Skip to main content
. 2014 Jan 28;9(1):e86899. doi: 10.1371/journal.pone.0086899

Table 3. Comparison of algorithms for detecting link communities on some real networks.

MDL-values
Datasets Ball’s method with IB NMFIB Ahn’s method
Zachary’s karate club 5.2072 5.2117 5.2200
Dolphin social network 5.4079 5.0291 6.1854
High school friendship 5.9890 5.5903 5.9488
Les Miserables 5.2863 5.1267 5.3196
Political books 6.8298 5.9248 7.1717
Word adjacencies 7.1179 6.3625 7.3043
American college football 7.0854 6.6730 7.1398
Jazz musicians collaborations 8.7322 7.6698 8.0360
C. Elegans neural 10.0340 8.4119 10.6335
E. coli metabolic 8.9949 8.7959 9.7428
E-mail network URV 10.4825 10.0901 11.7598
Political blogs 10.7068 9.4971 12.1782
Network science collaborations 4.2796 4.2834 4.1812
Power grid 10.5560 9.8559 8.9819
Protein-protein interaction 8.7585 8.6888 9.8867
Word association 12.8988 12.0587 14.5691

Here, Ball’s method and our NMF method both use the strategy of iterative bipartition (IB) to automatically determine the number of communities.