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Abstract

Because cells are constantly subjected to DNA damaging insults, DNA repair pathways are critical for genome integrity [1].
DNA damage recognition protein complexes (DRCs) recognize DNA damage and initiate DNA repair. The DNA-Damage
Binding protein 2 (DDB2) complex is a DRC that initiates nucleotide excision repair (NER) of DNA damage caused by
ultraviolet light (UV) [2–4]. Using a purified DDB2 DRC, we created a probe (‘‘DDB2 proteo-probe’’) that hybridizes to nuclei
of cells irradiated with UV and not to cells exposed to other genotoxins. The DDB2 proteo-probe recognized UV-irradiated
DNA in classical laboratory assays, including cyto- and histo-chemistry, flow cytometry, and slot-blotting. When
immobilized, the proteo-probe also bound soluble UV-irradiated DNA in ELISA-like and DNA pull-down assays. In vitro, the
DDB2 proteo-probe preferentially bound 6-4-photoproducts [(6-4)PPs] rather than cyclobutane pyrimidine dimers (CPDs).
We followed UV-damage repair by cyto-chemistry in cells fixed at different time after UV irradiation, using either the DDB2
proteo-probe or antibodies against CPDs, or (6-4)PPs. The signals obtained with the DDB2 proteo-probe and with the
antibody against (6-4)PPs decreased in a nearly identical manner. Since (6-4)PPs are repaired only by nucleotide excision
repair (NER), our results strongly suggest the DDB2 proteo-probe hybridizes to DNA containing (6-4)PPs and allows
monitoring of their removal during NER. We discuss the general use of purified DRCs as probes, in lieu of antibodies, to
recognize and monitor DNA damage and repair.
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Introduction

Response to DNA damage caused by genotoxic stress involves

recognition of the damage and subsequent repair. Distinct DNA

repair pathways have evolved to respond to different categories of

DNA damage. Specific DNA damage recognition protein com-

plexes (DRCs) recognize and bind the various lesions found in

DNA to initiate their cognate DNA repair pathway. Failure or

delay to repair DNA leads to accumulation of mutations and can

result in disease, including cancer [1,5].

UV light is a pervasive genotoxin that can cause skin cancer.

Upon reaching DNA, UV light predominantly causes intra-strand

crosslinks of two adjacent pyrimidines, causing cyclobutane

pyrimidine dimers (CPDs) and 6-4-photoproducts [(6-4)PPs]

[6,7]. Both types of lesions are repaired by the nucleotide excision

repair pathway (NER), albeit on different time scales. Recognition

of UV damaged DNA by the DNA Damage Binding protein 2

complex (DDB2) is necessary for the timely completion of global

genome repair (GGR) of UV lesions by NER in vivo [8–11].

Several results obtained with in vitro assays and from genetic

evidence have shown DDB2 binds both types of lesions, but has a

higher affinity for (6-4)PPs compared to CPDs [12–15]. In

addition, a crystal structure of DDB2 bound to (6-4)PPs or CPDs

have been resolved [15,16].

The DDB2 protein complex is constituted of several sub-

complexes, and does not require prior activation to recognize

DNA damaged by UV light. Before damage, the complex is

stabilized by the presence of the COP9 signalosome sub-complex

[17]. Damage recognition involves dissociation of the COP9 sub-

complex, ubiquitylation of DDB2 by the DDB1-Cul4 ubiquitin

ligase sub-complex, and subsequent degradation of DDB2 [17].

Degradation of DDB2 allows displacement of the recognition

complex from the lesion, and initiation of repair [18,19]. Repair is

performed in sequential steps by several protein complexes. These

steps include unwinding of DNA, excision of a single strand

fragment of 24–32 nucleotides containing the lesion, and gap

filling using the undamaged strand as template [20–22]. Mutations

in seven well characterized NER genes (XPA to XPG), including

DDB2 (XPE), result in Xeroderma Pigmentosum (XP), a recessive

inherited syndrome characterized by heightened UV-sensitivity,

neurological abnormalities, and an increased susceptibility to

develop skin cancers [23,24].
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We hypothesized the purified DDB2 complex would carry the

recognition activity of the endogenous complex, and could be

employed like an antibody in immune-based techniques

(Figure 1A). We call such a purified complex used as a probe a

‘‘proteo-probe’’. We found the DDB2 proteo-probe binds

preferentially to (6-4)PPs rather than CPDs in vitro. We observed

the DDB2 proteo-probe hybridizes to nuclei of fixed UV-

irradiated cells, and allows monitoring of repair. The observed

kinetic of repair corresponds to the repair of (6-4)PPs. We

conclude we created a probe specific for 6-4-photoproducts.

Materials and Methods

Cell lines and cell culture
Human BJ1 newborn foreskin fibroblasts (American Type

Culture Collection, Manassas, VA) and HeLa S3 (Sigma-Aldrich,

St. Louis, MO) were maintained at 37uC, 100% humidity, 5%

CO2 in Dulbecco’s modified Eagle’s medium supplemented with

10% fetal bovine serum (v/v), penicillin (105 units/l) and

streptomycin (100 mg/l; all reagents purchased from Life Tech-

nologies, Carlsbad, CA).

Primary antibodies

– Mouse monoclonal anti-FLAG conjugated to horseradish

peroxidase (1:1,000; clone M2; Sigma-Aldrich).

– Purified mouse monoclonal anti-HA (1:200; clone 16B12,

Covance, Princeton, NJ).

– Rabbit anti-Cullin4A (1:500; Cell Signaling Technology,

Beverly, MA).

– Rabbit anti-DDB1 (1:500; Santa Cruz Biotechnology, Santa

Cruz, CA).

– Rabbit anti-CSN5 (1:500; Sigma-Aldrich).

– Purified mouse monoclonal anti-cyclobutane pyrimidine dimer

(1:2,000; Kamiya Biomedical, Seattle, WA).

– Mouse monoclonal anti-(6-4)-photoproducts (1:400; Cosmo

Bio Co., LTD., Japan).

Affinity purification
DDB2-FLAG-HA was purified from a HeLa S3 cell line

previously published [17]. This cell line expresses the DDB2 open

reading frame fused to a FLAG-HA tag. We performed affinity

purification as described earlier [25]. Briefly, we washed cells in

phosphate buffer saline (PBS, 10 mM, pH = 7.4), then treated cells

with lysis buffer (40 mM Tris-HCl [pH = 8], 200 mM NaCl, 10%

glycerol, 2 mM EDTA, 0.4% NP40) supplemented with a protease

inhibitor cocktail (Roche Applied Sciences, Indianapolis, IN), for

30 minutes at 4uC. The cell lysate was cleared by centrifugation at

25,0006g for 30 min at 4uC. The supernatant was then incubated

for 4 hours at 4uC with M2 anti-FLAG antibody-coated agarose

beads (Sigma-Aldrich). We eluted the complex from the beads by

incubation with excess FLAG peptide (Sigma-Aldrich) for 2 hours

at 4uC and recovered the eluate by centrifugation through a

Figure 1. A purified DDB2 protein complex can be used to detect UV-induced DNA damage. (A) Experimental strategy to prepare the
DDB2 proteo-probe. (B) Signal obtained by hybridization of the DDB2 proteo-probe onto fibroblasts with or without damaging treatments.
Hybridized DDB2 proteo-probe is revealed by anti-HA immunofluorescence. Nuclei are visualized by DAPI staining. Nuclei are delineated based on
DAPI staining and using CellProfiler [26].
doi:10.1371/journal.pone.0085896.g001
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Bio-Spin chromatography column (Bio-Rad Laboratories, Hercu-

les, CA).

Silver staining and immuno-blotting
We resolved the DDB2 protein complex in a NuPAGE 4–12%

gel (Life Technologies) and analyzed the complex by silver staining

or by immuno-blotting with indicated antibodies. Silver staining

was performed with a SilverQuest Kit (Life Technologies). We

visualized immuno-blots with Supersignal chemi-luminescence

reagents (Pierce, ThermoScientific, Rockford, IL), and a lumines-

cence image analyzer LAS-4000 mini (Fujifilm, Edison, NJ).

In situ fluorescence
Cells were grown on glass coverslips, or on multi-well glass slides

(Electron Microscopy Sciences, Hatfield, PA), or using the

DropArray system and Liquid Lid Sealing Fluid (Curiox

Biosystems Inc., San Carlo, CA). To perform ‘‘fixation/extrac-

tion’’, we applied methanol (220uC) to cells and incubated them

at room temperature for 10 minutes. We then serially re-hydrated

cells in methanol-PBS (50, 25, 12.5, 6.25, 3.12, 1.56, and 0%

methanol). To block non-specific sites, fixed cells were incubated

in PBS-BSA (PBS, 0.3% bovine serum albumin, 0.1% sodium

azide). We applied the DDB2 proteo-probe diluted in PBS-BSA to

cells for 30 minutes at 37uC. We removed un-hybridized DDB2

proteo-probe with two washes in PBS and labeled the hybridized

proteo-probe for one hour at 37uC with 5 mg/ml anti-HA

antibody diluted in PBS-BSA. After two washes in PBS, we

incubated cells for 30 minutes at 37uC with 6.67 mg/ml goat anti-

mouse antibody coupled to Alexa fluor488 fluorochrome (Life

Technologies) diluted in PBS-BSA. After two washes in PBS, and

one wash in purified water, we mounted coverslips in hardset

Vectashield medium containing DAPI (Vector Laboratories,

Burlingame, CA).

For immuno-fluorescence against CPDs and (6-4)PPs, after

fixation, chromatin DNA was denatured by treatment with

concentrated hydrochloric acid. When using the anti-CPD

antibody, after methanol fixation and rehydration of cells, we

sequentially incubated cells at room temperature with PBS

(10 minutes), purified water (10 minutes), 4N hydrochloric acid

(5 minutes), purified water (10 minutes), and PBS (10 minutes)

before blocking with PBS-BSA and immuno-fluorescence. The

anti-(6-4)PP antibody was used according to the manufacturer’s

instructions. Briefly, cells were fixed with 4% formalin and

extracted with 0.5% Triton-X100. Chromatin DNA was dena-

tured with 2N hydrochloric acid for 30 minutes, and cells were

washed five times in PBS. After non-specific signal was blocked

with PBS-BSA, cells were treated for immuno-fluorescence.

Image acquisition and processing
We visualized fluorescence on an upright microscope (Im-

ager.M2, Zeiss, Germany) equipped with an HXP 120C light

source. We photographed cells with an AxioCam MRM camera

coupled with a 106/0.45 plan-APOCHROMAT, or 636/1.4 oil

plan-APOCHROMAT objective. The imaging platform was

controlled using the Axiovision 4.8 software (Zeiss). For each field

of view we acquired five images in a vertical stack (z-stack): one

image in the focal plane, plus two images above and two images

below. Within a z-stack, images taken with the 106, or with the

636objective were separated by 1.7 mm, and 0.3 mm, respective-

ly. We processed images using the CellProfiler imaging platform

[26]. We assembled ‘‘projected images’’ by combining the five

images of a z-stack. This strategy eliminates signals that vary from

one layer of the z-stack to another (non-specific signal). For each

field of view, we quantified fluorescence signals in projected

images and obtained: (i) the number of nuclei, (ii) the fluorescence

signal intensity for each nucleus, (iii) the number of foci, and (iv)

the fluorescence signal intensity outside nuclei.

For cytochemistry and histochemistry experiments, we acquired

images on a BX41 microscope coupled to a Qcolor5 camera

(Olympus, Center Valley, PA).

DNA damaging treatments (Figure 1B)
We treated BJ1 fibroblasts with one of several genotoxins before

fixation: 20 J/m2 UV-C at 254 nm using a StrataLinker 2400

(Stratagene, Agilent Technologies, Santa Clara, CA), 100 mg/ml

of cisplatin for two hours (Sigma-Aldrich), 10 ng/ml of bleomycin

for one hour (Sigma-Aldrich), or 30 Gray of ionizing radiation.

DNase treatment (Figure 2B)
We treated BJ1 fibroblasts with 361023 Kunitz units of DNaseI

diluted in RDD buffer (Qiagen, Germany) for 10 minutes at RT

prior to blocking with PBS-BSA and DDB2 proteo-probe

fluorescence.

Competition experiment (Figure 2C)
We irradiated plasmid DNA with 300 J/m2 UV-C. Prior to

hybridization onto cells, we incubated the DDB2 proteo-probe

with indicated amounts of untreated or UV-treated plasmid DNA

at RT for 30 minutes.

In vitro DNA pull-down assay (Figure 2D)
We obtained DNA oligonucleotides containing two CPDs, or

two (6-4)PPs, or no lesion at all. The lesions were located on

opposite strands in a staggered arrangement, 28 base pairs apart.

These oligonucleotides were ligated into the pQ1 vector [27]. The

resulting plasmids and the lesion-free pQ1 control were submitted

to restriction-digest to completion with the DpnI and ScaI

restriction enzymes. We obtained the DDB2 proteo-probe as

described in ‘‘Affinity purification’’, with the difference that the

purified complex was not eluted from the M2 anti-FLAG

antibody-coated agarose beads.

We performed DNA pull-downs with the DDB2 proteo-probe

bound to M2 anti-FLAG antibody-coated agarose beads and the

plasmid restriction DNA fragments containing either CPDs, or (6-

4)PPs, or no lesion. Bound DNA was isolated from the beads, and

was used as template for qPCR with primer pairs designed against

the lesion-containing fragment (forward: 59-ATCGCCCTGATA-

GACGGTTT-39, reverse: 59-CCGAGATAGGGTTGAGTGT-

TG-39) and against a similar sized lesion free restriction fragment

of pQ1 (forward: 59-GAACCAACAAATGTCCAAACCG-39,

reverse: 59- AACAAGGAGGTAAATGGGGAGTG-39) [28].

UV micro-irradiation (Figure S3A)
We placed a micro-porous isopore membrane (pores of 5 mm in

diameter, Millipore, Cork, Ireland) between cells grown on glass

coverslips and the UV source, and irradiated covered cells with

300 J/m2 UV-C.

Histochemistry (Figure S4A)
We irradiated shaved backs of living C57BL/6 mice with

2,500 J/m2 UV-B. We embedded skin punch biopsies in OCT

mounting medium, and processed tissues for histochemistry.

Briefly, we fixed 5-micron thick sections placed on plus glass

slides in ice-cold methanol-acetone (1:1) for 30 minutes. We

serially re-hydrated tissue sections in methanol-acetone/PBS (50,

25, 12.5, 6.25, 3.12, 1.56, and 0% methanol-acetone). Next, we

incubated slides in a solution of 3% hydrogen peroxide for

Repair of (6-4)PP with a Purified DDB2 Complex
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15 minutes, then in PBS supplemented with 3% BSA for two

hours. We applied the DDB2 proteo-probe diluted in PBS-BSA to

tissue sections, for 60 minutes at 37uC then washed samples in

PBS. We labeled hybridized proteo-probe overnight at 4uC with

4 mg/ml anti-FLAG-HRP in PBS-BSA. After washes in PBS, we

stained samples with 3,39-diaminobenzidine for 7 minutes. We

washed samples in purified water, counter-stained with hematox-

ylin, and dehydrated in successive solutions of ethanol and xylene.

We mounted samples with coverslips in Clearmount medium (Life

Technologies).

Cytochemistry (Figure S4B)
When performing cytochemistry, fixation, re-hydration, block-

ing and incubation with the DDB2 proteo-probe were identical to

those of the in situ fluorescence protocol. We then labeled the

hybridized proteo-probe with 4 mg/ml anti-FLAG-HRP antibody

diluted in PBS-BSA. After two washes in PBS, we stained the

samples with 3,39-diaminobenzidine for 3 minutes. After one wash

in purified water, we mounted coverslips in Clearmount Medium

(Life Technologies).

ELISA-like assay (Figure S4C)
In a maxisorp 96-well microtiter plate (Thermo Scientific,

Rochester, NY), we adsorbed 50 ng of anti-HA antibody per well

overnight at 4uC in PBS, incubated each well in PBS with 1% BSA

for 30 minutes at room temperature, washed six times with PBS-

Tween 0.05%, then once with lysis buffer. Next, we added the

diluted DDB2 proteo-probe for 5 hours at 4uC, washed twice with

lysis buffer (described in ‘‘Affinity purification’’), added 100 ng of

DNA for 30 minutes at room temperature, followed by three

washes with lysis buffer. We quantified captured DNA using

Picogreen (Life Technologies).

Slot-blot (Figure S4D)
We collected cells grown in a 3-cm Petri dish in 1 ml of lysis

buffer. Ten percent of the lysate was loaded on a Minifold II slot

blot system (Schleicher & Schuell, Keene, NH) transferred to a

nitrocellulose membrane (0.45 mm, Bio-Rad Laboratories) by

vacuum suction and dried overnight at room temperature. We

incubated the membrane with PBS-BSA-0.05% Tween (PBT) for

30 minutes. We applied the DDB2 proteo-probe for 30 minutes,

washed the membrane twice in PBT, labeled it with 1 mg/ml of

anti-FLAG-HRP for one hour at room temperature before

Figure 2. The DDB2 proteo-probe recognizes 6-4-photoproducts in vitro. (A) The DDB2 proteo-probe signal increases linearly with fluence
(J/m2). Fibroblasts were irradiated with different doses of UV-C. Each point is an average of three replicas. Each replica represents an average of at
least 60 cells. Dashed line: linear fit (R2 = 0.94). Error bars: s.e.m. (B) The DDB2 proteo-probe signal is DNA-dependent. Fibroblasts were irradiated with
UV-C (10 J/m2), and untreated or treated with DNase. Nuclei are visualized by DAPI staining. (C) The DDB2 proteo-probe signal can be competed with
UV-treated plasmid DNA. Fibroblasts and plasmid DNA were irradiated with UV-C (10 J/m2 and 300 J/m2, respectively). The DDB2 proteo-probe was
incubated with plasmid DNA prior to hybridization onto irradiated fibroblasts. Dashed line: no plasmid control proteo-probe signal level. Each point is
an average of three replicas. Each replica represents an average of at least 400 cells. Error bars: s.e.m. (D) The DDB2 proteo-probe binds preferentially
to 6-4-photoproducts [(6-4)PP] over cyclobutane pyrimidine dimers (CPD). The DDB2 proteo-probe was immobilized on agarose beads, and
incubated with the DNA restriction fragments of a plasmid containing, or not, a unique lesion [(6-4)PP or CPD]. The average ratio of the amount of
lesion-containing over lesion-free DNA fragments bound to the proteo-probe is shown (n = 3). Error bars: s.e.m.
doi:10.1371/journal.pone.0085896.g002
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washing in PBT. We visualized hybridized proteo-probe as

described in ‘‘Silver staining and immuno-blotting’’. After washes,

total DNA was stained with methylene blue and photographed.

Flow cytometry (Figure S4E)
Non-adherent KOPT-K1 lymphoblastic T-cells grown to

26106 cells/ml were collected by centrifugation, washed in PBS,

fixed in 1% paraformaldehyde on ice for 15 minutes, washed

twice in PBS, then suspended and stored overnight in ice-cold

ethanol. We washed cells in PBS, applied 30 J/m2 UV-C and

processed samples as described in ‘‘In situ fluorescence’’ before

analysis by flow cytometry.

Statistical analyses
All data were analyzed, fitted, and plotted using GraphPad

Prism version 6.0a for Mac, (GraphPad Software, La Jolla,

California, USA, www.graphpad.com). Outliers were identified

using the ROUT method (Q = 1%). Statistical significance was

calculated using two-sided two-sample Student’s t-tests, unless

otherwise noted. The threshold for significance was chosen at P,

0.05.

Results

Specific detection of UV damage
We hypothesized the biochemically purified DDB2 DRC could

be a ready-to-use reagent to detect specific DNA damage, and

employed to monitor repair in lieu of antibodies (Figure 1A). The

composition of the DDB2 complex, obtained by non-denaturing

affinity purification of a FLAG-HA tagged DDB2 protein stably

expressed in HeLa S3 cells was previously reported [17]. We used

these HeLa S3-DDB2-FLAG-HA cells to purify large amounts of

the DDB2 complex (Figure S1) and verified the presence of

previously reported key components of the DDB2 complex by

immuno-blotting (Figure S1). We call this purified multi-protein

complex the DDB2 proteo-probe. We tested the recognition

activity of the proteo-probe toward DNA damage. BJ1 fibroblasts

were subjected to various types of damage and fixed. The diluted

DDB2 proteo-probe was applied to fixed cells, instead of a primary

antibody, in a classic immuno-fluorescence protocol. To assess

whether the proteo-probe hybridized to these cells, we performed

immuno-fluorescence against its HA tag. No hybridization was

found on untreated cells or cells subjected to cisplatin, bleomycin

or ionizing radiation (Figure 1B). In contrast, we observed a strong

signal localized in the nuclear region of cells irradiated with UV-C

(Figure 1B). We found the DDB2 proteo-probe also hybridized to

the nuclei of cells irradiated with UV-B, but not UV-A (Figure S2).

It was shown the endogenous DDB2 protein re-localizes at sites of

UV damage after irradiation. To understand if the DDB2 proteo-

probe indeed hybridized to the very sites of damage, we created

localized damage by irradiating cells covered with a micro-porous

membrane. After irradiation, cells were fixed, and by cytochem-

istry we found the proteo-probe hybridizing to regions restricted

by the membrane micro-pores inside nuclei (Figure S3A).

We conducted an exposure-response experiment to determine

the performance of the proteo-probe within a range of UV doses

commonly used. We quantified fluorescence signals per nuclear

region using the CellProfiler software [26]. We found both the

number of DDB2 proteo-probe foci and the average fluorescence

were directly proportional to the UV dose (Figure 2A and Figure

S3B, respectively). This suggests a linear relationship between

signal and damage, which is in agreement with the positive

correlation between UV dose and amount of DDB2 bound to

lesions [29]. We wondered if in the experiment shown in

Figure 1B, the endogenous DDB2 protein complex interfered

with the hybridization of the DDB2 proteo-probe. To immobilize

the endogenous DDB2 complex, and prevent its UV-induced re-

localization on damage sites, we sequentially: (i) killed cells by

fixation, (ii) applied UV irradiation, and (iii) incubated cells with

the DDB2 proteo-probe. The intensity of the hybridization signal

obtained on cells fixed before irradiation did not appear affected

when compared to cells treated in a traditional sequence of

irradiation then fixation. This suggests the endogenous DDB2

complex does not interfere with recognition of damage by the

DDB2 proteo-probe in a discernable manner under our experi-

mental conditions (Figure S3C).

We assessed the performance of the DDB2 proteo-probe in

various types of immuno-chemistry-like assays in which the proteo-

probe replaced the traditional primary antibody. We irradiated the

back of living mice and processed skin biopsies for histochemistry,

or irradiated and subsequently fixed cultured cells for cytochem-

istry. In both cases, after following standard protocols, we detected

the proteo-probe hybridized to the nuclei of damaged cells (Figure

S4A and S4B). In addition, the DDB2 proteo-probe adsorbed to a

96-well microtiter plate and tested in an ELISA-like format

captured damaged DNA in a UV-dose dependent way (Figure

S4C). The probe is also usable in blotting techniques as it

hybridized to UV-irradiated purified DNA immobilized to

nitrocellulose (Figure S4D). Finally, we could discriminate

untreated or UV-irradiated fixed cultured cells by flow cytometry

(Figure S4E). Therefore the DDB2 proteo-probe functions in a

variety of experimental conditions, and is adaptable to multiple

laboratory demands.

The DDB2 proteo-probe recognizes DNA 6-4-
photoproducts

To confirm the signal found in situ is indeed DNA dependent,

we fixed UV-irradiated fibroblasts and treated them with DNase

prior to application of the proteo-probe. The intensity of the DAPI

staining greatly decreased after DNase treatment, and the DDB2

proteo-probe staining was completely abrogated (Figure 2B). Next,

we incubated the DDB2 proteo-probe with varying amounts of

untreated or UV-irradiated plasmid DNA, prior to hybridization

onto UV-irradiated fibroblasts. The DDB2 proteo-probe signal

remained unaffected by any amount of untreated plasmid, but was

drastically reduced by competition with UV-irradiated plasmid

DNA, particularly at higher amounts of the competitor (Figure 2C).

We conclude the DDB2 proteo-probe recognizes UV-damaged

DNA.

Irradiation of DNA with UV-C light produces mostly CPDs and

(6-4)PPs. We therefore assessed the recognition of CPDs and (6-

4)PPs by the DDB2 proteo-probe. DNA fragments containing

either CPDs or (6-4)PPs, or no lesion were incubated with the

DDB2 proteo-probe immobilized on agarose beads cross-linked to

an anti-FLAG antibody in a pull down experiment. The DNA

pulled down by the proteo-probe was isolated then amplified by

qPCR. In our experimental conditions, the DDB2 proteo-probe

showed preferential binding to DNA fragments containing (6-

4)PPs over CPDs (Figure 2D). Altogether, our results strongly

suggest the DDB2 proteo-probe hybridizes to UV-damaged DNA,

and specifically to foci containing (6-4)PPs.

Monitoring repair of 6-4-photoproducts with the DDB2
proteo-probe

We wondered if the DDB2 proteo-probe would allow monitor-

ing the repair of (6-4)PPs by in situ fluorescence experiments. To

follow repair of damage over time, BJ1 fibroblasts were irradiated

Repair of (6-4)PP with a Purified DDB2 Complex
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with 10 J/m2 of UV-C, and fixed at various time points after

damage. We compared signals obtained with the DDB2 proteo-

probe, anti-CPD, and anti-(6-4)PP antibodies. Since the anti-CPD

and anti-(6-4)PP antibodies were raised against purified single-

stranded DNA oligonucleotide containing a single lesion, strong

chromatin denaturing conditions are necessary to uncover epitopic

UV damaged cellular DNA [11]. Therefore for immunofluores-

cence analysis with antibodies against CPDs and (6-4)PPs, we

treated fixed fibroblasts with concentrated hydrochloric acid. In

contrast, cyto-chemistry with the DDB2 proteo-probe was directly

performed on fixed cells.

The DDB2 proteo-probe signal, maximal five minutes after UV

irradiation, decreased to minimal levels at two hours (Figure 3A,

top row). We observed no remarkable fluctuation of the signal

beyond the two hour time point (data not shown). An almost

identical pattern was observed using the anti-(6-4)PP antibody

(Figure 3A, bottom row). In stark contrast, the anti-CPD antibody

signal did not substantially change over the two hour period

(Figure 3A, middle row). The signal per nucleus obtained with the

DDB2 proteo-probe, anti-(6-4)PP and anti-CPD were quantified

for each of the time points and analyzed for trends.

We fitted a linear regression model on data obtained with anti-

CPD antibodies (Figure 3D). Although the fit to the a-CPD data is

rather poor (R2 = 0.18), we found the data does not significantly

deviate from linearity (P = 0.63, Runs test), and the slope of the

linear fit does not significantly deviate from the horizontal

(P = 0.30, F test). This analysis supports the conclusion that the

anti-CPD signal remains relatively constant over a two hour

period.

We then fitted one-phase exponential decay models to the

DDB2 proteo-probe, and the anti-(6-4)PP data (Figure 3B and

3C). We determined that both fits are not statistically different

from each other, and a single exponential decay model adequately

fitted both datasets (extra sum-of-squares F test, P = 0.9002;

R2 = 0.85; Figure 3E). These data further support the contention

that the DDB2 proteo-probe recognizes (6-4)PPs in situ. Under this

single model, we can predict half of (6-4)PPs (t1/2) will be

undergoing repair within ,30 minutes in UV-irradiated cultured

cells (Figure 3E).

Altogether, given that the DDB2 proteo-probe preferentially

binds (6-4)PP lesions in vitro, and that its signal decay over time is

nearly identical to the disappearance of (6-4)PPs in UV-irradiated

cultured cells, we conclude the DDB2 proteo-probe, a multi-

protein complex purified from human cells, allows detection of (6-

4)PPs and monitoring of their removal in situ.

Discussion

In this study we demonstrate that a purified DDB2 protein

complex (‘‘proteo-probe’’) detects UV-damaged DNA in cells and

tissues, in various assays. We show that the DDB2 proteo-probe

detects 6-4-photoproducts and can be used to follow their repair in

situ.

The DDB2 proteo-probe is a ready to use reagent
We obtained the DDB2 proteo-probe by purifying the multi-

protein DDB2 complex from the HeLa S3-DDB2 Flag-HA cell

line established by Groisman, Polanowska and colleagues [17].

Since all protein subunits in the complex may not be needed for

the recognition activity, further studies may identify the minimal

set of DDB2 partners required for the assembly of a functional

proteo-probe. This might permit production of a DDB2 proteo-

probe in bacteria or insect cells. However, HeLa S3 cells can be

grown in suspension to industrial quantities, and therefore allow

production of large amounts of recombinant proteins. During the

course of our work, several batches of DDB2 proteo-probe were

prepared and stored at 220uC or 240uC in a solution containing

50% glycerol. The DDB2 proteo-probe was then routinely

pipetted from inside a bench-top cooler protection box, not unlike

traditional restriction enzymes. In this experimental setting, tested

over several years and by multiple users, the various lots of DDB2

proteo-probe were very stable and were used without noticeable

loss off activity for at least six months after purification.

The DDB2 proteo-probe hybridizes to specific regions of
chromatin

Despite the fact that UV light was applied homogenously onto

entire nuclear areas, the DDB2 proteo-probe signal formed foci

within nuclei of irradiated cells. This suggests the access of the

proteo-probe to chromatin is restricted to sub-regions, which is in

agreement with reports that DDB2 predominantly (80%) binds to

highly accessible inter-nucleosomal sites of chromatin in damaged

cells [30,31]. In addition, when cells were killed by fixation to

prevent any cellular response, irradiated a posteriori, and incubated

with the DDB2 proteo-probe, we observed similar focal signals

(Figure S3). It is therefore likely the discrete regions of chromatin

to which the proteo-probe hybridizes already existed before

irradiation, consistent with highly accessible inter-nucleosomal

sites. Unlike the DDB2 proteo-probe, the use of anti-(6-4)PPs

antibodies requires aggressive chromatin denaturing treatment to

unravel naked DNA epitopes. Consequently, anti-(6-4)PPs anti-

bodies have access to more (6-4)PPs than the DDB2 proteo-probe,

in otherwise un-exposed sites, possibly within nucleosomes. It is

therefore not surprising that we observed a greater number of foci

when using anti-(6-4)PPs antibodies.

The DDB2 proteo-probe allows monitoring NER of (6-4)
photoproducts

Our in situ experiments suggest the DDB2 proteo-probe

recapitulates the recognition activity of the endogenous DDB2

complex toward (6-4)PPs, but not toward CPDs.

The role of endogenous DDB2 in the repair of CPDs in vivo has

been described using a variety of techniques and genetic

approaches [12–15]. It was shown DDB2 has a much greater

affinity for (6-4)PPs compared to CPDs. In our in situ experiments,

the DDB2 proteo-probe did not recognize CPDs (Figure 3;

compare panels 3A and 3B to panels 3C and 3D). Furthermore, in

DNA pull-down assays the DDB2 proteo-probe bound CPDs but

with less affinity than (6-4)PPs (Figure 2D).

According to the most recently published model [32], 90% of

(6-4)PPs are excised within two hours after irradiation. Our results

are entirely consistent with this model since the data obtained by in

situ fluorescence with anti-(6-4)PP antibodies and by using the

DDB2 proteo-probe show a similar fraction of excised (6-4)PPs

two hours after irradiation. Because (6-4)PPs are repaired only by

the nucleotide excision repair pathway in human cells, monitoring

(6-4)PPs levels over time reflects NER of (6-4)PPs. We anticipate

the DDB2 proteo-probe will allow studies of NER activities,

without the need for chromatin extraction, and can be used in a

variety of traditional cyto- and histo-chemistry protocols with

standard cell fixation, e.g. methanol fixation.

Using the DDB2 proteo-probe did not show obvious advantages

over the anti-(6-4)PP antibody. However, antibodies are only

available for a few types of DNA lesions. From the proof-of-

principle presented here using the DDB2 protein complex, it is

likely specific proteo-probes could be obtained from other purified
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Figure 3. The decrease of DDB2 proteo-probe and 6-4 PP signals over time are nearly identical. (A) Typical signals after UV damage
observed in situ with the DDB2 proteo-probe, an anti-CPD antibody, or an anti-(6-4)PP antibody. Nuclei are delineated based on DAPI staining and
using CellProfiler. (B) The DDB2 proteo-probe signal decreases exponentially with time. Average signal per nucleus normalized to signal at 5 minutes.
Red dashed curve: one phase exponential decay fit calculated with a non-linear least square method (R2 = 0.86). (C) The anti-(6-4)PP signal decreases
exponentially with time. Average signal per nucleus normalized to signal at 5 minutes. Blue dashed curve: one phase exponential decay fit calculated
with a non-linear least square method (R2 = 0.83). (D) The anti-CPD signal remains constant over a two hour period. Average signal per nucleus
normalized to signal at 5 minutes. Black dashed line: linear fit on the a-CPD signal (R2 = 0.18). (B), (C), and (D): cells were irradiated with UV-C (10 J/
m2). The average of three replicas is shown. Each replica represents an average of at least 60 cells. Error bars: s.e.m. (E) A single one phase exponential
decay model summarizes the kinetic of (6-4)PPs removal in situ. The single model is based on the decay fits obtained with DDB2 proteo-probe and
anti-(6-4)PP data. The grey band represents the area enclosing the true decay curve with 99% confidence. The dotted line indicates the predicted
half-life (t1/2) of (6-4)PPs in situ after UV irradiation.
doi:10.1371/journal.pone.0085896.g003
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DNA damage recognition complexes and used to detect specific

DNA lesions and monitor their repair.

Supporting Information

Figure S1 Analysis of the purified DDB2 protein
complex components. (A) Visualization by silver staining of

the DDB2 protein complex obtained by FLAG-affinity purifica-

tion, and resolved by electrophoresis on a polyacrylamide gel.

Purified DDB2 DNA damage recognition complex: ‘‘DDB2

proteo-probe’’. M.W.: molecular weight; kDa: kiloDalton. (B)

Western blotting analysis of key components of known DDB2

protein sub-complexes. DDB1 and Cullin4A of the ubiquitin ligase

sub-complex as well as CSN5 of the COP9 signalosome sub-

complex are detected along with FLAG-DDB2.

(PDF)

Figure S2 In situ detection of UV-A and UV-B DNA
damage with the DDB2 proteo-probe. The DDB2 proteo-

probe detects damage induced by UV-B but not UV-A.

Fibroblasts were fixed prior to irradiation with different doses of

UV-A or UV-B light. The DDB2 proteo-probe was added to fixed

cells following irradiation. Hybridized DDB2 proteo-probe is

revealed by anti-HA immunofluorescence. Nuclei are visualized

by DAPI staining. One representative nucleus is shown for each

experimental condition.

(PDF)

Figure S3 Characterization of the DDB2 proteo-probe
hybridization properties. (A) The DDB2 proteo-probe signal

is localized at sites of UV damage. Fibroblasts, uncovered or

covered by a micro-porous membrane, were irradiated with UV-C

(300 J/m2). (B) The DDB2 proteo-probe signal increases linearly

with fluence. Fibroblasts were irradiated with different doses of

UV-C. Each point is an average of three replicas. Each replica

represents an average of at least 200 cells. Error bars: s.e.m. (C)

The DDB2 proteo-probe signal is independent of endogenous

proteins. Fibroblasts were irradiated with UV-C (10 J/m2), then

fixed, or fixed then irradiated. The DDB2 proteo-probe was

hybridized following fixation/irradiation.

(PDF)

Figure S4 The DDB2 proteo-probe can be used in
different assay formats. (A) Hybridization of the DDB2

proteo-probe onto frozen sections of irradiated mouse skin. The

DDB2 proteo-probe bound to punch biopsies was revealed by

HRP-conjugated anti-FLAG immunohistochemistry. (B) Irradiat-

ed fibroblasts (20 J/m2 UV-C) were fixed in methanol. Cyto-

chemistry was done with the DDB2 proteo-probe in place of

primary antibody. The hybridized proteo-probe was revealed by

HRP-conjugated anti-FLAG. (C) The DDB2 proteo-probe retains

irradiated plasmid DNA in a manner dependent on the amount of

UV in an ELISA-like assay. Equal amount of the DDB2 proteo-

probe was adsorbed onto wells of a 96-well microtiter plate. One

hundred nanogram of UV-irradiated plasmid DNA was added in

each well. Dashed line: Michaelis-Menten function fit on data

(R2 = 0.98). Each condition was tested in duplicate. (D) Slot-

blotting of purified DNA. Left panel: UV-treated chromatin DNA

(+UV) was strongly recognized by the DDB2 proteo-probe

compared to untreated chromatin (no UV). Total DNA as a

loading control was stained with methylene blue. Right panel: the

DDB2 proteo-probe recognizes UV-irradiated plasmid DNA in a

manner dependent on the amount of DNA. Hybridization of the

DDB2 proteo-probe to the membrane was revealed by anti-FLAG

immuno-blotting. (E) Flow cytometry analysis of untreated and

UV-irradiated cells (30 J/m2 UV-C) using the DDB2 proteo-

probe. a.f.u.: arbitrary fluorescence units. Dashed line: fluores-

cence threshold used to determine cells positively stained by the

DDB2 proteo-probe: 7% and 55% of untreated and UV-

irradiated cells, respectively (P = 5.77610214, two-sided Fisher’s

exact test).

(PDF)
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