have occurred on early earth 
during the presumed RNA-to protein  
world transition.
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