Skip to main content
. 2013 Sep 19;54(1):218–229. doi: 10.1021/ci400289j

Table 3. Summary of Machine-Learning Models Based on BestFirst Feature Selection Method with the Internal Test Seta.

    confusion matrix
       
descriptors models TP TN FP FN sensitivity specificity accuracy G-mean
MOEb RF 215 112 60 20 0.91 0.65 0.80 0.77
  SVM 219 109 63 16 0.93 0.63 0.81 0.77
  KNN 215 114 58 20 0.91 0.66 0.81 0.78
  BQSAR 196 120 52 39 0.83 0.70 0.78 0.76
MACCSc RF 207 96 76 28 0.88 0.56 0.74 0.70
  SVM 199 75 97 36 0.85 0.44 0.67 0.61
  KNN 215 79 93 20 0.91 0.46 0.72 0.65
  BQSAR 158 117 55 77 0.67 0.68 0.68 0.68
SS-FPd RF 215 73 99 20 0.91 0.42 0.71 0.62
  SVM 220 66 106 15 0.94 0.38 0.70 0.60
  KNN 220 67 105 15 0.94 0.39 0.71 0.60
  BQSAR 188 86 86 47 0.80 0.50 0.67 0.63
combinede RF 215 118 54 20 0.91 0.69 0.82 0.79
  SVM 219 106 66 16 0.93 0.62 0.80 0.76
  KNN 207 124 48 28 0.88 0.72 0.81 0.80
  BQSAR 193 118 54 42 0.82 0.69 0.76 0.75
a

Note: RF, random forest; SVM, support vector machine, KNN, kappa nearest neighbor; BQSAR, binary QSAR.

b

BestFirst descriptors from 2D-MOE.

c

BestFirst descriptors from MACCS fingerprints.

d

Substructure fingerprints.

e

BestFirst descriptors from all the calculated descriptors.