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Abstract
Background—Despite extensive research on the topic, glioma etiology remains largely
unknown. Exploration of potential interactions between single-nucleotide polymorphisms (SNPs)
of immune genes is a promising new area of glioma research. The case-only study design is a
powerful and efficient design for exploring possible multiplicative interactions between factors
that are independent of one another. The purpose of our study was to use this exploratory design to
identify potential pair wise SNP-SNP interactions from genes involved in several different
immune-related pathways for investigation in future studies.

Methods—The study population consisted of two case groups: 1224 histological-confirmed, non-
Hispanic white glioma cases from the U.S. and a validation population of 634 glioma cases from
the U.K. Polytomous logistic regression, in which one SNP was coded as the outcome and the
other SNP was included as the exposure, was utilized to calculate the odds ratios of the likelihood
of cases simultaneously having the variant alleles of two different SNPs. Potential interactions
were examined only between SNPs located in different genes or chromosomes.

Results—Using this data-mining strategy, we found 396 significant SNP-SNP interactions
among polymorphisms of immune-related genes that were present in both the U.S. and U.K. study
populations.
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Conclusion—This exploratory study was conducted for the purpose of hypothesis generation,
and thus has provided several new hypotheses that can be tested using traditional case-control
study designs to obtain estimates of risk.

Impact—This is the first study, to our knowledge, to take this novel approach to identifying SNP-
SNP interactions relevant to glioma etiology.

Introduction
While there are very few established risk factors for glioma, several studies have suggested
the involvement of inflammation-related genetic and immunological factors in
gliomagenesis (1-8). For example, a history of asthma and allergies, as well as higher
Immunoglobulin E (IgE) levels, has been associated with a protective effect against glioma
development and prognosis (8, 9). Single-nucleotide polymorphisms (SNPs) that increase
asthma risk appear to also be associated with decreased glioma risk (1-4, 6, 8). While results
from such studies provide some support for the role of immunological and genetic factors in
gliomagenesis, the relationship between these factors and how they work together to
influence glioma risk are topics that warrant further clarification.

The failure of case-control studies to identify more risk factors for glioma development may
be due, in part, to the fact that most of these studies focus on the main effects of certain
genetic or immunological factors, instead of also examining the interactions between these
factors (8, 9). Gliomagenesis is likely an intricate process, involving the interplay between
several different immunological pathways (8). Thus, it is possible that any single factor
alone does not exert more than a modest effect on glioma risk. If this is the case, studies that
focus on examining interactions between risk factors, rather than determining what influence
each risk factor may have independently, would be the key to identifying important
predictors of gliomagenesis. However, case-control studies often lack adequate power to
detect such interactions, as glioma is a rare disease and studies of glioma etiology are often
plagued with small sample sizes (9).

The case-only study design has been used to examine the role of gene-environment
interactions, especially in the etiology of rare diseases (10-14). However, this exploratory
study design is equally efficient for investigating potential gene-gene interactions and has
the advantage of having better power for the detection of such interactions than a traditional
case-control design (15, 16). The purpose of the current study was to utilize the case-only
study design to explore the role of pairwise SNP-SNP interactions for genes involved in
several different immune-related pathways (Table 1), first among a population of 1224 non-
Hispanic white glioma cases from the U.S. and then among a validation population of 634
Caucasian glioma cases from the U.K.

Materials and Methods
Study Population

The U.S. study population consisted of 1224 cases ascertained through The University of
Texas M.D. Anderson Cancer Center between 1990 and 2008. Glioma cases were
histopathologically-confirmed (ICD-O codes 9380-9384, 9390-9411, 9420-9451, and 9505),
non-Hispanic white adults (>18 years old). After written informed consent was obtained,
interviews were conducted using structured questionnaires, and an approximately 20-ml
venous blood sample was collected from each participant. These samples were used to
obtain DNA for genotyping. Other detailed information on the study population is available
elsewhere (17). Study protocol was approved by the M.D. Anderson Cancer Center
Institutional Review Board.
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The validation population included 634 cases from the U. K. recruited between September
2000 and February 2004 in studies contributing to the INTERPHONE Study (17, 18). This
study was an international multicenter case-control study of primary brain tumors (PBTs)
coordinated by the International Agency for Research on Cancer. In the U. K. individuals
with a PBT were recruited through neurosurgery, neuropathology, oncology and neurology
centers in the Thames regions of Southeast England and Northern U.K., including central
Scotland, the West Midlands, West Yorkshire and the Trent area. Cases had a histologically-
confirmed glioma (ICD-O-2 codes 9380-9384, 9390-9411, 9420-9451 and 9505; ICD10
code C71) with no prior history of brain tumors. Individuals with self-reported non-western-
European ancestry were excluded from these analyses in order to minimize population
stratification. More details on the U.K. studies are provided elsewhere (17, 18).

Genotyping and SNP Selection
Genotyping was performed using the Illumina Human 610 Quad SNP Chip according to
manufacturer’s instructions (Illumina, San Diego, USA). Samples were excluded when
fewer than 95% of genotypes were called overall. For quality assurance purposes, duplicate
samples were genotyped in the same batches.

Because previous research has implicated the involvement of inflammatory pathways in
gliomagenesis (1-9, 19), we attempted to compile a comprehensive list of the key signaling
pathways that participate in the inflammatory response using the “interactive graphic models
of molecular and cellular pathways” tool available on the Biocarta pathway maps website
(20) and the Cancer Genome Anatomy Project website (21). The 28 sub-pathways of
interests are listed in Table 1.

Once these inflammation-related pathways were identified, a list of candidate genes (n=204)
involved in these pathways was then compiled using both the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway database (22) and Biocarta pathway maps (20). SNPs of the
candidate genes were extracted from the Illumina Human 610 Quad SNP Chip, resulting in a
total of 5304 SNPs that were considered for inclusion in this study, and were tested to
identify the tagSNPs. Tag-SNPs are SNPs that can represent a region of the genome with
high linkage disequilibrium [LD] (r2>0.8). Tag-SNPs were determined using Haploview
(23), which left a total 3454 remaining SNPs. Finally, all SNPs with <5% minor allele
frequency or a genotype call rate <95% in the study population were eliminated from the
analysis, as well as all X chromosome SNPs. After removal of these SNPs, there were 3310
SNPs left for analysis, the majority of which were intronic.

Statistical Analysis
Genotypes for each SNP were classified based on the number of variant alleles (i.e. 0, 1, or
2). The potential interaction between each pair of SNPs was analyzed using polytomous
logistic regression in which the genotype (number of variant alleles) for one SNP was
modeled as the “exposure” and the genotype for the other SNP served as the “outcome”.
Such an analysis makes no assumptions about the underlying genetic model and simply aims
to assess whether the cases had a significantly higher likelihood of simultaneously having
the variant alleles of both polymorphisms. In other words, a significant association would
imply that the variant alleles of two SNPs were present among the cases more often than
expected (and therefore, more often than among non-affected individuals). Here, our focus
was on reporting interactions between SNPs of either different chromosomes or different
genes on the same chromosome, rather than between SNPs of the same gene. This is because
of the concern that two SNPs located in close proximity to each other may be less likely to
be separated during recombination, which would artificially inflate the odds ratios obtained
from the regression analyses.
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Because there were almost 5.5 million potential pairwise interactions examined in this
exploratory study, the Benjamini and Hockberg method (false discovery rate) was used to
calculate corrected p-values for the purpose of determining statistical significance (24). All
analyses were first conducted in the U.S. study population and then repeated in the U.K.
validation population. A post-hoc analysis was conducted using an entropy-based approach
to further evaluate pairwise SNP-SNP interactions in these populations (25). The results
from this post-hoc analysis [not shown] were highly consistent with the results obtained
from the polytomous logistic regression analyses. All statistical analyses were conducted
using original code written in R version 2.8.1 and Matlab version 7.70 (R2008b; The
Mathworks, Natick, MA).

Results
In the U.S. study population (n=1224), 761 cases (62.2%) were male and 463 (37.8%) were
female. The average age was 47 (±13) years. This distribution of sex and age are usually
seen in populations of glioma cases (8, 9, 26), indicating that this case group is relatively
representative of the overall population of glioma patients seen in the U.S. The U.K. study
population (n=634) had a relatively similar sex and age distribution. There were 402 male
cases (63.4%) and 232 (36.6%) female cases, with an overall average age of 46 (±12) years.

Using the Benjamini and Hockberg p-value correction to determine statistical significance,
interactions were considered significant if they had a p-value of less than 3.05 × 10−4 in the
U.S. dataset and 2.44 × 10−4 in the U.K. dataset. Excluding interactions between SNPs in
the same genes, a total of 2347 significant interactions were present in the U.S. dataset, and
1494 were observed in the U.K. dataset (Table 2). Among the 2347 total significant
interactions found in the U.S. dataset, 1489 were between SNPs on different chromosomes,
whereas 858 were between SNPs in different genes on the same chromosomes. Among the
1494 total significant interactions identified in the U.K. dataset, 1008 were between SNPs
on different chromosomes, whereas 486 were between SNPs in different genes on the same
chromosomes. There were 396 significant interactions in common between the U.S. and
U.K. datasets, all of which were interactions on different genes but the same chromosomes.
The median LD (r2) between the SNP-SNP pairs involved in these 396 significant
interactions was 0.03. Due to the large number of significant interactions detected and the
fact that the biological functions of the vast majority of examined SNPs are unknown, our
findings were reported and interpreted based on the genes (rather than the specific SNPs)
implicated by the results.

The genes most frequently present among all statistically significant SNP-SNP interactions
were the same in the U.S. population as in the U.K. population (Table 3).

The pairs of genes involved in the five most statistically significant interactions between
SNPs on different chromosomes in the U.S. and U.K. datasets are given in Table 4. None of
the significant interactions between SNPs on different chromosomes were observed in both
populations. However, there were 396 significant interactions detected in both study
populations between SNPs of different genes on the same chromosomes. Of these, 110
interactions were found to be highly significant (p-values<10−16) in both groups. Table 5
displays the genes pairs most commonly involved in these 110 interactions, with the most
interactions occurring between the SNPs of the STAT1 and STAT4 genes.

Discussion
For diseases of unknown etiology, the use of data mining strategies provides a practical way
to generate new hypotheses. Our study is the first to utilize the case-only design to explore
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potential SNP-SNP interactions among glioma cases in order to supply new avenues of
investigation into the elusive etiology of this disease. The case-only study design is an
efficient and powerful design for identifying possible multiplicative interactions between
factors that are independent of each other (i.e. SNPs not in linkage disequilibrium and/or
SNPs on different genes) (15, 16). Here we found 926 significant pairwise interactions
among polymorphisms of immune-related genes in a population of 1224 U.S. glioma cases,
and 606 significant interactions in the validation population of 634 U.K. cases (excluding
interactions between SNPs in the same gene), with 396 significant interactions in common
between both populations. We then determined which genes were most commonly present
among all significant interactions and selected the interactions with the smallest p-values for
further investigation in a future case-control study. It is unknown whether the interactions
found here truly represent biological relationships, or if they are due to statistical
fluctuations in the data. However, they provide promising new hypotheses to examine in
future studies on glioma etiology, a topic that has remained enigmatic despite much prior
research.

The fact that the most common genes among the significant interactions were the same
between both case groups lends credibility to their potential involvement in the process of
gliomagenesis (Table 3). The top five genes most frequently involved in the statistically
significant SNP-SNP interactions were MAP3K7, TLR4, CRADD, PRKCA, and SYK. The
protein products of all these genes have functions that are directly relevant to
carcinogenesis. For example, among a wide variety of other functions, protein kinase C-α
(PRKCA) acts as a receptor for phorbol esters, a class of tumor promoters. Its involvement
in mediating tumor growth and progression is well established, and PRKCA, as well as other
members of the protein kinase C family, have served as therapeutic targets for cancer
treatment (27). Another example is the TLR4 gene product. TLR4 is a fundamental regulator
of the innate immunity and can induce the production of pro-inflammatory cytokines (28),
which may be particularly relevant to glioma etiology given the prior observations that
atopic conditions tend to be inversely associated with glioma risk (29, 30). SNPs in the
TLR4 gene have previously been associated with prostate cancer in certain populations (28,
31). Given the functions of the protein products and the interrelated pathways through which
they act, the potential joint impact of SNPs in these genes would not be particularly
surprising, especially if the polymorphisms affect either the amount or the functional
efficiency of the expressed proteins.

Although none of the most significant interactions between SNPs on different chromosomes
were replicated in the validation population, 396 significant interactions between SNPs in
different genes on the same chromosome were identified in both study populations. Of these
396 replicated interactions, 110 were highly significant with p-values less than 10−16. Many
of the gene pairs involved in these highly significant interactions act in concert with each
other, either through the same pathway or in complementary pathways. In fact, the most
frequently implicated interactions were between SNPs of the STAT1 and STAT4 genes, both
of which code for transcription factors involved in the JAK-STAT pathway. The JAK-STAT
pathway is a pleiotropic signal transduction pathway responsible for numerous cellular
functions, including immune development and cell cycle control (32). It is the key
mechanism through which cytokines and growth factors are regulated. Genetic mutations
leading to the over-activation of the JAK-STAT pathway are associated with the
development of atopic diseases (32), which are known to be inversely associated with
glioma risk (2, 5, 8, 9). Furthermore, this pathway is suspected to play a role in the
development of various other types of cancer, including leukemias, lymphomas, and head
and neck cancers (33, 34).
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Currently, the biological function of the majority of the SNPs included in these analyses is
unknown. Thus, the specific mechanisms that explain how the interactions reported here
actually work to influence glioma risk cannot be completely elucidated until the functions of
these polymorphisms are determined. However, by examining the pathways through which
the implicated genes may be linked, we can begin to see the value of investigating the
hypotheses generated by this exploratory study. Gliomagenesis is an extremely complex
process involving interchange between multiple biological processes and pathways (8, 9).
Thus far glioma research has focused on examining the main effects of single genetic factors
on disease risk without resulting in any major breakthroughs on etiology, other than the two
risk factors already established. Perhaps this is a sign that the focus in this area of research
needs to shift toward newer methods of hypothesis generation and testing for interactions
rather than solely main effects. Because our study is the first of its kind, we are unable to
corroborate our results with findings from previous research, but the purpose of this analysis
was simply to provide new hypotheses for future investigation.

A limitation of this study is that despite controlling for multiple comparisons, the results
presented in Table 3 may partly be driven by the number of SNPs analyzed per gene, given
that some of these genes (i.e. MAP3K7) had more genotyped tag-SNPs than average.
However, there were other “large” genes in our dataset that did not yield many significant
interactions and thus, were not included in this table (e.g. F13A1 with 107 genotyped SNPs).
Consequently, we do not believe that these results were entirely attributable to the number of
SNPs in these genes. Nonetheless, these results should be interpreted with caution.

A commonly cited limitation of using the case-only design for the detection of pairwise
multiplicative interactions is that it assumes absolute independence between the factors
being examined. For this reason, we did not consider interactions between SNPs in strong
linkage disequilibrium or within the same gene. Furthermore, this exploratory study was
conducted for the purpose of hypothesis generation, not hypothesis testing. A thorough
investigation of the interactions reported here should be conducted in a large case-control
study. However, use of the case-only design in this study has allowed us to have increased
precision and thus, to provide several new hypotheses that can now be tested utilizing a
more traditional approach.
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Table 1

Immune-Related Pathways of Interest Used to Determine Relevant Genes

Pathways of Interest
a

Cells and molecules involved in local acute inflammatory response

Chaperones modulating interferon signaling pathway

CTL mediated immune response against target cells

CXCR4 signaling pathway

Cytokine network

Cytokines and inflammatory response

Dendritic cells in regulating TH1 and TH2 development

IFN alpha signaling pathway

IFN gamma signaling pathway

IGF-1 signaling pathway

IL 17 signaling pathway

IL 18 signaling pathway

IL 2 signaling pathway

IL 3 signaling pathway

IL 4 signaling pathway

IL 5 signaling pathway

IL 6 signaling pathway

IL10 anti-inflammatory signaling pathway

IL2 receptor beta chain in T cell activation

IL7 signal transduction

IL12 and Stat4 dependent signaling pathway in Th1 development

NF-kB signaling pathway

Nitric oxide signaling pathway

NO2-dependent IL 12 pathway in NK cells

Th1/Th2 differentiation

TNF/Stress related signaling

Toll-Like receptor pathway

IL22 soluble receptor signaling pathway

a
This list consists of all inflammation-related pathways identified from the “interactive graphic models of molecular and cellular pathways” tool

available on the Biocarta pathway maps website (www.biocarta.com/genes/allpathways.asp) and the Cancer Genome Anatomy Project website
(http://cgap.nci.nih.gov/Pathways).
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Table 4

Gene pairs involved in top 5 most significant interactions between SNPs on different chromosomes in the U.S.
and U.K. study populations

Gene 1 Gene 2
P 

a

U.S. Study Population

IL5RA SMAD3 3.26 × 10−7

PTK2 HNF1A 3.94 × 10−7

MAP3K7 GNAQ 1.55 × 10−6

LRPPRC F13A1 1.70 × 10−6

PTK2B CRADD 2.07 × 10−6

U.K. Study Population

CD2 PIK3C2G 1.96 × 10−7

TXN PIK3C2G 9.19 × 10−7

PPP3CA MAP3L7 9.63 × 10−7

F13A1 IL7 1.16 × 10−6

MAP3K7 ITGAL 1.29 × 10−6

a
P-values of associations from polytomous logistic regression analyses for most significant SNP-SNP interactions, not for the gene pairs

themselves.
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Table 5

Most frequent gene pairs involved in the 110 most significant interactions in common between the U.S. and

U.K. study populations
a

Gene 1
b Gene 2 Number of

SNPs in Gene 1
Number of

SNPs in Gene 2
Frequency of
Interactions

STAT1 STAT4 11 27 40

IL1A IL1B 6 11 29

IFNG IL22 5 12 11

IFNAR1 IFNAR2 11 13 9

IL22RA2 IFNGR1 16 31 5

a
p<10−16; total n=110

b
All significant interactions in common between the U.S. and U.K. study populations are between SNPs in different genes on the same

chromosomes.
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