Table 3. Summary of Machine-Learning Models Based on BestFirst Feature Selection Method with the Internal Test Seta.
confusion matrix |
|||||||||
---|---|---|---|---|---|---|---|---|---|
descriptors | models | TP | TN | FP | FN | sensitivity | specificity | accuracy | G-mean |
MOEb | RF | 215 | 112 | 60 | 20 | 0.91 | 0.65 | 0.80 | 0.77 |
SVM | 219 | 109 | 63 | 16 | 0.93 | 0.63 | 0.81 | 0.77 | |
KNN | 215 | 114 | 58 | 20 | 0.91 | 0.66 | 0.81 | 0.78 | |
BQSAR | 196 | 120 | 52 | 39 | 0.83 | 0.70 | 0.78 | 0.76 | |
MACCSc | RF | 207 | 96 | 76 | 28 | 0.88 | 0.56 | 0.74 | 0.70 |
SVM | 199 | 75 | 97 | 36 | 0.85 | 0.44 | 0.67 | 0.61 | |
KNN | 215 | 79 | 93 | 20 | 0.91 | 0.46 | 0.72 | 0.65 | |
BQSAR | 158 | 117 | 55 | 77 | 0.67 | 0.68 | 0.68 | 0.68 | |
SS-FPd | RF | 215 | 73 | 99 | 20 | 0.91 | 0.42 | 0.71 | 0.62 |
SVM | 220 | 66 | 106 | 15 | 0.94 | 0.38 | 0.70 | 0.60 | |
KNN | 220 | 67 | 105 | 15 | 0.94 | 0.39 | 0.71 | 0.60 | |
BQSAR | 188 | 86 | 86 | 47 | 0.80 | 0.50 | 0.67 | 0.63 | |
combinede | RF | 215 | 118 | 54 | 20 | 0.91 | 0.69 | 0.82 | 0.79 |
SVM | 219 | 106 | 66 | 16 | 0.93 | 0.62 | 0.80 | 0.76 | |
KNN | 207 | 124 | 48 | 28 | 0.88 | 0.72 | 0.81 | 0.80 | |
BQSAR | 193 | 118 | 54 | 42 | 0.82 | 0.69 | 0.76 | 0.75 |
Note: RF, random forest; SVM, support vector machine, KNN, kappa nearest neighbor; BQSAR, binary QSAR.
BestFirst descriptors from 2D-MOE.
BestFirst descriptors from MACCS fingerprints.
Substructure fingerprints.
BestFirst descriptors from all the calculated descriptors.